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Abstract

A simple and elementary derivation for the formula for the area element in polar coordinates, and the volume

element in spherical coordinates is given.
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1 Introduction

To convert a double integral from Cartesian coordinates to polar coordinates, we have to convert the area

element dA = dxdy to polar coordinates. For triple integral, the volume element dV = dxdydz has to be

converted to spherical coordinates. Most derivations of the formula, both in two dimensions [1, 2, 4, 5, 7, 8, 10]

and in three dimensions [2, 3, 6, 9, 11, 12, 13], are either based on geometry or Jacobian (or tensor product).

This note first gives a self-contained and simple derivation for the area element without using geometry

or Jacobian. Then, it is shown that the technique can also be extended for the volume element in spherical

coordinates.

The conversion, in two dimensions, is also required, for example, for computing the integral:∫ ∞
0

e−x
2

dx

1.1 Preliminaries

If P is a point in the plane with coordinates (xP , yP ), then the distance of P from the origin, say r, will be the

length of the segment OP , and r2 = (OP )2 = x2P + y2P . Let us choose x = r cos θ, then as cos2 θ+ sin2 θ = 1,
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y can be taken as y = r sin θ.

Coordinates (r, θ) are called polar coordinates.

Thus, to summarise, if polar coordinates are (r, θ), then Cartesian coordinates are

x = r cos θ

y = r sin θ

If we are using some other Cartesian coordinate system with the same origin, in which the coordinates

of P are (x′P , y
′
P ) then also (OP )2 = x′2P + y′2P .

Let us assume that the second coordinate frame is at an angle ϕ with respect to the first. Then θ′ = θ+ϕ,

and x′ = r cos(θ + ϕ) and y′ = r sin(θ + ϕ).

Thus, x′ = r cos(θ + ϕ) = r cos θ cosϕ − r sin θ sinϕ = x cosϕ − y sinϕ. Here we used x = r cos θ, and

y = r sin θ.

Similarly, y′ = r sin(θ + ϕ) = r sin θ cosϕ+ r cos θ sinϕ = y cosϕ+ x sinϕ = x sinϕ+ y cosϕ.

Or in matrix form: (
x′

y′

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
x

y

)

The matrix R(ϕ) =

(
cosϕ − sinϕ

sinϕ cosϕ

)
is the rotation matrix.

2 Area Element

Differentiating

x = r cos θ

y = r sin θ

We get

dx = dr cos θ − r sin θdθ

dy = dr sin θ + r cos θdθ

In matrix form, the equation can be written as(
dx

dy

)
=

(
cos θ −r sin θ

sin θ r cos θ

)(
dr

dθ

)
Or equivalently, (

dx

dy

)
=

(
cos θ − sin θ

sin θ cos θ

)(
dr

rdθ

)
As the square matrix is a 2-D rotation matrix, and as areas do not change under rotation the area element

dA = (dr)(rdθ).
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3 Volume Element

In 3-dimensions, if r if the distance of point P = (x, y, z) from origin, then r2 = x2 + y2 + z2. If z = r cos θ

then x2 + y2 = r2 sin2 θ. As in 2-d, x = (r sin θ) cosϕ and y = (r sin θ) sinϕ. Thus,

dx = sinϕ cos θdr + r cosϕ cos θdϕ− r sinϕ sin θdθ

dy = cosϕ cos θdr + r cosϕ sin θdϕ+ r sinϕ cos θdθ

dz = cosϕdr − r sinϕdϕ

In matrix form, dx

dy

dx

 =

 sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ

sinϕ sin θ r cosϕ sin θ r sinϕ cos θ

cosϕ −r sinϕ 0


 dr

dϕ

dθ



=

 sinϕ cos θ cosϕ cos θ − sin θ

sinϕ sin θ cosϕ sin θ cos θ

cosϕ − sinϕ 0


 dr

rdϕ

r sinϕdθ



=

 0 cos θ − sin θ

0 sin θ cos θ

1 0 0


 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 dr

rdϕ

r sinϕdθ



=

(
0 R(θ)

1 0

)(
R(ϕ) 0

0 1

) dr

rdϕ

r sinϕdθ


Here, R(θ) and R(ϕ) are 2-dimensional rotation matrices. As rotation does not change area or volume, the

volume element dV = r2 sinϕdθdϕdr (corresponding to dV = dxdydz in Cartesian coordinates).
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