Top Quark Mass Confusion

D. G. Grossman March 5, 2025

From 2011 to 2024 physicists at the LHC measured the top quark's mass 29 times, and got 29 different measurements over a range of about 6.5 GeV. Why weren't they able to zero in on it? Were they even measuring the top quark's mass? What were they measuring?

Is It the Top Quark's Mass or Just a Large Hadron's Mass?

The top quark's mass measurements, in units of MeV/c^2 , determined by the CMS Collaboration over the 13 year period from 2011 to 2024 are listed in a table on the next page from smallest to largest. Are they measurements of the top quark's mass or something else? As you can see from the table, many of the masses can be factored as *integer multiples of* **S10h**, or as an integer and a half, quarter, or eighth times **S10h**. For instance, the 18th top quark mass measurement listed in the table is 173,060 MeV, which matches **1024 S10h** very closely. What is **1024 S10h**?

1024 S10h Signifies Higher Dimensional Matter

S10 represents the value of the unit radius surface volume formula of a 10-sphere, $S10=(1/12)\pi^5 r^9$, and **h** is Planck's constant's coefficient, $h=6.62607015 \text{ MeV/c}^2$. (Yes, this h is in units of MeV/c², not J-s, and there is no 10^{-34} factor. See the derivation of **m** = (**xSn**)**h** on page 3). Particle physicists haven't seemed to realize it yet, but particle accelerators have been creating higher dimensional matter for decades. There is evidence that all hadrons are made of higher dimensional matter (see the examples on page 4), which means that all quarks are made of higher dimensional matter as well, since they are what makes a hadron. Hadrons exist mainly in higher dimensional space, so to speak (there is actually no higher dimensional space, only higher dimensional matter.). What we experience of them is their *intersection* with our 3D "space" (the Higgs field). But if quarks are made of higher dimensional matter, and exist mainly in higher dimensional space, can they exist completely in our 3D "space" (the Higgs field)? No they can't. That's why quarks cannot be isolated. They can't exist entirely in our 3D "space", even for an instant because they are higher dimensional things, therefore the masses observed by the CMS Collaboration cannot be quark masses, top or otherwise. Besides that, quarks don't appear to have a fixed mass. They appear to have fixed shapes - that of n-sphere surface volumes - but not fixed masses. For those reasons, the CMS Collaboration's top quark measurements must be measurements of the masses of large hadrons, specifically, as the factorings in the table show, they are hadrons of dimension 9/10, that is, they are composed of 9-dimensional matter (quarks) that circulate in the surface of a 10-sphere. The specific hadron they seem to be zeroing in on, because it's right near the middle of all their measurements and because of its power of two multiple (which may imply greater stability), is the one that factors as 1024 S10h, which has a mass of 173,031.074 MeV/c².

CMS Physicists Did a Great Job Measuring

The masses measured by the CMS Collaboration's physicists were more accurate than they thought they were if **S10h** factoring is the correct factoring of the masses measured. Of the 23 factorings in the table, twenty of those theoretical masses were within 9 MeV of the corresponding experimental mass. Ten were within 3 MeV of the corresponding experimental mass. Their experimental errors (+/-) were much higher - in the hundreds and even thousands of MeV. Comparing experimental errors to actual errors, shows that the experimentalists were much too conservative in assigning experimental errors. The *average experimental error* is probably at least 20 times larger than the *average actual error*, so the CMS physicists' accuracy is about 20 times greater than they presumed it was.

Top Quark Mass Measurements

(From smallest to largest)

Made by the CMS Collaboration from 2011 to 2024 and Hypersphere Surface Volume Factorings of Them (Masses in units of MeV/c^2)

	<u>Top Quark</u>		<u>Top Quark</u>		HSS Volur	<u>ne</u>	Exp	-Mc	-ThrM
<u>#</u>	ExpMass	<u>+/-</u>	ThrMass		Factoring	1	Mas	ssI)iff
	<u>-</u>								
1	170,500	800	170,496.43	=	1009.000	S10h	dm	=	3.57
2	170,600	2700	170,602.04	=	1009.625	S10h	dm	=	2.04
3	170,900	6000	170,897.75				dm	=	2.25
4	171 , 770	40	171,763.75				dm		6.25
5	172,130	320	,						
6	172,220	180	172,228.43	=	1019.250	S10h	dm	=	8.43
7	172,250	80	172,249.56	=	1019.375	S10h	dm	=	.44
8	172,320	250							
9	172,330	140	172,334.04	=	1019.875	S10h	dm	=	4.04
10	172,340	200							
11	172,350	160	172,355.17	=	1020	S10h	dm	=	5.17
12	172,440	130	172,439.65	=	1020.500	S10h	dm	=	.35
13	172,500	400	172,503.02	=	1020.875	S10h	dm	=	3.02
14	172,520	140	172,524.14			S10h	dm	=	4.14
15	172,600	400	172,608.63	=	1021.500	S10h	dm	=	8.63
16	172,820	190	172,819.85	=	1022.750	S10h	dm	=	.14
17	172,950	770	172,946.58	=	1023.500	S10h	dm	=	3.42
18	173,060	240	173,031.07	=	1024	S10h	dm	=	28.93
19	173,200	1600	173,200.04			S10h	dm	=	.04
20	173,400	1800	173,369.02	=	1026	S10h	dm	=	30.97
21	173,490	430	173,495.75	=	1026.750	S10h	dm	=	5.75
22	173,500	3000							
23	173,540	330	173,538.00	=	1027	S10h	dm	=	2.00
24	173,680	200							
25	173,700	2100	173,706.97			S10h	dm		
26	173,900	900	173,875.95			S10h			24.05
27	174,300	2100	174,298.39				dm		
28	175,500	4600	175,502.34				dm		
29	177,000	3600	177,002.00	=	1047.500	S10h	dm	=	2.00

Derivation of the Hypersphere Surface Volume Factoring Formula

$$\mathbf{m}_{\text{MeV}} = \mathbf{h}_{\text{MeV}}(\mathbf{xSn})$$

The HSSV factoring formula, $\mathbf{m} = \mathbf{h}$ (\mathbf{xSn}), which is used to discover hadron dimensions and exact masses, can be derived from Planck's Energy-Frequency Relation: $\mathbf{E} = \mathbf{hf}$. The key to the derivation is associating a frequency with a unit of hypervolume. A main benefit of the derivation is that it explains how the (10^{-34}) factor was removed from \mathbf{h} , and its units changed from J-s to MeV/ c^2 .

If $\mathbf{m} = \mathbf{h}$ ($\mathbf{x}\mathbf{S}\mathbf{n}$) is correct, (and the factorings of hundreds of hadrons says it is) then a frequency of (1.602176634 x 10^{21} Hz) is associated with each unit of hypervolume (each unit of $\mathbf{S}\mathbf{n}$) of a hadron, no matter the dimension. In the example with $\mathbf{D}\mathbf{s}$ (See previous page), $\mathbf{D}\mathbf{s}$'s hypervolume is $\mathbf{10.000}$ S9, which equals $1967.053/\mathbf{h} = 296.8657$ hypervolume units. Multiplying 296.8657 by (1.602176634 x 10^{21} Hz/vol) - the frequency per unit hypervolume constant - will give you a frequency of 4.75631288 x 10^{23} Hz as the frequency associated with the entire particle, which is correct. (Putting that frequency in Planck's energy-frequency law ($\mathbf{E} = \mathbf{h}\mathbf{f}$) will give you the particle's mass in Joules.) So in terms of particle *hypervolume*, Planck's energy-frequency law can be rewritten as:

$$E_J = h_{J-s} (xSn) (1.602176634 \times 10^{21} \text{Hz/vol})$$
 (here $h = 6.62607015 \times 10^{-34} \text{J-s}$)

Which says a frequency (and therefore energy) is associated with a volume. To convert $\bf h$ to units of MeV/c² divide the right hand side by 1.602176634 x 10⁻¹³ Joules/MeV/c² (the Joules to MeV/c² conversion factor). The result is $\bf h$ in units of MeV/c² and a factor of (1 x 10³⁴) times $\bf h(xSn)$ on the right . ($\bf E$ on the left hand side of the equation then has units of MeV/c² by default.) When that factor, (1 x 10³⁴), is multiplied by Planck's constant, (6.62607015 x10⁻³⁴ MeV/c²), you are left with just Planck's constant's coefficient (6.62607015 MeV/c²) for $\bf h$. The result is:

$$\mathbf{m}_{\text{MeV}} = \mathbf{h}_{\text{MeV}} (\mathbf{xSn})$$
 (So, here $\mathbf{h} = 6.62607015 \text{ MeV/c}^2$, **not** $6.62607015 \text{ x}10^{-34} \text{ J-s.}$)

Where \mathbf{m} is in units of MeV/c², \mathbf{h} = 6.62607015 MeV/c², and \mathbf{Sn} is the hypervolume calculated from the surface volume formula for an n-sphere using a radius of one (a unit radius). (\mathbf{Snh} values are given in an appendix for all \mathbf{n} from dimensions 2 to 21.) That formula seems to work on any dimension of hadron, which implies that the mass density of the hypervolume of hadrons remains the same over all dimensions. What is the density of the hypervolume of any hadron? It is 6.62607015 MeV/c² per unit hypervolume. That's what the formula says if it is rearranged.

$$\mathbf{h}_{\text{MeV}} = \mathbf{m}_{\text{MeV}} / (\mathbf{x} \mathbf{S} \mathbf{n})$$

So, if m=h(xSn) is valid, it means that if a correct factoring can be found for a hadron then, a dimension and a precise mass can be assigned to it.

Evidence That Hadrons Are Made of Higher Dimensional Matter

Examples of Hadron Masses Factorted with Snh (Masses in units of MeV/c²)

<u>HSS Volume</u> <u>Factoring</u>	<u>Hadron's</u> <u>ThrMass</u>	<u>TM-EM</u>	<u>Hadron's</u> <u>ExpMass</u> <u>E</u>	<u>ExpErr</u>	<u>Hadron's</u> <u>Name</u>	
6.0000 S6h = 6.0000 S7h = 2.5000 S7h = 25/7 S7h = 6.00000 S7h =	1967.053	0.051 0.202 0.018 0.001 0.015 0.018 0.016 0.039 0.053 0.034	775.02 1232.9 1314.86 547.865 782.65 1314.86 1321.71 5737.2 1967.0 2534.6	.35 1.2 0.20 0.031 0.12 0.20 0.07 0.7 1.0	ρ(775) Δ(1232) Χi° η ω Χi° Χi ⁻ B1(5747) Ds Ds1(2536)	
16.0000 S11h = 29.0000 S11h = 4096/7 S11h = 4100/7 S11h =	3982.461 80355.47	0.181 0.039 1.473 0.445	2197.4 3982.5 80354 80433.5	4.4 1.8 23 9.4	Xc0 (1P) Zcs (3982) W Boson W boson	[3] [3]
26.0000 S12h = 27.0000 S12h = 28.0000 S12h = 50.0000 S13h = 61.4400 S14h = 64.0000 S14h = 93.0000 S15h =	2866.605 2972.775 3922.028 3415.496 3557.808	0.333 0.005 0.975 0.013 0.004 0.008	2760.1 2866.6 2971.8 3922.15 3415.5 3557.8 3525.8	1.1 AVG 8.7 1.2 0.4 1.2	D3*(2750) Ds3(2860) ⁺ D(3000) ⁰ X(3930) Xc0(1P) Xc2(1P) h1(1P)	
2^{17} /900 S16h = 2^{17} +128 /900 S16h = 2^{17} +256 /900 S16h =	3637.020	0.128 0.020 0.069	3633.6 3637.0 3640.5	1.7 5.7 3.2	nc (2s) nc (2s) nc (2s)	
17160/70 S17h = 18304/70 S17h = 20736/70 S17h = 222.0000 S17h = 384.0000 S17h =	4152.540 4704.049 3525.484	0.006 0.040 0.084 0.135	3893.0 4152.5 4704 3525.40 6098.0	2.3 1.7 10 0.13	Zc (3900) Xc1 (4140) Xc0 (4700) hc (1P) Σb (6097)	
$100.5000 \text{ S18h} = 280.0000 \text{ S20h} = (2^{16} - 2^{10}) \text{ S21h} = $	957.590	0.054 0.090 2.920	984.7 957.5 125220	0.4 0.2 110	fo(980) η'(958) Higgs Boson	
Note: 17160 = 1 18304 = 1	6384 + 512 6384 + 1024		+ 8 + 256 + 128	3		

18304 = 16384 + 1024 + 512 + 256 + 12820736 = 16384 + 4096 + 2048 + 256

Quark Assignments to n-Sphere Surface Volume Formulae

<u>Sphere</u> <u>Dimension</u>	<u>Quark</u> <u>Old</u>	Names New			esponding Surface Formula
2	u d	q1 q2			$\pi^1 r^1$ $\pi^1 r^2$
4 5	s c	q3 q4			$\pi^2 r^3$ $\pi^2 r^4$
6 7	b t	q5 q6	=	16/15	
8 9		q7 q8	=	1/3 32/105	$\pi^4 r^7$
10 11		_	=	1/12 64 / 945	
12 13		q11 q12	= =	1 / 60 128 / 10395	$\pi^6 r^{11}$ $\pi^6 r^{12}$
14 15				1 / 360 256 / 135135	
16 17		q15 q16			
18 19				1 / 20160)24 / 34459425	
20 21				1 / 181440 8 / 654729075	

n-Sphere Surface Volume Formulae

(Dimension 2 - Dimension 21)

<u>Sphere</u>	<u>Sn</u>	<u>Surface</u>	(π, r)
<u>Dimension</u>		<u>Volume Formula</u>	Powers
2	S2 = S3 =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 1) (1, 2)
4	S4 =	$\begin{array}{ccc} 2 & \pi^2 r^3 \\ 8/3 & \pi^2 r^4 \end{array}$	(2, 3)
5	S5 =		(2, 4)
6	S6 =	$\pi^3 r^5$ 16/15 $\pi^3 r^6$	(3, 5)
7	S7 =		(3, 6)
8	S8 =	$ \begin{array}{r} 1/3 \pi^4 r^7 \\ 32/105 \pi^4 r^8 \end{array} $	(4, 7)
9	S9 =		(4, 8)
10	S10 =	$\begin{array}{c} 1/12 \ \pi^5 \ r^9 \\ 64 \ / \ 945 \ \pi^5 \ r^{10} \end{array}$	(5, 9)
11	S11 =		(5, 10)
12	S12 =	$\begin{array}{ccc} & 1/60 & \pi^6r^{11} \\ & 128/10395 & \pi^6r^{12} \end{array}$	(6, 11)
13	S13 =		(6, 12)
14	S14 =	$\begin{array}{cc} 1 / 360 & \pi^7 r^{13} \\ 256 / 135135 & \pi^7 r^{14} \end{array}$	(7, 13)
15	S15 =		(7, 14)
16	S16 =	$\frac{1/2520}{512/2027025}\frac{\pi^8r^{15}}{\pi^8r^{16}}$	(8, 15)
17	S17 =		(8, 16)
18	S18 =	$\frac{1/20160}{1024/34459425}\frac{\pi^9r^{17}}{\pi^9r^{18}}$	(9, 17)
19	S19 =		(9, 18)
20	S20 =	$\frac{1 / 181440 \pi^{10} r^{19}}{2048 / 654729075 \pi^{10} r^{20}}$	(10, 19)
21	S21 =		(10, 20)

Values of n-Sphere Surface Volume Units of Factorization

(Below **h** = $6.62607015 \text{ MeV/c}^2$, **not** $6.62607015 \times 10^{-34} \text{ J-s}$)

(Dimension 2 - Dimension 21)

<u>Sphere</u> <u>Dimension</u>	<u>Unit of</u> <u>Factorizatio</u>	<u>n For</u>	mula	Value (MeV/c²)
2 3	S2h = S3h =		$\pi^1 r^1 h = \pi^1 r^2 h =$	= 41.63282661 = 83.26565322
4 5	S4h = S5h =		$\pi^2 r^3 h = \pi^2 r^4 h = \pi^2 r^4 h$	
6 7 	S6h = S7h =	16/15	$\pi^{3} r^{5} h = \pi^{3} r^{6} h$	= 205.4497644 = 219.1464153
8 9 	S8h = S9h =		$\pi^4 r^7 h = \pi^4 r^8 h =$	= 215.1464901 = 196.7053624
10 11 	S10h = S11h =	1/12 64 / 945		= 168.9756582 = 137.3262492
12 13 	S12h = S13h =			= 106.1705373 = 78.44057013
14 15 	S14h = S15h =			= 55.59076334 = 37.91204905
16 17	S16h = S17h =	1 / 2520 512 / 2027025	$\pi^{8} r^{15} h = \pi^{8} r^{16} h$	
18 19	S18h = S19h =	1 / 20160 1024 / 34459425		= 9.797479330 = 5.869441980
20 21 	S20h = S21h =	1 / 181440 2048 / 654729075		= 3.419965454 = 1.940989032

Smallest Formation Quarks per n-Sphere

(Dimension 2 - Dimension 21)

<u>Sphere</u> <u>Dimension</u>	<u>Sn</u>	<u>Surface</u> <u>Volume Formula</u>	(π, r) Powers	<u>Formation</u> <u>Quarks</u>
2 3	S2 = S3 =	$\begin{array}{ccc} 2 & \pi^1 r^1 \\ 4 & \pi^1 r^2 \end{array}$	(1, 1) (1, 2)	u d
4 5	S4 = S5 =	$\begin{array}{ccc} 2 & \pi^2 r^3 \\ 8/3 & \pi^2 r^4 \end{array}$	(2, 3) (2, 4)	$du = 8 \pi^{2} r^{3} = 4 S4$ $dd = 64 \pi^{2} r^{4} = 24 S5$
6 7	S6 = S7 =	$\pi^3 r^5$ 16/15 $\pi^3 r^6$	(3, 5) (3, 6)	$ddu = 32 \pi^{3} r^{5} = 32 \text{ S6}$ $ddd = 256 \pi^{3} r^{6} = 273\text{S7}$
8	S8 =	$\begin{array}{cc} 1/3 & \pi^4 r^7 \\ 32/105 & \pi^4 r^8 \end{array}$	(4, 7)	dddu = $128 \pi^4 r^7 = 384 \text{ S8}$
9	S9 =		(4, 8)	dddd = $1024 \pi^4 r^8 = 312\text{S9}$
10	S10 =	$\begin{array}{c} 1/12 \ \pi^5 \ r^9 \\ 64 \ / \ 945 \ \pi^5 \ r^{10} \end{array}$	(5, 9)	ddddu
11	S11 =		(5, 10)	ddddd
12	S12 =	$\frac{1/60\ \pi^6r^{11}}{128/10395\ \pi^6r^{12}}$	(6, 11)	dddddu
13	S13 =		(6, 12)	dddddd
14	S14 =	$\begin{array}{cc} 1 / 360 & \pi^7 r^{13} \\ 256 / 135135 & \pi^7 r^{14} \end{array}$	(7, 13)	ddddddu
15	S15 =		(7, 14)	dddddd
16	S16 =	$\begin{array}{cc} 1 / 2520 & \pi^8 r^{15} \\ 512 / 2027025 & \pi^8 r^{16} \end{array}$	(8, 15)	ddddddu
17	S17 =		(8, 16)	ddddddd
18	S18 =	$\frac{1/20160}{1024/34459425}\frac{\pi^9r^{17}}{\pi^9r^{18}}$	(9, 17)	ddddddddu
19	S19 =		(9, 18)	dddddddd
20	S20 =	$\frac{1/181440}{2048/654729075} \frac{\pi^{10}}{\pi^{10}} r^{19}$	(10, 19)	ddddddddu
21	S21 =		(10, 20)	ddddddddd

Current quark theory of particle reactions assumes that when a 'ddddd' particle forms during a collision in an accelerator, the masses of the 'd' quarks just add together (Total Mass = 5d + KE), and the dimension of the *product matter* remains the same as the *reactant matter*'s dimension. In *higher dimension quark mass theory* the masses of the colliding quarks also add together (Total Mass= 5d + KE), but they also change their dimension, in this case from 2-dimentional matter to 10-dimensional matter. In general, the dimension of the collision reaction's product matter is determined by the dimension of the *surface volume formula that results from* multiplying together all the surface volume formulae associated with each of the reacting quarks. In the 'ddddd' case, multiplying S3 = 4 π^1 r², together five times gives you S11, the formula for the surface volume of an 11-sphere, the surface of which is 10 dimensional. So, the resultant particle is made of 10-dimensional matter circulating in the surface of an 11-sphere.

References

- 1. arXiv.org:2403.01313v1 "Review of Top Quark Mass Measurements in CMS"
- 2. P.A. Zylaet al.(Particle Data Group), Prog. Theor. Exp. Phys.2020, 083C01 (2020) and 2021 update
- 3. S. Navaset al.(Particle Data Group), Phys. Rev. D110, 030001 (2024)