Top Quark Mass Confusion

D. G. Grossman Feb. 24, 2025

From 2011 to 2024 physicists at the LHC measured the top quark's mass 29 times, and got 29 different measurements over a range of about 6.5 GeV. Why weren't they able to zero in on it? Were they even measuring the top quark's mass? What were they measuring?

Is It the Top Quark's Mass or Just a Large Hadron's Mass?

The top quark's mass measurements, in units of MeV/c², determined by the CMS Collaboration over the 13 year period from 2011 to 2024 are listed in a table on the next page from smallest to largest. Are they measurements of the top quark's mass or something else? As you can see from the table, many of the masses can be factored as *integer multiples of* **S10h**, or as an integer and a half, quarter, or eighth times **S10h**. For instance, the 18th top quark mass measurement listed in the table is 173,060 MeV, which matches **1024 S10h** very closely. What is **1024 S10h**?

1024 S10h Signifies Higher Dimensional Matter

S10 represents the surface volume formula of a 10-sphere: **S10**= $(1/12)\pi^5 r^9$, and **h** is Planck's constant's coefficient: $h = 6.62607015 \text{ MeV/c}^2$, (Yes, this h is in units of MeV/c2, not J-s, see derivation of m = (xSn)h on page 4). Particle physicists haven't seemed to realize it yet, but particle accelerators have been creating higher dimensional matter for decades. There is evidence that all hadrons are made of higher dimensional matter (see the examples on page 4), which means that all quarks are made of higher dimensional matter as well, since they are what makes a hadron. Hadrons exist mainly in higher dimensional space, so to speak (there is actually no higher dimensional space, only higher dimensional matter.). What we experience of them is their *intersection* with our 3D "space" (the Higgs field). But if quarks are made of higher dimensional matter, and exist mainly in higher dimensional space, can they exist completely in our 3D "space" (the Higgs field)? No they can't. That's why quarks cannot be isolated. They can't exist entirely in our 3D "space", even for an instant because they are higher dimensional things, therefore the masses observed by the CMS Collaboration cannot be quark masses, top or otherwise. Besides that, quarks don't appear to have a fixed mass. They appear to have fixed shapes - that of n-sphere surface volumes - but not fixed masses. For those reasons, the CMS Collaboration's top quark measurements must be measurements of the masses of large hadrons, specifically, as the factorings in the table show, they are hadrons of dimension 9/10, that is, they are composed of 9-dimensional matter (quarks) that circulate in the surface of a 10-sphere. The specific hadron they seem to be zeroing in on, because it's right near the middle of all their measurements and because of its power of two multiple (which may imply greater sability), is the one that factors as 1024 S10h, which has a mass of 173,031.074 MeV/c2.

CMS Physicists Did a Great Job Measuring

The masses measured by the CMS Collaboration's physicists were more accurate than they thought they were if **S10h** factoring is the correct factoring of the masses measured. Of the 23 factorings in the table, twenty of those theoretical masses were within 9 MeV of the corresponding experimental mass. Ten were within 3 MeV of the corresponding experimental mass. Their experimental errors (+/-) were much higher - in the hundreds and even thousands of MeV. Comparing experimental errors to actual errors, shows that the experimentalists were much too conservative in assigning experimental errors. The *average experimental error* is probably at least 20 times larger than the *average actual error*, so the CMS physicists' accuracy is about 20 times greater than they presumed it was.

Top Quark Mass Measurements

(From smallest to largest)

Made by the CMS Collaboration from 2011 to 2024 and Hypersphere Surface Volume Factorings of Them

#	<u>Top Quark</u> ExpMass	+/-	<u>Top Quark</u> ThrMass	HSS Fact	<u>Volu</u>	<u>me</u> T	<u>Exp</u> Mas	M-	<u>-ThrM</u>
<u> </u>		<u> </u>	<u>111111035</u>	<u>rac</u>		7	<u>1445</u>		
1	170,500	800	170,496.43 =	1009	.000	S10h	dm	=	3.57
2	170,600	2700	170,602.04 =	1009	.625	S10h	dm	=	2.04
3	170,900	6000	170,897.75 =	1011	375	S10h	dm	=	2.25
4	171,770	40	171,763.75 =	1016	5.500	S10h	dm	=	6.25
5	172,130	320							
6	172,220	180	172,228.43 =	1019	.250	S10h	dm	=	8.43
7	172,250	80	172,249.56 =	1019	.375	S10h	dm	=	.44
8	172,320	250							
9	172,330	140							
10	172,340	200							
11	172,350	160	172,355.17 =	1020)	S10h	dm	=	5.17
12	172,440	130	172,439.65 =	1020	.500	S10h	dm	=	.35
13	172,500	400	172,503.02 =	1020).875	S10h	dm	=	3.02
14	172,520	140	172,524.14 =	1021	-	s10h	dm	=	4.14
15	172,600	400	172,608.63 =	1021	500	s10h	dm	=	8.63
16	172,820	190	172,819.85 =	1022	2.750	s10h	dm	=	.14
17	172,950	770	172,946.58 =	1023	8.500	S10h	dm	=	3.42
18	173 , 060	240	173,031.07 =	1024	L	S10h	dm	=	28.93
19	173,200	1600	173,200.04 =	1025	5	S10h	dm	=	.04
20	173,400	1800	173,369.02 =	1026	5	S10h	dm	=	30.97
21	173,490	430	173,495.75 =	1026	5.750	S10h	dm	=	5.75
22	173,500	3000	·						
23	173,540	330	173,538.00 =	1027	,	S10h	dm	=	2.00
24	173,680	200							
25	173,700	2100	173,706.97 =	1028	3	S10h	dm	=	6.97
26	173,900	900	173,875.95 =	1029	•	S10h	dm	=	24.05
27	174,300	2100	174,298.39 =	1031	500	S10h	dm	=	1.60
28	175,500	4600	175,502.34 =	1038	8.625	S10h	dm	=	2.34
29	177,000	3600	177,002.00 =	1047	1.500	S10h	dm	=	2.00

Source of Top Quark Mass Data: arXiv.org:2403.01313v1 "Review of Top Quark Mass Measurements in CMS"

Derivation of the Hypersphere Surface Volume Factoring Formula: **m** = **h**(**x**S**n**)

I believe $\mathbf{m} = \mathbf{h} (\mathbf{xSn})$ can be derived from Planck's Energy-Frequency Relation: $\mathbf{E} = \mathbf{hf}$. The following derivation may not be completely legitimate, but it works. (It's main benefit is that it explains how the 10⁻³⁴ factor was removed from \mathbf{h} .)

I found that if $\mathbf{m} = \mathbf{h} (\mathbf{xSn})$ is correct, (and the factorings of hundreds of hadrons says it is) then a frequency of (1.602176634 x 10²¹ Hz/vol) is associated with each unit of hypervolume of a hadron, no matter the dimension. In the example with **Ds** (See next page), **Ds**'s hypervolume is **10.000 S9**, which equals 1967.053/ \mathbf{h} = 296.8657 hypervolume units. Multiplying 296.8657 by (1.602176634 x 10²¹ Hz/vol) - the frequency per unit hypervolume constant - will give you a frequency of 4.75631288 x 10²³ Hz as the frequency associated with the entire particle, which is correct. Putting that frequency in Planck's energy-frequency law (**E=hf**) will give you the particle's mass in Joules. So in terms of particle *hypervolume*, Planck's energy-frequency law can be rewritten as:

E = **h** (volume) (1.602176634 x 10^{21} Hz/vol) (here **h** = 6.62607015 x 10^{-34} J-s) **E** = **h** (xSn) (1.602176634 x 10^{21} Hz/vol) (here **h** = 6.62607015 x 10^{-34} J-s)

Which says a frequency is associated with a volume. **E** will be in Joules. To convert **E** to units of MeV/c² divide both sides by 1.602176634 x 10^{-13} (That many Joules equals one MeV/c²). The result is **E** in units of MeV/c² on the left and a factor of 10^{34} times **h**(**xSn**) on the right . When 10^{34} is multiplied by Planck's constant, (6.62607015 x 10^{-34}), you are left with just Planck's constant's coefficient (6.62607015) for **h**. The result is:

m = **h** (xSn) (So, here **h** = 6.62607015 MeV/c², **not** 6062607015 x10-34 J-s.)

Where **m** is in units of MeV/c², **h** = $6.62607015 \text{ MeV/c}^2$, and **Sn** is the hypervolume calculated from the surface volume formula for an n-sphere using a radius of one (a unit radius). **Snh** values are given in an appendix for all **n** from dimensions 2 to 21. That formula seems to work on any dimension of hadron, which implies that the mass density of the hypervolume of hadrons remains the same over all dimensions. What is the density of the hypervolume of a hadron? It is $6.62607015 \text{ MeV/c}^2$ per unit hypervolume. That's what the formula says if it is rearranged.

h = m / xSn

So, if m=h(xSn) is valid, it means that if a correct factoring can be found for a hadron then, a precise mass, hypervolume, hyperdensity, and frequency can be assigned to it.

Evidence That Hadrons Are Made of Higher Dimensional Matter

Examples of Hadron Masses Factorted with Snh (Masses in units of MeV/c²)

]	HSS Vol	ume		<u>Hadron's</u>		1	Hadron's		<u>Hadron's</u>
-	Factori	ng		<u>ThrMass</u>	TM-EM	1	ExpMass	<u>ExpErr</u>	<u>Name</u>
	4. 4444	S5h	=	775.071	0.051		775.02	.35	ρ(775)
	6. 0000	S6h	=	1232.698	0.202	1	L232.9	1.2	∆(1232)
	6.0000	S7h	=	1314.878	0.018	1	L314.86	0.20	Xi°
	2. 5000	S7h	=	547.866	0.001	5	547.865	0.031	η
	25/7	S7h	=	782.665	0.015	7	782.65	0.12	ω
	6.00000	S7h	=	1314.878	0.018	1	L314.86	0.20	Xi°
	6. 03125	S7h	=	1321.726	0.016	1	L321.71	0.07	Xi⁻
:	26. 6666	S8h	=	5737.239	0.039	5	5737.2	0.7	B1(5747)
:	10. 0000	S9h	=	1967.053	0.053	1	L967.0	1.0	Ds
:	15. 0000	S10h	=	2534.634	0.034	2	2534.6	0.3	Ds1(2536)
:	16. 0000	S11h	=	2197.219	0.181	2	2197.4	4.4	Xc0(1P)
:	29. 0000	S11h	=	3982.461	0.039	3	3982.5	1.8	Zcs (3982)
:	26. 0000	S12h	=	2760.433	0.333	2	2760.1	1.1	D3*(2750)
:	27. 0000	S12h	=	2866.605	0.005	2	2866.6	AVG	Ds3(2860) ⁺
:	28. 0000	S12h	=	2972.775	0.975	2	2971.8	8.7	D(3000)°
-	50. 0000	S13h	=	3922.028	0.013	3	3922.15	1.2	X(3930)
	61.44 00	S14h	=	3415.496	0.004	3	3415.5	0.4	Xc0(1P)
	64. 0000	S14h	=	3557.808	0.008	3	3557.8	1.2	Xc2 (1P)
	93. 0000	S15h	=	3525.820	0.020	3	3525.8	0.2	h1(1P)
	2 17 / 000	916h	_	3633 170	0 1 2 8		2622 6	1 7	20(20)
2 ¹⁷ ⊥1	2 /900 20 /000	SI GI GL	_	2627 020	0.120		2627 0	1./ 5.7	nc(2s)
2 TI 2 ¹⁷ -2	20 /900 56 /900	S1011	_	3640 569	0.020		3640 5	3.7	nc(2s)
2 72	JU / 900	51011	-	3040.309	0.009	•	5040.J	J.2	110(25)
1	7160 /70	S17h	=	3893.006	0.006	3	3893.0	2.3	Zc(3900)
1	8304 /70	S17h	=	4152.540	0.040	4	1152.5	1.7	Xc1(4140)
2	0736 /70	S17h	=	4704.049		4	1704	10	Xc0 (4700)
2	22.0000	S17h	=	3525.484	0.084	3	3525.40	0.13	hc(1P)
3	84.0000	S17h	=	6098.135	0.135	e	5098.0	1.7	Σb(6097)
									,
1	00. 5000	S18h	=	984.646	0.054		984.7	0.4	fo(980)
2	80. 0000	S20h	=	957.590	0.090		957.5	0.2	n' (958)
				-					• • •
N	ote: 17	160 =	10	5384 + 512	+ 256	+	8		
	18	304 =	10	5384 + 1024	+ 512	+	256 + 12	28	
	20	736 =	10	5384 + 4096	+ 2048	+	256		

Quark Assignments to n-Sphere Surface Volume Formulae

SphereQuark NamesDimensionOldNew			<u>Corresponding</u> n-Sphere Surface Formu		
2 3	u d	q1 q2	= =	2 4	$\pi^1 r^1 \pi^1 \pi^1 r^2$
4 5	s C	q3 q4	= =	2 8/3	$\frac{\pi^2 r^3}{\pi^2 r^4}$
6 7	b t	q5 q6	= =	16/15	$\frac{\pi^3}{\pi^3} \frac{r^5}{r^6}$
8 9		q7 q8	= =	1/3 32/105	$\frac{\pi^4}{\pi^4} \frac{r^7}{r^8}$
10 11		q9 q10	= =	1/12 64 / 945	$\pi^{5} r^{9} \pi^{5} r^{10}$
12 13		q11 q12	= =	1 / 60 128 / 10395	$\frac{\pi^6 r^{11}}{\pi^6 r^{12}}$
14 15		q13 q14	= =	1 / 360 256 / 135135	$\pi^7 r^{13} \pi^7 r^{14}$
16 17		q15 q16	= =	1 / 2520 512 / 2027025	$\pi^8 r^{15} \ \pi^8 r^{16}$
18 19		q17 q18	= = 1(1 / 20160)24 / 34459425	$\pi^9 r^{17} \ \pi^9 r^{18}$
20 21		q19 q20	= = 204	1 / 181440 8 / 654729075	$\pi^{10} r^{19} \pi^{10} r^{20}$

n-Sphere Surface Volume Formulae

(Dimension 2 - Dimension 21)

<u>Sphere</u>		<u>Surfac</u>	<u>(π</u> ,	<u>r)</u>	
<u>Dimension</u> <u>Sn</u>		<u>Volume Fo</u>	<u>Pov</u>	vers	
2	S2 =	2	$\pi^1 r^1$	(1,	1)
3	S3 =	4	$\pi^1 r^2$	(1,	2)
4	S4 =	2	$\pi^2 r^3$	(2,	3)
5	S5 =	8/3	$\pi^2 r^4$	(2,	4)
6	S6 =	16/15	$\pi^3 r^5$	(3,	5)
7	S7 =		$\pi^3 r^6$	(3,	6)
8	S8 =	1/3	$\pi^4 r^7 \ \pi^4 r^8$	(4,	7)
9	S9 =	32/105		(4,	8)
10	S10 =	1/12	$\pi^{5} r^{9} \pi^{5} r^{10}$	(5,	9)
11	S11 =	64 / 945		(5,	10)
12	S12 =	1 / 60	$\pi^{6} r^{11} \pi^{6} r^{12}$	(6,	11)
13	S13 =	128 / 10395		(6,	12)
14	S14 =	1 / 360	$\pi^7 r^{13} \pi^7 r^{14}$	(7,	13)
15	S15 =	256 / 135135		(7,	14)
16	S16 =	1 / 2520	$\pi^8 r^{15} \ \pi^8 r^{16}$	(8,	15)
17	S17 =	512 / 2027025		(8,	16)
18	S18 =	1 / 20160	$\pi^9 r^{17} \pi^9 r^{18}$	(9,	17)
19	S19 =	1024 / 34459425		(9,	18)
20	S20 =	1 / 181440	$\begin{array}{c} \pi^{10} r^{19} \\ \pi^{10} r^{20} \end{array}$	(10,	19)
21	S21 =	2048 / 654729075		(10,	20)

Values of n-Sphere Surface Volume Units of Factorization

(Below **h** = $6.62607015 \text{ MeV/c}^2$, not $6.62607015 \times 10^{-34} \text{ J-s}$)

(Dimension 2 - Dimension 21)

<u>Sphere</u> Dimension	<u>Unit of</u> Factorization	on For	<u>mula</u>	<u>Value (MeV/c²)</u>
2	S2h =	2	$\pi^{1} r^{1} h =$	41.63282661
3	S3h =	4	$\pi^{1} r^{2} h =$	83.26565322
4	S4h =	2	$\pi^2 r^3 h = $	130.7933822
5	S5h =	8/3	$\pi^2 r^4 h = $	174.3911763
6 7	S6h = S7h =	16/15	$\begin{array}{rcl} \pi^3 \ r^5 \ h &=\\ \pi^3 \ r^6 \ h &= \end{array}$	205.4497644 219.1464153
8	S8h =	1/3	$\begin{array}{rcl} \pi^4 \ r^7 \ h &=\\ \pi^4 \ r^8 \ h &= \end{array}$	215.1464901
9	S9h =	32/105		196.7053624
10	S10h =	1/12	$\pi^{5} r^{9} h = \pi^{5} r^{10} h =$	168.9756582
11	S11h =	64 / 945		137.3262492
12	S12h =	1 / 60	$ \begin{aligned} \pi^{6} r^{11} h &= \\ \pi^{6} r^{12} h &= \end{aligned} $	106.1705373
13	S13h =	128 / 10395		78.44057013
14	S14h =	1 / 360	$ \begin{array}{l} \pi^7 \ r^{13} \ h &= \\ \pi^7 \ r^{14} \ h &= \end{array} $	55.59076334
15	S15h =	256 / 135135		37.91204905
16	S16h =	1 / 2520	$ \begin{array}{rcl} \pi^{8} r^{15} h &= \\ \pi^{8} r^{16} h &= \\ \end{array} $	24.94907624
17	S17h =	512 / 2027025		15.88056197
18	S18h =	1 / 20160	$ \begin{array}{rcl} \pi^{9} r^{17} h &= \\ \pi^{9} r^{18} h &= \\ \end{array} $	9.797479330
19	S19h =	1024 / 34459425		5.869441980
20	S20h =	1 / 181440	$\pi^{10} r^{19} h = \\ \pi^{10} r^{20} h =$	3.419965454
21	S21h =	2048 / 654729075		1.940989032

Smallest Formation Quarks per n-Sphere

<u>Sphere</u>	<u>Sn</u>	<u>Surface</u>	<u>(π, r)</u>	<u>Formation</u>
Dimension		<u>Volume Formula</u>	Powers	Quarks
2	S2 =	$ \begin{array}{cccc} 2 & \pi^1 & r^1 \\ 4 & \pi^1 & r^2 \end{array} $	(1, 1)	u
3	S3 =		(1, 2)	d
4	S4 =	$\begin{array}{ccc} 2 & \pi^2 \ r^3 \\ 8/3 & \pi^2 \ r^4 \end{array}$	(2, 3)	$du = 8 \pi^2 r^3 = 4 S4$
5	S5 =		(2, 4)	$dd = 64 \pi^2 r^4 = 24 S5$
6	S6 =	$\begin{array}{c} \pi^3 \ r^5 \\ 16/15 \ \ \pi^3 \ r^6 \end{array}$	(3, 5)	$ddu = 32 \pi^{3} r^{5} = 32 \mathbf{S6}$
7	S7 =		(3, 6)	$ddd = 256 \pi^{3} r^{6} = 273\mathbf{S7}$
8	S8 =	$\begin{array}{ccc} 1/3 & \pi^4 \ r^7 \\ 32/105 & \pi^4 \ r^8 \end{array}$	(4, 7)	dddu = 128 $\pi^4 r^7$ = 384 S8
9	S9 =		(4, 8)	dddd = 1024 $\pi^4 r^8$ = 312 S9
10	S10 =	$\frac{1/12}{64} \frac{\pi^5}{945} \frac{r^9}{\pi^5} r^{10}$	(5, 9)	ddddu
11	S11 =		(5, 10)	ddddd
12	S12 =	$\frac{1\ /\ 60\ \ \pi^{6}\ r^{11}}{128\ /\ 10395\ \ \pi^{6}\ r^{12}}$	(6, 11)	ddddu
13	S13 =		(6, 12)	ddddd
14	S14 =	$\begin{array}{ccc} 1 \ / \ 360 & \pi^7 \ r^{13} \\ 256 \ / \ 135135 & \pi^7 \ r^{14} \end{array}$	(7, 13)	dddddu
15	S15 =		(7, 14)	dddddd
16	S16 =	$\frac{1\ /\ 2520}{512\ /\ 2027025\ } \frac{\pi^8\ r^{15}}{\pi^8\ r^{16}}$	(8, 15)	ddddddu
17	S17 =		(8, 16)	ddddddd
18	S18 =	$\frac{1\ /\ 20160\ \ \pi^9\ r^{17}}{1024\ /\ 34459425\ \ \pi^9\ r^{18}}$	(9, 17)	dddddddu
19	S19 =		(9, 18)	dddddddd
20	S20 =	$\frac{1/181440}{2048/654729075}\pi^{10}r^{19}$	(10, 19)	ddddddddu
21	S21 =		(10, 20)	ddddddddd

(Dimension 2 - Dimension 21)

Current quark theory of particle reactions assumes that when a 'ddd' particle forms during a collision in an accelerator, the masses of the 'd' quarks just add together (Total Mass = 3d + KE), and the dimension of the *product matter* remains the same as the *reactant matter*'s dimension. In *higher dimensional quark mass theory* the masses of the colliding quarks also add together (Total Mass= 3d + KE), but they also change their dimension, in this case from 2-dimentional matter to 6-dimensional matter. In general, the dimension of the collision reaction's product matter is determined by the dimension of the surface volume formula that results from multiplying together all the surface volume formulae associated with each of the reacting quarks. In the 'ddd' case, multiplying S3, ($4 \pi^1 r^2$), together three times gives you S7, the formula for the surface volume of a 7-sphere, which is 6 dimensional. So, the resultant particle is made of 6-dimensional matter circulating in the surface of a 7-sphere.

References

- [1] arXiv.org:2403.01313v1 "Review of Top Quark Mass Measurements in CMS"
- [2] P.A. Zylaet al.(Particle Data Group), Prog. Theor. Exp. Phys.2020, 083C01 (2020) and 2021 update