
 

 

THICK SEQUENCES 

 Joseph L. Pe 
 

     Advanced Analytics and Data Science (Retired) 
    Catalina   

        161 N. Clark St., Chicago, IL 60601 USA 
    j.pe@att.net 

 
    Abstract 
 

We call an integer sequence thick if the quotients formed from its terms are dense in the set of real 
numbers. To find thick sequences, we consider the geometric, Fibonacci, power, and prime sequences. 
We show that the sequence of primes is thick provided that a conjecture DC-2 holds. DC-2 says that 
certain pairs of linear Dirichlet conditions have infinitely many solutions. It is a weak form of Dickson’s 
conjecture, which states that a finite system of linear Dirichlet conditions has infinitely many solutions 
and generalizes Dirichlet’s well-known result on primes in arithmetic progressions. Also, we obtain 
partial results for the general thickness problem for an arbitrary sequence and look at heuristic evidence 

for the validity of DC-2. We conclude with a short list of problems for further research. 
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1. INTRODUCTION 

 
We are used to approximating real numbers with rational numbers. This can 

always be done because the set ℚ of rational numbers is dense in the set ℝ of real 

numbers. Recall that a set A is dense in ℝ if for any real number r, any open interval 

containing r also contains an element of A. Using progressively shorter intervals, we can 
surely find a sequence of terms from A that converges to r, hence approximate r with 
terms from A to as high an accuracy as we please. 

 
For example, the ubiquitous irrational number π can be approximated by taking 

successive terms in the sequence of its decimal expansion: 3, 3.1, 3.14, 3.141, 3.1415, 
3.14159, .... One of the earliest and simplest results on this subject was obtained by 
Dirichlet in 1842: if r is an irrational number, then there are infinitely many rational 
numbers p/q (q > 0) such that |r - p/q| < 1/q2. That is, p/q approximates r to within the 
squared reciprocal 1/q2 of the denominator q. We can think of such p/q as an ‘efficient’ 
approximation of r in the sense that its accuracy is within the squared reciprocal of its 
integer denominator, so that larger denominators give better accuracy. One proof of 
Dirichlet’s result uses the well-known pigeon-hole principle. A later result by Hurwitz 
replaces the 1/q2 in Dirichlet’s result by 1/(√5 q2), with the constant 1/√5 being the best 
possible. The proofs of these theorems can be found in standard books on number 
theory, such as [NT]. 

 
The rational numbers are quotients of the sequence of integers. We do not need 

the entire sequence of integers to form quotients that can approximate real numbers. For 
instance, it would suffice to form quotients from the set of even integers, or from the set 
of integers whose absolute values are greater than, say, 1012. Are we able to 
approximate with even sparser sequences? 

 



 

 

For simplicity, we stipulate that henceforth all numbers in this paper are 
positive, although our discussion can easily be extended to include negative numbers 
and zero. Let s be a sequence of natural numbers. We define the set of sequence 
quotients of s to be the set of all quotients p/q where p and q are terms of s. Without loss 
of generality, we can assume that p/q is in lowest terms. We call a sequence thick if the 

set of its sequence quotients is dense in the set ℝ of (positive) real numbers. For 

example, the sequences of natural numbers, even natural numbers, and natural numbers 
> 1012 are thick. 

 
This paper is organized as follows. We proceed from simple, concrete examples 

to general results. Starting with geometric-type sequences, we find that these are, for the 
most part, not thick. We have better luck when we look at power-type sequences, which 
furnish many examples of thick sequences. Then we focus on the primes and prime-like 
sequences whose thickness can be proved by assuming a weak form of Dickson’s 
conjecture. In the process, we obtain partial results for the general problem of 
determining whether an arbitrary sequence is thick. Finally, we give heuristic evidence 
that Dickson’s conjecture is plausible and a list of problems for further study. 

 
2. GEOMETRIC-TYPE SEQUENCES 
 
Proposition 1. The geometric sequence 101, 102, 103, 104, .... of positive integer 

powers of 10 is not thick. 
 
Proof. Let r > 0 be any positive real number. If this sequence were thick, then 

10p-q = 10p / 10q (for some positive integers p and q) can be made arbitrarily close to r, 
that is, 10p-q ~ r. Taking logs of both sides, by continuity of the logarithmic function, we 
get p – q ~ log r, that is, p – q can be made arbitrarily close to log r, However, take r = 
101/2. Then p – q can be made arbitrarily close to ½ = log r. This is a contradiction 
because p – q is always an integer.        

 
Of course, there is nothing special about the number 10 in this problem; except 

for being a convenient logarithmic base. We could have used other bases for the 
function used to define the geometric sequence. 

 
Theorem 1. The geometric sequence a1, a 2, a3, a4, ....  of positive integer 

powers of a, where a is a positive integer, is not thick. 
 
Now let us consider the Fibonacci sequence, which begins 1, 1, 2, 3, 5, 8, .... 

with terms Fn (n > 2) obtained from the recurrence Fn = Fn-1 + Fn-2. Writing the golden 
ratio as τ = (1 + √5)/2 and using the Binet approximation to the Fibonacci term Fn (cf. 
[GS], P. 70),   

Fn ~ 1/√5 τn 
(that is, Fn can be made arbitrarily close to 1/√5 τn by taking n sufficiently large), the 
argument of Proposition 1 can be applied to show that the sequence of Fibonacci 
numbers is not thick. The key idea is that Fibonacci numbers are ultimately (multiples 
of) powers of τ. 
 

Theorem 2. The sequence of Fibonacci numbers is not thick. 
 
We leave the proofs of the following and a few other corollaries as exercises for 

the reader. Hints to the solutions are provided throughout. The sequence of Lucas 



 

 

numbers begins with the terms 2, 1 and is defined by the same rule as the Fibonacci 
sequence. 

 
Exercise 1. The sequence of Lucas numbers is not thick. 
 
Hint to Exercise 1. Look for a Binet-style formula for the n-th Lucas number and 

proceed as in the case of the Fibonacci sequence. 
 
3. POWER-TYPE SEQUENCES 
 
With the sequence of squares, we encounter our first non-trivial example of a 

thick sequence. 
 
Proposition 2. The sequence of squares 1, 4, 9, 16, 25, 36, .... is thick. 
 
Proof. Let r be a positive real number contained in an open interval I. We need 

to show that there is a rational number p/q such that p2/q2 is in I.  
By continuity of the function f(x) = x2 at x0 = r1/2, there is an open interval J 

containing x0 such that f(J) is contained in I. By density of the rational numbers in ℝ, 

there is a (positive) rational number p/q such that p/q is in J. Hence, f(p/q) = p2/q2 is in 
f(J), which is contained in I, as required. 

 
We can use the line of reasoning of the previous proposition to conclude the 

following generalization and partial answer to the general thickness problem. From this, 
it follows that the sequence of cubes, fourth powers, and higher powers are also thick. 

 
Theorem 3. Let the (positive) integer sequence s = {f(n)} be defined for natural 

numbers n by the function f(x) from the set of positive real numbers to itself. Suppose f 
is a continuous, injective (i.e. one-one) function of x for which f(u v) = f(u) f(v), where 
u, v are any positive real numbers. Then the sequence s is thick. 

 
(The assumption f(u v) = f(u) f(v) of Theorem 3 states that f is a homomorphism 

with respect to multiplication. The theorem says that a positive integer sequence defined 
by a continuous injective homomorphism (with respect to multiplication) of the set of 
positive reals to itself must be thick.) 

Proof. The proof of Proposition 2 can be modified to show this. Since f is 
injective, its inverse f –1 exists, hence, f –1(r) exists for any positive real number r. The 
assumption that f is a homomorphism with respect to multiplication implies that f(p) = 
f((p/q) q) = f(p/q) f(q), so that f(p/q) = f(p)/f(q) for positive integers p and q. 

Let r be a positive real number contained in an open interval I. By continuity of f 
at x0 = f –1(r), there is an open interval J containing x0 such that f(J) is contained in I. By 

density of the rational numbers in ℝ, there is a (positive) rational number p/q such that 
p/q is in J. Hence, f(p/q) = f(p)/f(q) is a sequence quotient of s contained in f(J), which 
is contained in I, as required.  

 
It is easy to check that, for a positive integer n, the function f(x) = xn satisfies the 

assumptions of Theorem 3. Hence, we can conclude the following. 
 
Corollary 1. If n is a fixed positive integer, then the sequence 1n, 2n, 3n, 4n, .... 

of n-th powers of the positive integers is thick. 
 



 

 

Naturally, we would expect a sequence defined by a finite sum of positive 
integer powers to be thick. 

  
Exercise 2. (i) Show that if the (positive) integer sequence s = {P(n)} is defined 

by a polynomial P with degree m > 1, then s is thick. 
(ii) Show that the sequence of triangular numbers Tn = n (n + 1) / 2 is thick. 
 
Hints to Exercise 2. For part (i), let a be the leading coefficient of P. Let p and q 

be positive integers. Factor pm from P(p) to show that P(p) ~ a pm, that is, P(p) can be 
made arbitrarily close to a pm by taking p sufficiently large; similarly, P(q) ~ a qm. Then 
P(p)/P(q) ~ pm / qm. Apply Corollary 1 to conclude the thickness of s. For part (ii), 
simply apply the result of part (i). (In general, we can show that a sequence of figurate 
numbers, of which triangular, square, and pentagonal numbers are examples, is thick.)  

 
4. A “HYBRID” SEQUENCE 
 
What about the sequence s = {f(n)}, where n is a natural number and f(x) = xx? 

This sequence, which starts as 11, 22, 33, 44, ...., is neither a geometric nor a power 
sequence, although it superficially resembles both. At time of writing, we do not have a 
proof of the thickness or non-thickness of s, although we make the following (tentative, 
though it is hoped, plausible) conjecture. 

 
Conjecture 1. The sequence s = {f(n)}, where n is a natural number and f(x) = 

xx, is not thick. 
 
We present a heuristic argument for Conjecture 1. If s were thick, then f(p)/f(q) 

~ r for a given real number r > 0 and some positive integers p and q, so that ln f(p)/f(q) 
= p ln p - q ln q ~ ln r. The celebrated Prime Number Theorem gives a rough estimate of 
the size of the n-th prime number P(n): P(n) ~ n ln n, implying, ln r ~ P(p) - P(q). (This 
is the main heuristic step; here "~” means only approximate equality, with an error that 
does not necessarily approach 0 as n increases, hence would not suffice for a rigorous 
proof.)  However, the right side of this approximate equality is an integer, whereas the 
left side can assume any real value. This is implausible and casts a long shadow of 
doubt on the assumption that s is thick. 

 
5. PRIMES AND DICKSON’S CONJECTURE 
 
Recall that Dirichlet’s theorem states that if a and b are two coprime natural 

numbers, then there are infinitely many primes in the arithmetic progression a n + b, 
where n is a natural number. For example, if a = 3 and b = 4, then 3n + 4 is prime for n 
= 1, 3, 5, 9, 13, .... Consider the following conjecture, which we call DC-2. 

 
Conjecture 2. (DC-2) If a and c are natural numbers, then there are infinitely 

many natural numbers n such that a n + 1 and c n + 1 are prime.  
 
Dirichlet’s theorem says that the linear condition “a n + b is prime” for coprime 

a, b is satisfied for infinitely many n. Dickson’s conjecture DC generalizes this and says 
that a finite system of linear conditions in n is satisfiable for infinitely many values of n, 
unless there is a congruence condition preventing this. For our purposes in this paper, 
we only need to work with DC-2, a much weaker form of DC,  

 
Theorem 4. DC-2 implies that the sequence of primes is thick. 



 

 

 
Proof. Let r > 0 be a real number and I be an open interval containing r. Without 

loss of generality, we can assume that I contains only positive numbers. We need to 
show that there are primes p and q such that p/q is in I. 

Since the set of rational numbers is dense in the set of real numbers, there is a 
rational number t that is contained in I. Write t = a/c in lowest terms, where a and c are 
coprime positive integers. By DC-2, there are infinitely many n such that a n + 1 and c 
n + 1 are prime. Hence, we can obtain an infinite sequence s of rational numbers with 
prime numerator and prime denominator that converges to limn (a n + 1) / (c n + 1) = 
a/c = t.   

Since s converges to t, there is a positive integer M such that sn is in I whenever 
n > M; in particular, sM  is in I. Write sM  = p/q where p and q are primes. Then p and q 
are our required primes.  

  
As a partial result for Problem 1, we note that Theorem 4 and its proof can be 

generalized as follows. A positive integer sequence s is called prime-like if for any 
natural numbers a, c, there are infinitely many natural numbers n such that a n + 1 and c 
n + 1 are terms in s. 

 
Theorem 5. Any prime-like sequence is thick. 
 
The reader is invited to tackle the following exercises. 
 
Exercise 3. Assuming that the sequence of primes is thick, show that the 

(positive) integer sequence s = {φ(n)}, where φ(n) is Euler’s totient function, is thick. 

 

Exercise 4. Redo Exercise 3 using the sequence s = {σ(n)}, where σ(n) is the 

sum-of-divisors function. 
 

Hints to Exercises 3 and 4. Recall that Euler’s totient function φ(n) is defined as 

the number of positive integers that are coprime to natural number n and < n. It is 
computed by the formula  

φ(n) = n Π p|n (1 – 1/p) 

The product in this formula is over the distinct prime factors p of n. The sum-of-divisors 

function σ(n) is defined as the sum of the (positive) divisors of n; it is computed by the 

formula 

σ(n) = Π p|n (pi+1 – 1) / (p - 1) 

Again, the product in this formula is over the distinct prime factors p of n, and pi is the 
highest power of p that divides n. Also, note that a sequence that contains a thick 

subsequence must also be thick. Show that the subsequences s’ = {φ(p): p is a prime 

number} and s’’ = {σ(p): p is a prime number} of the respective sequences s in the 

exercises are thick, hence, s must be thick. 
 

6. HEURISTICS 
 
Is the conjecture DC-2 plausible? We employ the type of heuristic probabilistic 

argument motivated by the Prime Number Theorem: the probability that a natural 
number n > 1 is prime is roughly 1/ln(n). If this reasoning is applied to Dirichlet’s 
theorem on arithmetic progressions, then the expected number of primes of the form a n 



 

 

+ b, where a, n, b are positive integers with a and b fixed and coprime, is approximately 
equal to 

 
This diverges to ∞ (by comparison of the integrand 1/ln(a x + b) with 1/(a x + b), the 
integrand of a divergent integral). Hence, we expect infinitely many primes of the form 
a n + b. 
 

Moving on to DC-2 and using the same heuristic reasoning, the probability that 
the linear Dirichlet conditions “a n + 1 is prime” and “c n + 1 is prime” are both 
satisfied is at least 1/(ln N)2 where N = max{a n + 1, c n + 1}, assuming the 
independence of these two events/conditions. If, say, we fix a, c such that a < c, then N 
= c n + 1, and the expected number of primes among these numbers N is approximately 
equal to 

 
Again, this diverges to ∞. (This can be seen by considering the integral of 1/(ln(x))2 
from 2 to ∞. By applying the substitution w = ln(x) then integrating by parts, the 
indefinite integral of 1/(ln(x))2 can be shown to be = Li(x) - x ln(x), where Li(x) is the 
so-called logarithmic integral, i.e. the integral of x/ln(x).) Thus, we expect a n + 1 and c 
n + 1 to be both prime for infinitely many n. 
 

A similar (and more involved) heuristic argument supports the plausibility of 
Dickson’s conjecture DC. (For example, consider the case with three Dirichlet 
conditions. By applying the substitution w = ln(x) then integrating by parts, the 
indefinite integral of 1/(ln(x))3 can be expressed in terms of the previous integral for 
1/(ln(x))2. Again, the corresponding improper integral diverges to ∞.) However, since 
the argument for DC generally requires multiple independence assumptions rather than 
the single one made in the case of DC-2, the former seems to be on less solid ground 
than the latter. 

 
As numerical supporting evidence, the sequence of terms n < 200 such that 2n + 

1 and 3n + 1 are both prime begins:   
2, 6, 14, 20, 26, 36, 50, 54, 74, 90, 116, 140, 146, 174 

This is the sequence A130800 in the Online Encyclopedia of Integer Sequences [IS] 
(oeis.org). For n < 10,000, there are already 318 such numbers. As a more random-
looking example, the sequence of terms n < 300 such that 500n + 1 and 1001n + 1 are 
both prime begins: 

6, 8, 38, 42, 48, 102, 108, 138, 180, 186, 192, 242, 246, 252 

For n < 100,000, there are already 1,761 such numbers. It is not hard to come by 
numerical evidence that DC-2 is plausible. 
 

The quality and amount of numerical evidence for the plausibility of DC is less 
clear. Looking at circumstantial evidence for DC, we find for example that the sequence 
of n < 2500 making 100n + 1, 211n + 15, and 303n + 17 prime begins:  

4, 28, 292, 628, 694, 778, 904, 1678, 1918, 2332, 2422 

However, for larger coefficients and number of conditions, the computations can 
become prohibitively long and numerical evidence increasingly harder to find. There is 
no n < 106, for example, that makes 101n + 1, 202n + 1, and 303n + 111 prime. But 
omitting the third condition, we find that there are already 73 numbers n < 10,000 such 
that 101n + 1 and 202n + 1 are prime.  
 



 

 

7. OPEN PROBLEMS  
 

Considering the difficulty of the proof of Dirichlet’s theorem on primes in 
arithmetic progressions, it seems likely that if it is true, a formal proof of DC, or even 
just DC-2, will be at an equal or greater level of difficulty. We do not attempt a proof 
here but only pose the problem as a challenge to astute researchers.  

 
In the same vein, we ask if there is some metric, perhaps related to sequence 

density, that allows us to discriminate between thick and non-thick sequences. We have 
seen that sequences such as the power and (apparently) the prime sequences are thick, 
while sparser sequences such as the Fibonacci and geometric sequences fail to be thick. 
Is there a threshold that, when crossed, forces a sequence to be thick? We note that, 
while we have partial results from Theorems 3 and 5, the general problem of 
determining whether a given sequence is thick remains unsolved. 

 
Can we find seemingly dense sequences that fail to be thick, or apparently 

sparse sequences that are thick? For example, is there a non-trivial non-thick sequence 
s, such as the Fibonacci sequence, and a thick sequence t, such that s(n) < t(n) for all 
natural numbers n? 

 
Apart from the primes, are there other non-trivial sequences that can plausibly 

be claimed to be prime-like? Sequences defined by some sieving procedure, such as S. 
Ulam’s “lucky numbers”, A000959 of [IS], spring to mind here.  

 
What other interesting thick or non-thick sequences can we find? The factorials, 

primorials, Catalan numbers, abundant numbers, deficient numbers, perfect numbers, 
happy numbers, palindromic numbers, and many other sequences we have not 
considered in this work invite future investigation. The problem book [UP] is an 
excellent source of sequences of special interest. 
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