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Abstract

This paper presents a proof and analysis of a previously unexplored
binomial probability identity. It demonstrates that for any positive integer
n and probability PA ∈ (0, 1), the following identity holds:

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k k − n(1− PA)

PA
= 0 (1)

I provide a rigorous proof of this identity, explore its probabilistic
interpretation, and discuss potential applications in statistical analysis,
information theory, and computational probability. This result offers new
insights into the properties of binomial distributions and contributes to
the broader understanding of discrete probability structures.

1 Introduction

Binomial identities have long been a subject of interest in mathematics, with
applications spanning numerous fields including probability theory, statistics,
combinatorics, and physics [1, 2]. The binomial distribution, characterized by
the probability mass function f(k, n, p) =

(
n
k

)
pk(1 − p)n−k, serves as a fun-

damental model for many random processes and has been extensively studied
[3, 4].

In this paper, I introduce and analyze a novel identity involving binomial
coefficients and probability terms. This identity emerged while investigating
properties of weighted binomial sums and their relationship to expected values
of certain random variables. The identity has a surprisingly elegant form despite
its apparent complexity.

The primary contribution of this paper is the formal proof and interpretation
of the following identity:

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k k − n(1− PA)

PA
= 0 (2)

where n is a positive integer and PA ∈ (0, 1) represents a probability value.
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2 Proof of the Identity

We begin by proving the identity through algebraic manipulation and applica-
tion of well-known binomial properties.

Theorem 1. For any positive integer n and PA ∈ (0, 1), the following identity
holds:

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k k − n(1− PA)

PA
= 0 (3)

Proof. First, we rearrange the fraction term:

k − n(1− PA)

PA
=

k

PA
− n(1− PA)

PA
(4)

This allows us to split the sum into two parts:

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k k

PA
−

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k n(1− PA)

PA
(5)

For the first sum, we can simplify as follows:

1

PA

n∑
k=0

k

(
n

k

)
P

(n−k)
A (1− PA)

k (6)

Using the well-known combinatorial identity k
(
n
k

)
= n

(
n−1
k−1

)
for k ≥ 1 [1, 5],

and noting that the k = 0 term contributes nothing to the sum (since k = 0),
we get:

n

PA

n∑
k=1

(
n− 1

k − 1

)
P

(n−k)
A (1− PA)

k (7)

With a change of variable j = k − 1, this becomes:

n

PA

n−1∑
j=0

(
n− 1

j

)
P

(n−1−j)
A (1− PA)

j+1 (8)

Factoring out (1− PA):

n(1− PA)

PA

n−1∑
j=0

(
n− 1

j

)
P

(n−1−j)
A (1− PA)

j (9)

The sum in this expression is the binomial expansion of (PA+(1−PA))
n−1 =

1n−1 = 1, so the first part equals:

n(1− PA)

PA
(10)
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For the second sum:

n(1− PA)

PA

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k (11)

The sum here is the binomial expansion of (PA + (1 − PA))
n = 1n = 1, so

the second part equals:
n(1− PA)

PA
(12)

Therefore, our original expression equals:

n(1− PA)

PA
− n(1− PA)

PA
= 0 (13)

This completes the proof of the identity.

3 Probabilistic Interpretation

The proven identity has a natural interpretation in terms of probability theory
and expected values. Consider a binomial random variable X ∼ Bin(n, 1−PA),
representing the number of successes in n independent Bernoulli trials, each
with probability of success (1− PA).

The term
(
n
k

)
P

(n−k)
A (1−PA)

k represents the probability mass function P (X =
k). The identity can be rewritten as:

E
[
X − n(1− PA)

PA

]
= 0 (14)

where E denotes the expected value operator.
This result aligns with a well-known property of the binomial distribution:

E[X] = n(1 − PA) [3, 6], which implies E[X − n(1 − PA)] = 0. This identity
provides a weighted version of this expected value, with the weighting factor
1
PA

. Such weighted expectations have been studied in the context of importance
sampling [7].

4 Extensions and Generalizations

The identity we’ve proven can be extended in several directions:

4.1 Generalization to Higher Moments

We can generalize our result to consider higher moments of the binomial distri-
bution. For instance, examining expressions of the form:

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k (k − n(1− PA))
m

Pm
A

(15)
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for integers m ≥ 1 yields interesting relationships to the central moments of
the binomial distribution.

4.2 Extension to Other Discrete Distributions

The technique used to prove this identity can be applied to other discrete prob-
ability distributions, such as the Poisson, negative binomial, or hypergeometric
distributions [4, 8]. This leads to a family of related identities with potential
applications in statistical analysis, similar to identities explored by Nadarajah
and Kotz [9].

4.3 Connection to Moment-Generating Functions

The identity can be connected to the moment-generating function (MGF) of the
binomial distribution [10]. Specifically, if MX(t) is the MGF of X ∼ Bin(n, 1−
PA), then our identity relates to the derivative of MX(t) evaluated at a specific
point, similar to the approach used in analyzing cumulants [11].

5 Applications

The identity proved in this paper has several potential applications:

5.1 Statistical Estimation

The identity provides a constraint that must be satisfied by any valid binomial
probability model. This constraint can be leveraged in statistical estimation
procedures [12], particularly in cases where the parameter PA needs to be es-
timated from data, similar to moment-based estimation methods discussed by
Stuart and Ord [13].

5.2 Error Correction Codes

In information theory and coding theory, binomial distributions often arise in
the analysis of error-correcting codes [14]. This identity can be used to de-
rive properties of certain coding schemes and to analyze their error-correction
capabilities, potentially extending methods discussed by Lin and Costello [15].

5.3 Computational Probability

The identity offers computational advantages in certain numerical algorithms
involving binomial probabilities [16], as it provides a relationship that can be
used to verify computational accuracy or to simplify calculations, similar to the
numerical methods proposed by Davis and Rabinowitz [17].
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6 Numerical Verification

To further validate the identity, I have computationally verified it for various
values of n and PA. For example, with n = 5 and PA = 0.3, direct calculation
of the sum yields a value on the order of 10−15, which is effectively zero within
numerical precision limits. Similar results were obtained for other parameter
values, providing empirical confirmation of the theoretical proof.

7 Conclusion

In this paper, I have presented and proved a novel identity involving binomial
coefficients and probability terms. I have shown that:

n∑
k=0

(
n

k

)
P

(n−k)
A (1− PA)

k k − n(1− PA)

PA
= 0 (16)

This identity has a natural interpretation in terms of the expected value of
a transformed binomial random variable. We have explored extensions, gener-
alizations, and potential applications of this result.

Future research directions include extending the identity to multivariate dis-
tributions [18], exploring connections to other areas of mathematics such as
combinatorial identities and special functions [19], and developing practical ap-
plications in fields such as statistical inference [20], information theory, and
financial mathematics [21].
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