
Is Time a fundamental Category?

Suggesting Time as based on more fundamental Categories
proposing a discrete Model on smallest Scales

Peter A. M. Möllers∗

Delbrück, Germany

February 20, 2025 (Version 1.5)†

Abstract

Is Time a fundamental category and, if so, on the smallest thinkable scales? Maybe not. To
test this conjecture this paper proposes a simple discrete model, the Klick Model. It bases Time
on the correlation of two other categories, abstract definitions of motion and state implementa-
tion - an Informatics based approach to a problem in physics.1

The original motivation to develop the model was to understand the biological/atomic ageing
of the twins of the so-called Twin-Paradox, seen as a benchmark combining time and space of
smallest and largest scales. Without loss of generality, let us assume that the twins can be
represented by two isolated (free) abstract particles in steady motion.

A model is only a model. It has to make falsifiable predictions for the real world. Therefore, I
will show that for the Twin-Paradox it leads to the known result from Special Relativity Theory.
For smallest scales the task is much more difficult. Only a qualitative test based on structural
similarities can be offered here, defining a discrete logic for ground states, excited states and
their correlations in the framework of the model, trying to map the abstract model to Einstein’s
discrete interpretation [7] of Planck’s law of radiation.2

To understand the rational of the proposed model it is helpful not to expect a concept of
space and time on smallest scales, particularly on the question whether they can be assumed
continuous or discrete, although the model leans to a discrete structure.

The assessment based on the proposed model: The underlying relation for time relying on
motion and state implementation is (likely) discrete, suggesting age as more fundamental than
time. Regarding Hermann Weyl’s Tile Argument [6], I think that Pythagorean Law prevails, not
through geometry or a metric, but as a preserving law between the above categories. Geometry,
needed to define time on our scales, might only evolve on larger scales and dependent on the
(dynamic) content of space.

The proposed model is Informatics based, driven by interest and not by competence in
physics. Nevertheless, I will use terms from physics based on the approach of Denotational
Semantics [1], keeping the gap between Syntax and Semantics as close as possible by relating
abstract model properties to supposed properties of the real world.

Keywords: Discrete Space, Discrete Time, Twin Paradox, Hermann Weyl’s Tile Argument,
Einstein’s Theories, Sub-Quantum Assumption, Einstein Coefficients

∗E-mail: pm@KlickModel.org
†No scientific affiliation - author graduated in Informatics at the University of Dortmund
1While physics seems to prefer definitions of physical objects in an axiomatic, bottom-up way, Informatics can

work from the relation to the object, which is the approach followed here. The definitions of the two more basic
categories are considered in the domain of physics. Informatics can contribute the focus on relations between objects,
even if their definitions are opaque. Examples are implementations of databases based on Relational Algebra.

2maybe of interest, because it adds a 4th coefficient A12 with a defined density of N0 of particles in the lower-energy
state, which is per construction of the model N0 = 0, which effectively suggests no change to Einstein’s formula
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1 Introduction and Prelimineries

1.1 Introduction

This paper and the model are based on the assumption that our world and its physics are described
by Einsteins Theories on large scales and by Quantum Theories on small scales. To model possible
underlying categories of time, I am assuming smaller scales beyond Quantum Theory, in the hope
that the designed properties of the model do not contradict the established theories.

For the development of the Klick Model we want to assume the world on three scales, using the
term Macro World for the world at the scales of Einstein’s Relativity Theories. The term Meso
World refers to our human-dependant scales which overlap with the Macro World and reach down
to the limits of Quantum Theory. A Micro World is assumed which includes the scales of Quantum
Theory and reaches down to smallest hypothetical Sub-Quantum scales.

We will define two categories, Motion and State Implementation of abstract particles connected
by a preserving relation, the Klick Relation (core to the model), based on Pythagorean Triples.

In a first step, we define the Basic Klick Model for free abstract particles based on the Klick
Relation with just enough properties to calculate the known ageing in the Twin-Paradox. As a next
step, the Extended Klick Model is added, again on minimalistic assumptions based on encounters
of two abstract particles. In a further step, mathematical symmetries to the Basic Model are
considered in the Mirrored Klick Model, which are very speculative, but falsifiable. We start with
some notations for Pythagorean Triples used throughout this paper.

1.2 Notations for Pythagorean Triples

We will write Pythagorean Triples or T for short as (c, a, b) of three positive integers, assuming
a < b unless otherwise noted. We use the letter P to denote Primitive Pythagorean Triples.

T = { (c, a, b) | c, a, b ∈ N ∧ c2 = a2 + b2} (1.1)

Sometimes we want to restrict the set of General or Primitive Triples to a finite set by imposing
an upper limit M to the value of c.

TM = { (c, a, b) ∈ T | c < M}, PM = { (c, a, b) ∈ P | c < M} (1.2)

Now, we restrict the above sets further to intervals of rational numbers.

TM [lb, ub] = { (c, a, b) ∈ T | c < M ∧ lb 6 b/a 6 ub } (1.3)

TM ]lb, ub[ = { (c, a, b) ∈ T | c < M ∧ lb < b/a < ub } (1.4)

In case ofM →∞, we simply use the notations T[lb, ub] and P[lb, ub]. The algorithms used here
to calculate triples to some maximum value of c < M are based on ternary trees [2].

TM = PM ∪ { (ci, ai, bi) | (c, a, b) ∈ P ∧ i ∈ N > 1 ∧ ci < M } (1.5)

The notation (∗, a, b) is used assuming ’*’ as a positive integer c =
√
a2 + b2. The set of triples

{(c, ∗, ∗)} stands for triples yielding c. The portion of Primitive Pythagorean Triples up to some
maximum value of M converges [3] to M

2π . Addition of two Triples is only defined if the result is
∈ T. Otherwise it is undefined3.

(c1, a1, b1) + (c2, a2, b2) = (∗, a1 + a2, b1 + b2) ∈ T (1.6)

Multiples of the simplest triple (5, 3, 4) are represented by the set T[43 ,
4
3 ]. T[1, 1] = ∅ holds,

because only positive integers are considered.

3This condition is linked to the later definition of measurements, which are only defined ’outside’ state transitions.
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2 Basic Klick Model - based on free abstract Particles

The Basic Klick Model is designed to explain the two different ageing processes in the Twin Paradox.
It overloads terms like particles, speed, or mass to describe properties of abstract, isolated (free)
Micro World particles in motion. The model is designed to be as basic as possible and should avoid
unnecessary assumptions, e.g. about the structure or a geometry of space.

Looking at the Twin Paradox we can simplify the set-up without loss of generality, if we imagine
each twin being represented by a particular abstract free particle during the stay and the travel.
We will define space of the Micro World as discrete made up by sets of points on the smallest scales
in a deliberately simplistic way without suggesting a geometry 4.

For particles, we do not speculate about their structure. We assume them to be described by
state information implemented in space and moving through space without speculating about a
structure of space. We will assume a ’mechanism’ which we will call Klicks, which works on space
in discrete steps in ’some’ uniform way for different subsets of points, the cause for motion and state
implementation.

2.1 Two Categories of abstract Particles

We define abstract (conceptual) particles representing categories of particles, counterparts of cate-
gories of particles of the real world. Their definition depends on the definition of a Micro World
maximum speed5, which will follow later with Eq. 2.6.

CF-Particles: The shortcut CF stands for Constantly Fast moving abstract particles6

VF-Particles: The shortcut VF stands for Variably Fast moving abstract particles below the
speed of CF-particles. Per definition VF-particles can approach but never reach the speed of CF-
particles. An abstract Micro World particle is either a CF- or a VF-particle.

2.2 Properties of abstract VF- and CF-Particles

To find a model to explain the difference in ageing, we assume a hypothetical structure at smallest
possible scales7, while making minimalistic assumptions, just enough to explain the Twin-Paradox
and maybe a bit more. Assumptions on geometry, topology, distance, or neighbourhood of real or
abstract particles are out of scope. Some analogies from Informatics will be used to explain the
design of the model, which should not suggest, that our world is ’computer-model-like’.

Property #1: We only consider VF- and CF-particles.

Let us assume an Abstract Space as a set of distinct, discrete points. Points in space should be
understood as points of space without a geometry. Compared to computer models, it may help to
imagine space as an infinite storage for relocatable state information of abstract particles leading
to the following assumption.

Property #2: Abstract Space consists of an unlimited amount of discrete points.

A point can be compared to a storage location of a computer memory, which can hold a subset of
information about some property of a conceptual particle. The next property associates conceptual
CF- and VF-particles with subsets of points of an abstract space.

4The definition of space simply based on sets of discrete points is deliberately incomplete as it avoids the complex-
ities coming with a metric or a geometry. A much bigger problem appears to be to model the dependencies between
a conceptual space and the abstract particles living there and the dependencies on their motions. Einstein proved
on large scales that geometry depends on the (dynamic) content of space. Why should this be different on smallest
scales with smaller distances? This model assumes that Einstein’s geometry of space might evolve on larger scales,
but it cannot propose an idea, how this might work.

5The approach to let terms like speed take precedence without previous definitions of space and time and especially
their relation may look unconventional but is core to the ’top-down’ approach of the model.

6counterparts of particles moving with maximum Meso World speed like photons and neutrinos
7compared to our world at much smaller scales than those of Quantum Theory

4



Property #3: A subset of points can hold the State Information of a conceptual particle. Such a
subset is referred to as its Location. The state information8 s ∈ (D1 ×D2, ...×Dn) of an abstract
particle can be thought of as a vector of values from some value domains Di like booleans, natural
numbers and others, assuming no limits on precision like in real computers.

Because of the assumed composite structure abstract particles are not considered as point-like.
So far, we introduced abstract CF- and VF particles with a certain state at a certain location. Now,
we are looking at the stepwise changes of locations and states.9

Property #4: A particle’s location and/or state information can only change in discrete steps.
The stepwise change of a location without changing the state is called Motion. The stepwise
’maintenance’ of state information without changing the location is called State Implementation.

It is essential to the model that a ’frozen’ state of a particle cannot exist, i.e. an abstract particle
is an endless implementation/development of its state information in discrete steps.

Property #5: Motion/State Implementation of particles through space happens stepwise and
simultaneously for all points occupied by a particle. At least the location, or the properties, or both
need to change with each step. An abstract particle can never be ’at rest’.

The search for a biological explanation of the different ages of the twins of the Twin Paradox
led to the idea to correlate motion and state information of particles. Physical/biological processes
could run slower when particles are on the move. This consideration led to the assumption that the
maintenance of state information is not ’for free’, and that it is connected to motion.

The model does not define how a conceptual particle is moving or how state information is
maintained or encounters with other particles work. Now we want to count discrete changes of
location and state and correlate their counts.

Property #6: A change of location or state information or both happens for each abstract particle
in a same way. We will call these changes Klicks. Klicks are expressed as natural numbers and fall
into one of two classes: Motion or State Implementation.

The following property is particularly motivated by the Twin Paradox by relating relocation and
state information based on Pythagoras’ Law as a preserving relation and not as another application
of Euclidean Geometry. We will now relate Klicks required to relocate a particle through points in
space to Klicks implementing the state of the particle.

Property #7: Motion and state propagation of a CF- or VF-particle are connected through the
Klick Relation K2

t = K2
r +K2

i which defines a preserving relation between relocating (Kr) and
implementing (Ki) Klicks, where (∗,Ki,Kr) ∈ T]1, 43 ] and Kr > Ki avoiding ambiguous solutions.
For simplicity we will sometimes identify a particle x with its Klick Relation.

It is important to understand that the Klick Relation needs not to hold in a continuous way,
because we do not know, how motion and state implementation work in detail.

Property #8: A Measurement is an abstract operation to determine the relocating and imple-
menting klicks Kr and Ki of a particle. It is only defined, if the result is ∈ T]1, 43 ].

The model does not define, how a particle changes from one valid measurement to the next10.
The following definition helps modelling a free particle moving undisturbed through space.

Property #9: Conceptual VF- or CF-Particles in steady motion are defined by Kr
Ki

= const.

Now, we come to the distinction in motion and state implementation patterns between the two
categories of abstract particles.

8Refering to our world its definition is assumed to be in the domain of physics, on ’larger’ scales compatible with
Relativity Theory.

9State Information on smallest scales is considered as non-static, resembling refresh cycles for computer memory
to maintain storage information or humans refreshing their memory during deep sleep, i.e. never being ’at rest’.

10This resembles the view on CPU instructions executed by micro code. Measurements are only meaningful between
completed CPU instructions.
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Property #10: The Klick Relation for VF-Particles is defined through (∗,Ki,Kr) ∈ T]1, 43 [. Each
VF-Particle is of a certain kind, being a multiple of a ’base relation’ ∈ P]1, 43 [ .

Property #11: The Klick Relation for CF-Particles is defined through (∗,Ki,Kr) ∈ T[43 ,
4
3 ].

2.3 The Klick Relation for VF- and CF-Particles

The following diagram sketches the Klick Relations for VF- and CF-Particles.

Figure 1: Klick Relations of VF- and CF-Particles in T]1, 43 ].

’Speed’ of relocation is traded for ’speed’ of maintenance of state information for VF- and
CF-Particles. The more Klicks are needed to move a particle, the less Klicks are available for the
implementation of its state information. No metric was needed to come to this result. A quantitative
test will follow in chapter 5.1.

2.4 Overloading Model Properties with Terms from our World

We will now extend our abstract model of a hypothetical Micro World with further attributes,
reusing / overloading terms from our Meso World. The following terms are only applicable to
isolated (free), simple, non-composite VF-Particles.

Creation and Absorption: The term creation for abstract particles is borrowed from the
Meso World and refers to the creation of a particle in a process. We use the term absorption as the
counterpart of creation, i.e., when an abstract particle ’exits’ a state of steady motion.

Measurement: The term measurement is meant in an abstract operation to determine the
relocating and/or implementing klicks of an abstract particle.

Age: The age of an abstract particle in steady motion is defined as the number of implementing
Klicks, i.e., Ki, from its creation to a measurement. Each particle has its own age based on counting
the implementing klicks since its creation.

Age =
measurement∑
creation

Ki (2.1)

Duration between Measurements of a Particle: A duration is the difference between two mea-
surements of ages of the same particle in steady motion.

Duration =

measurement2∑
creation

Ki −
measurement1∑

creation

Ki (2.2)

Horizon: The horizon is the maximum number of relocations an abstract particle can have
since its creation.

Horizon =

measurement∑
creation

Kr (2.3)
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Speed: In our Meso World speed is defined as a derived quantity based on geometry and time.
For our abstract model we take a different approach by considering abstract particles dominated
by relocating over implementing klicks intuitively as faster. The speed of an abstract particle in
steady motion is defined on the basis of its Klick Relation.

Speed =
Kr

Ki
. (2.4)

Faster and Slower: If we relate implementing klicks to the amount of information which is
transported by relocating klicks, it will fit our intuition that the transport of more information with
the same transport capacity results in a lower speed. For two separate free particles x and y in
steady motion, we define x as faster compared to y if the following condition holds:11

x faster than y ≡ Kr(x)

Ki(x)
>
Kr(y)

Ki(y)
. (2.5)

Speed-Limit: Based on the previous definitions for CF-Particles we assume a speed limit
defined for abstract particles with klick relations of the form (5Kt, 3Kr, 4Ki) ∈ PT for n > 0.

Speed-Limit =
Kr

Ki
=

4

3
(2.6)

The next definition is very speculative, simply following from mathematical symmetry. The
term mass should be understood as mass-related.

Mass-/Motion Ratio and its Limit: The mass of a conceptual Particle might be related
to the amount of (state) information a Micro World particle is carrying. More mass means more
information. The mass-motion-ratio of a free abstract particle in steady motion is defined based on
symmetry to the definition of speed, including a definition of faster.

Mass-Motion-Ratio =
Ki

Kr
. (2.7)

Mass-Motion-Ratio-Limit =
3

4
. (2.8)

x is more mass-related than y ≡ Ki(x)

Kr(x)
>
Ki(y)

Kr(y)
. (2.9)

11defining a partial order on the speeds of conceptual particles
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3 Extended Klick Model - based on Two-Particle Events

So far, we considered free abstract VF- and CF-particles ∈ T]1, 43 ] in steady motion. Now, we will
look at encounters between two abstract particles, leading to the key definition of Eq.3.1 below.

3.1 CF-Packets - The smallest CF-Particle and its Multiples

The following properties follow from the concept of Pythagorean Triples.

Property #12: There is a smallest Klick Relation of a CF-Particle, which is ĥ = (5, 3, 4).

Property #13: CF-Packets are abstract particles with a klick relation of
nĥ = (5n, 3n, 4n) ∈ T[43 ,

4
3 ] with n ∈ N, n > 0.

3.2 Coupling VF-Particles and CF-Packets

The extended model will assume that CF-Particles can only connect to a VF-Particle, if the ag-
gregate conserves the Klick Relation. The ’coupling process’ is considered as opaque. We are only
interested in the Klick Relations binding motion and state implementation as Pythagorean Triples
for the particles before coupling and after resulting into some new aggregate.

3.2.1 States resulting from Coupling Events

Now we combine a VF-Particle with one or more CF-Packets while preserving the Klick Relation
of the result.

Property #14: A VF-Particle x, coupling with a CF-Packet is called in some state, if there is a
CF-Packet with some factor f > 0 and limit M such that the following condition holds.

x ∈ TM ]1,
4

3
[ ∧ fĥ ∈ TM [

4

3
,
4

3
] =⇒ x+ fĥ ∈ TM ]1,

4

3
[. (3.1)

For f > 0, the values of f , let us call them fi, can be ordered into packets according to the ’C-value’

of x+ fĥ. Each factor fi can then be expressed as a sum of n CF-Packets, i.e. fi =
i6n∑
i=1

fpkgi .

The number of CF-Packets, which can couple with a certain VF-Particle depends on f , the
maximum number of which in turn depends on M . For a given value of M and a given VF-Particle
there can exist zero or more CF-Packets.

For example, if M = 800000 and x = (797, 555, 572), there are 2 factors fulfilling the above
condition: f1 = 265 and f2 = 265 + 2117 = 2382 with CF-Packets fpkg1 = 265 and fpkg2 = 2117.
The sequence of factors f and also fpkg is not continuous. Instead it seems that the deltas between
packages fpkgi steeply increase with M when looking at bigger value ranges.12

3.2.2 Isolated States, Ground States and Excited States of Abstract Particles

A VF-Particle is called in an Isolated State with regard to Klick Relations TM ]1, 43 [ limited by a
maximum value of M according to Eq. 3.1, if the equation is only fulfilled for f = 0. Otherwise
there exist CF-Packets with fpkgi with i > 0. VF-Particles are called in a Ground State, if the
equation is fulfilled for fpkgi with i = 0 while values i > 0 exist. Otherwise VF-Particles are called
in an Excited State.

This definition leaves open, whether there could be particles in a ground state with no excited
states for any value of M . It seems that there is an infinite set of excited states for each ground
state with sharply decreasing occurrences, i.e. with no upper limit to f in the above definition.
This assessment is only based on some computational tests. Note, that Isolated States and Ground
States might be promoted to Excited States with increasing M .

12see algorithm to generate this and further VF-/CF-correlations in AppendixB
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3.2.3 Generic Ensembles of States

Now, we will construct a series of finite sets, which we want to call Generic Ensembles dependant
on some natural number M as some upper bound for an enumeration of Pythagorean Triples. Each
set is based on VF-Particles ∈ PM ]1, 43 [ in ground states, for which we calculate their excited states
⊂ TM ]1, 43 [ by applying CF-Packets to them. The choice to look only at Primitive Pythagorean
Triples as ground states is fairly arbitrarily, but convenient for the simplicity of its construction.

For the tables listed further down, which are based on the following definition, it is important to
understand, that we want to associate each ground state with all excited states, i.e. one VF-Particle
in its ground state is combined with multiple excited states (although limited by M).

Property #15: A Generic Set E of excited states limited by M results from VF-Particles encoun-
tered by CF-Packets yielding VF-Particles ⊂ TM ]1, 43 [, if the following condition holds for at least
one factor n ∈ N, n > 0.

EM = { (c, a, b) ∈ TM ]1,
4

3
[ | ∃(c′, a′, b′) ∈ PM ]1,

4

3
[ ∧ a = a′ + 3n ∧ b = b′ + 4n } (3.2)

The generic set EM of excited states is based on a generic set of VF-Particles in their ground state
for n > 0 as follows.

GM = { (c, a, b) ∈ PM ]1,
4

3
[ | ∃(c′, a′, b′) ∈ EM ∧ a′ = a+ 3n ∧ b′ = b+ 4n } (3.3)

The generic set IM of isolated states is based on a generic set of VF-Particles in their ground state
for n = 0 as follows.

IM = { (c, a, b) ∈ PM ]1,
4

3
[ | @(c′, a′, b′) ∈ EM ∧ a′ = a+ 3n ∧ b′ = b+ 4n } (3.4)

One could decide here to define a ground state as the union GM ∪ IM , because elements of IM could
couple with CF-Particles with an increased value of M . But, we want to decide here to segregate
the ’logical ground states’ into the sets GM and IM .

Obviously EM ⊆ EN for integersM < N and EM ∩GM ∩IM = ∅. Here is an example for E800000.

For (35113, 24745, 24912) ∈ G800000 there are CF-Packets, i.e. multiples of ĥ, which are
n1 = 42, n2 = 3648, n3 = 5622, n4 = 32304, n5 = 2094, n6 = 26670,

such that (∗, 24745 + 3 ∗
j6i∑
j=1

ni, 24912 + 4 ∗
j6i∑
j=1

ni) ∈ EM .

Only with E3200000 we can get n7 = 457002 with (∗, 24745 + 3 ∗
j67∑
j=1

n7, 24912 + 4 ∗
j67∑
j=1

n7) ∈ EM .

Looking at increasing ensembles up to E25600000 a value following n7 cannot be provided here, maybe
because of exponential growth and/or lack of computing power of a conventional laptop.

Let us look now at examples of Generic Ensembles with increasing values of M , which include
the above example.
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3.2.4 Modelling State Transitions in Generic Ensembles of States

So far, we described a static picture of Generic Ensembles. The following extension assumes a
’dynamic’ through attachment and detachment of CF-Particles in these sets, while preserving the
Klick Relation. Let us assume two types of attachments/detachments to be dependent on the
number of single or multiple occurrences of the same CF-Particle in the set - expressed through the
values nA21 and nB21. The columns of the following tables are described here.

N0 VF-Particles in an isolated state, not able to transition to a lower/higher state
N1 VF-Particles with potential to transition to a higher excited state
N2 VF-Particles with potential to transition to a lower excited state or the ground state
nA21 Unique CF-Particles (coupling only with one VF-Particle as in Eq. 3.1)
nB21 Non-unique CF-Particles (coupling with > 1 VF-Particles as in Eq. 3.1)
nA12 CF-Particles coupling with VF-Particles in an isolated state, i.e. nA12 = 0
nB12 All occurrences of f in Eq. 3.1
rn Calculated value from the above values with the relation shown below.

Based on the definitions Eq. 3.2, 3.3 and 3.4 the values of N0, N1 and N2 can be expressed as
follows.

N0 = |IM |, N1 = |GM |, N2 = |EM | (3.5)

With
rn =

nA21 ∗N2

nB12 ∗N1 − nB21 ∗N2
(3.6)

we correlate the above values as follows.

nA12 ∗N0 + nB12 ∗N1 ∗ rn = nA21 ∗N2 + nB21 ∗N2 ∗ rn (3.7)

Since nA12 = 0, we get
nB12 ∗N1 ∗ rn = N2 ∗ (nA21 + nB21 ∗ rn) (3.8)
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3.2.5 Examples of Generic Ensembles

The following tables are the result of enumerating ensembles EM , GM and IM for increasing values
of M , including some more parameters13. Table 1 has no limit on the number of levels.14

Table 1: Generic Ensembles with n Levels
M N0 N1 N2 nA21 nB21 nB12 rn nUniqPkg pkgAvg nLevel g

1 ∗ 105 2021 856 1544 1053 491 1544 2.88493 1284 3805 10 4
2 ∗ 105 3786 1960 4006 2375 1631 4006 7.21884 3106 6808 14 5
4 ∗ 105 7194 4305 9792 4913 4879 9792 -8.55923 6999 12559 23 6
8 ∗ 105 13652 9351 23607 9846 13761 23607 -2.23265 15331 22429 29 8
16 ∗ 105 26205 19805 55964 19328 36636 55964 -1.14836 32893 40850 38 11
32 ∗ 105 50446 41563 131327 36977 94350 131327 -0.70049 68891 74095 59 15
64 ∗ 105 97439 86578 304612 69988 234624 304612 -0.47274 141644 135452 79 22
128 ∗ 105 189160 178893 698915 132603 566312 698915 -0.34227 286987 247370 105 25

Table 2 only considers two levels, which are the ground states and the first excited states. So,
the values are limited by M and nLevel = 1, i.e. by fpkgi 6 f1 in Eq. 3.1. The number of excited

Table 2: Generic Ensembles with just 2 Levels - Ground and first Excited State
M N0 N1 N2 nA21 nB21 nB12 rn nUniqPkg pkgAvg nLevel g

1 ∗ 105 2021 856 856 731 125 856 1.00000 792 3919 1 3
2 ∗ 105 3786 1960 1960 1579 381 1960 1.00000 1759 7239 1 4
4 ∗ 105 7194 4305 4305 3334 971 4305 1.00000 3788 14154 1 5
8 ∗ 105 13652 9351 9351 6922 2429 9351 1.00000 8040 26135 1 5
16 ∗ 105 26205 19805 19805 14066 5739 19805 1.00000 16633 49435 1 6
32 ∗ 105 50446 41563 41563 28116 13447 41563 1.00000 34025 94688 1 8
64 ∗ 105 97439 86578 86578 56162 30416 86578 1.00000 69233 182598 1 9
128 ∗ 105 189160 178893 178893 110928 67965 178893 1.00000 139450 350464 1 11

states per level decreases exponentially in Figure 2a with 9351 for the first level followed by 5061
for the next level and so on until 1 for the highest level of 29.

(a) Excited States per Level @ M = 8 ∗ 105 (b) Development of rn with a spike at about E294016

Figure 2: Excited State and rn Distributions for Ensembles

Figure 2b shows the development of rn, a rational number, which seems to be independent of
enumerations of ensembles. It displays an asymptotic increase to a positive constant, then a spike
to a negative constant followed by an asymptotic increase to zero at about M ≈ 294016.

13nUniqPkg: Number of unique CF-Packets; pkgAvg: Average value of a CF-Packet per excited state; nLevel:
Maximum number of excited states per ground state in EM ; g: Maximum number of states sharing the same value
of f in Eq. 3.1 with regard to EM .

14The value of nLevel depends on the underlying set of Pythagorean Triples with limit M . The values in Table 1
are limited through TM ]1, 4

3
[ and range between 1..105.
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3.2.6 Probability of VF-Particles coupling with CF-Packets

The application of the Basic Klick Model to the Twin-Paradox or the consideration of structural
similarities to interactions between matter and radiation in our world do not have the weight of a
proof. This would be different, if one could derive a physical law or constant from the model, e.g.
using Generic Ensembles. The following is not a solution, only an idea for an approach.

Let us explore the idea to relate the Fine-Structure Constant α to Generic Ensembles of the
type PM ]1, 43 [ and the quantitive relations between CF- to VF-Particles, which may contribute
to the probability of their interactions. The number of CF-Particles is M/5. While the num-
ber N of VF-Particles for P]0,∞[ is determined by the formula N = M/(2π), there is only a
heuristically determined15 number N of VF-Particles for PM ]1, 43 [ available here as a fixed factor of
N = |PM ]1, 43 [| 'M/34.7774 based on Table 5. N corresponds to N = N0 +N1 in Table 1.

M/5

N
∗ f = α−1 (3.9)

A value of f ' 19.70186232 would fulfil this equation, but unfortunately would only be a
constructed value by simply correlating results of Table 5 with the desired result of α. If f could be
derived16 from mathematical formulas or from statistics, the correlation in Eq. 3.9 would become
interesting.

Seen from the perspective of the unsolved problem of finding a (purely mathematical) formula
for α, the discussed approach looks a bit like exchanging an unknown problem by another unknown
problem, now trying to find a formula for ≈ 19.70186232. 17 This seems not to be a solution.

Here is a further idea. PPTs are more convenient to find mathematical relations compared to
PTs. But the model is assuming PTs to map to relations of the real world, so we are more interested
in PTs. The term M/5

N on the left-hand side of Eq. 3.9 relates to P]1, 43 [, while the right-hand side
is relating to T]1, 43 [. The value of f would need to combine these two sets, but how?

For instance f could be the product of a constant, like 2π2, modified by a growth factor f ′,
which correlates P]1, 43 [ and T]1, 43 [. Lacking a better idea f ′, if taken as ratio between πP]1, 4

3
[ to

πT]1, 4
3
[ based on Table 5 and Table 6 as f ′ = 1.00178898 will lead to the modified equation with a

bias to α of 1.00006849 - still not good enough to be considered as a candidate for a solution.

M/5

N
∗ 2π2 ∗ f ′ = α−1 (3.10)

Eq. 3.10 should instead be understood as an idea to encourage better proposals. The challenge is
to relate the development of TM ]1, 43 [ to our world with increasingM . Maybe the coupling condition
based on ’+’ in Eq. 3.1 is also too simplistic. But no better ideas18 can be put forward here.

Still, I would also like to include a ’reverse-engineered’ idea based on attempts to find a mathe-
matical formula for α. If one of these proposals19 could be based in a meaningful way on Pythagorean
Triples as proposed by Eq. 3.1, this could possibly add credibility to the proposed model.

15see A101929 - Number of Pythagorean triples with hypotenuse < 10n [9] - based on an algorithm
16like 2 ∗ π2, which is close, although not close enough
17I think, if someone will ever find a formula for α, it will be related to Pythagorean Triples in some way, not

related to space and time, but to some underlying categories, whatever they are.
18An example of another preserving operations, (x1, y1, z1) ◦ (x2, y2, z2) = (x1x2, y1z2 + y2z1, y1y2 + z1z2), which is

not further considered here, is discussed in [10].
19There are several proposals to derive α from some mathematical formula. One of them is the so-called ’deVries

formula’ [11]. Of course, precision alone is not a prove. A broken railway clock gives an almost perfect time of almost
infinite precision, two times per day. But a formula related to a cause in a meaningful way could make a difference.
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3.3 Events between VF-Particles

Events between VF-Particles and CF-Particles discussed in the previous chapters are more im-
portant to test the plausibility of the Klick Model than events between VF-Particles, which are
discussed here. Their consideration should at least not lead to contradictions.

For encounters of VF-Particles we will limit our considerations to binary events, where pairs
of VF-particles either merge into some ’new’ target particle, or where a particle is split into two
VF-particles. We are interested in motion/state propagation patterns of VF-particles x and y either
joining or splitting, while preserving the total number of Klicks as subsets of T]1, 43 [ under a "+"
operation 20. This operation is defined if the following preserving conditions hold:

K2
t (x) +K2

t (y) = K2
t (z) | x, y, z ∈ T]1,

4

3
[. (3.11)

x, y ∈ T]1,
4

3
[ =⇒ (∗,Kr(x) +Kr(y),Ki(x) +Ki(y)) = z ∈ T]1,

4

3
[. (3.12)

Note that this definition allows for an abundance of solutions, which are inherently ambiguous.
For instance, (45, 27, 36) can be the result of (25, 15, 20) + (20, 12, 16), or (35, 21, 28) + (10, 6, 8), or
(30, 18, 24)+(15, 9, 12), or (40, 24, 32)+(5, 3, 4). Like (10, 6, 8)+(5, 3, 4) /∈ T]1, 43 [, not all additions
land in T]1, 43 [, which leads us to the definition of compatibility of conceptual particles.

We will now define a ’Compatibility Condition’ for Two-Particle Events. We assume that two
abstract particles can only interact if they follow the conservation principle of 3.12. We call such
particles compatible with regard to their klick relations.

Property #16: Two abstract particles x and y can only join into a new object z under the
operation ’+’ if they are klick compatible. They are compatible with regard to their motion/state
propagation if the following condition holds for the target particle.

x, y ∈ T]1,
4

3
[ =⇒ x+ y = z ∈ T]1,

4

3
[. (3.13)

No suggestions can be made here to measure compatibility. Maybe this is possible based on the
previously explained Generic Ensembles.

20which corresponds to the addition of Gaussian Integers or Complex Numbers
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4 Mirrored Klick Model - based on mathematical Symmetries

The Mirrored Klick Model is the result of mirroring the Klick Relation T]1, 43 ] for VF- and CF-
Particles to T[34 , 1[ based on symmetry relative to an axis defined by Kr = Ki. While relocating
klicks dominate implementing klicks in the Basic Klick Model, it is the other way round in the
mirrored model. If not otherwise noted the Klick Model’s assumptions regarding space, state prop-
agation, speed, age, horizon, and so on will re-apply to the Mirrored Klick Model trading relocating
for implementing klicks.

4.1 Categories of Particles mirroring CF- and VF-Particles

For the Mirrored Model, we will distinguish between minimum mass instead of maximum speed,
considering only free particles in steady motion. The term mass in relation to motion has been
introduced with Eq. 2.7 and is a purely abstract attribute of the model. We will postulate now
counterparts to the conceptual classes of CF- and VF-Particles.

CM-Particles: The shortcut CM stands for Constant in Mass for particles dominated by Ki.
We will assume a relation defining a conceptual Micro World Minimum Mass for CM-particles.
Collections of CM-particles are described by the set T[34 ,

3
4 ].

Klick Relations of CM-particles ∈ T[
3

4
,
3

4
] (4.1)

Motion-Mass-Ratio-Limit =
Kr

Ki
=

3

4
(4.2)

VM-Particles: The shortcut VM stands for particles Varying in Mass with Kr
Ki

differing from 3
4 .

The motion/state propagation patterns of these hypothetical particles are described by the set

Klick relations of VM-particles ∈ T]
3

4
, 1[ (4.3)

4.2 A combined View of the Basic Klick Model and its Mirror

Figure 3 sketches the combination of both models with abstract particles conforming to the set
T[34 ,

4
3 ]. The symmetry line defined by the relation Kr = Ki corresponds to the empty set.

Figure 3: Combined View of the Klick Model and its Mirror.

In the hypothetical ’Speed/Mass Mirrored Model’ the roles of Kr and Ki are swapped. CM-
and VM-particles take over the role of CF- and VF-particles, suggesting a massive counterpart of
the CF-Particle, which I would call Bagongs21, should they exist at all.

The Klick Model itself is very speculative. The proposed Mirrored Model goes on-top of these
speculations. As weird as it may sound, the Mirrored Model makes the most precise prediction of
the model, which should be testable in the real world - as outlined in the next chapter.

21The name Bagong is chosen as counterparts of photons after a clumsy character of Indonesian Wayang Kulit.
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5 Looking for Tests of the Klick Model

Whether a model or theory is useful to understand our real world depends on the question, whether
it can predict results from real observations, experiments or proven theories.

5.1 Applying the Basic Klick Model to the Twin-Paradox

The Klick Relation combines relocating and implementing klicks in a preserving relation, sum-
marised by K2

t = K2
r +K2

i . In other words: Speed of relocation is traded for speed of change of
state information and vice versa. The more Klicks are needed to move a particle, the less Klicks
are available for the implementation of its state information and vice versa.

Without loss of generality, we will assume twins, one staying on our planet, and a travelling one
who travels extremely fast (close to ’a’ maximum speed) and who joins the other twin after years,
neglecting the accelerating and deceleration phases. For the staying and travelling twins s and t we
assume the following start conditions.22

Kt(s)
2 = Kr(s)

2 +Ki(s)
2 (5.1)

Kt(t)
2 = Kr(t)

2 +Ki(t)
2 (5.2)

Kr(s) = Ki(s) = Kr(t) = Ki(t) = 0 . (5.3)

The following condition holds from the start to the end with the reunion of the twins:

Kt(t) = Kt(s) with
end∑
start

(Kr(t) +Ki(t)) =

end∑
start

(Kr(s) +Ki(s)) . (5.4)

Because t is travelling extremely fast compared t, we make two further observations:

Kr(t)� Kr(s) , (5.5)

Kr(s)→ 0 compared to Kr(t) . (5.6)

As a next step, we will combine the above equations while focusing on the correlation between Kr

and Ki and Eq. 5.4, setting
Kt(s) = Kt(t) = 1. (5.7)

With Kr(s)→ 0 in Eq. 5.1 we yield

Kt(s)
2 → Ki(s)

2 , i.e. Ki(s)→ 1 . (5.8)

Combining the two Klick Relations from Eq. 5.1 and 5.2 for the reunion of the twins, we yield

Ki(s)
2 → Kr(t)

2 +Ki(t)
2 , which is the same as Ki(t)

2 → Ki(s)
2 −Kr(t)

2 . (5.9)

With Ki(s)
2 → 1 we yield:

Ki(t)→
√
1−Kr(t)2 . (5.10)

Example: A twin moving at 80% of maximum speed will experience the following proportion of Ki

(corresponding to the biological/atomic age), no matter how a maximum speed is defined:

Ki =
√
1− 0.82 = 0.6 . (5.11)

When the twins meet after 10 earth years, the travelling twin will only be 10 ∗ 0.6 = 6 years older,
conforming to Einstein’s Special Relativity Theory. No metric was needed to come to this result.

22simplifying the starting condition by a triple (0, 0, 0), which is, strictly speaking, not a valid Klick Relation
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5.2 Applying the Klick Relation to the Energy-Momentum Relation

Looking for arguments for the Klick Model the following speculative consideration relates the Klick
Model to the Energy-Momentum Relation [4]. The two relations are of the following forms.

K2
t = K2

r +K2
i (5.12)

E2 = p2 c2 +m2
0 c

4 (5.13)

By only looking at the forms of the equations we yield the following correlations:

K2
t ∼ E2 =̂ Kt ∼ E (5.14)

K2
r ∼ p2 c2 =̂ Kr ∼ p c (5.15)

K2
i ∼ m2

0 c
4 =̂ Ki ∼ m0 c

2 (5.16)

Should this correlation exist, it would mean:
• Motion, expressed through Kr, is connected to p, which involves a direction and an impact.

• State information, expressed through Ki, is connected to the rest mass m0.

• Setting p = m0 = 1 would suggest, that implementing klicks would dominate relocating klicks
because of the factor c2 in Eq. 5.16 compared to c in Eq. 5.15.

• Relating Eq. 2.4 to the Energy-Momentum-Equation suggests that Micro World Speed could
be expressed by the relation p

m0
with c set to 1. Relating Eq. 2.7 suggests that mass in the

Micro World could be expressed as m0
p with c set to 1.

Both preserving relations can be correlated - at least based on their form. The following cal-
culation of the Twin-Paradox based on the Energy-Momentum-Relation is meant as a plausibility
check for the Klick Model. For the staying twin s and the travelling twin t we define:

E2
s = p2s c

2 +m2
0s c

4 (5.17)

E2
t = p2t c

2 +m2
0t c

4 (5.18)

The following condition is assumed to hold from the start to the end with the reunion of the twins,
if factors like gravity, rotation or intensive local motion can be neglected:

Es = Et (5.19)

Because the travelling twin is travelling extremely fast, we make two further observations:

pt � ps and ps → 0 compared to pt . (5.20)

As a next step, we combine the above equations while focusing on the correlation23 between p c and
m0 c

2 by setting Es = Et = 1. With ps → 0 in Eq. 5.17, we yield

E2
s → m2

0s c
4 , i.e. m0s c

2 → 1 . (5.21)

Combining the Energy-Momentum Relations of the twins from 5.17 and 5.18 we yield

m2
0s c

4 → p2t c
2 +m2

0t c
4 , which is the same as m2

0t c
4 → m2

0s c
4 − p2t c2 . (5.22)

With m0s c
2 → 1 we yield:

m0t c
2 →

√
1− p2t c2 . (5.23)

Should p2t c2 be related to the speed of a twin travelling at 80% of the maximum speed and m0t c
2

to its ageing, it would experience24 the following percentage of ageing.

m0t c
2 =

√
1− 0.82 = 0.6 . (5.24)

23The relation p2s c2/m2
0s c

4 is dimensionless - further supporting the analogy to the Klick Relation.
24Regarding information processing the travelling twin does not have a competitive advantage. If both twins would

read the same books during the trip, the travelling twin would only have read 60% of them compared to its sibling.
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5.3 Predicting the Non-Existence of massless and motionless Particles

Should it be possible to relate the Klick Model, which is based on the definition of Pythagorean
Triples, to the real world, it would support the following statements.
• Massless particles cannot exist.
• Particles without motion cannot exist.

At first glance, the predictions look like a chance to falsify the Klick Model. But the problem could
be the limit of the achievable precision of physical measurements.25

5.4 Explaining the exactly same speed of Photons and Neutrinos

The proposed model suggests that the maximum speed of abstract particles only depends on the
ratio of relocating and implementing klicks. Mapped to the physical world, this ratio could be the
same for photons and neutrinos - not being dependent on mass.

5.5 Possible Method to falsify the Mirrored Klick Model

While it is a bold idea to suggest CM-Particles or Bagongs as counterparts of Photons in Figure 4, it
allows a precise prediction of their fixed maximum speed of 9

16 = 0.5625 of c, i.e. 168, 633, 257.625 m
s .

Does data exist26 for instance for the speed difference of dark energy and dark matter departing
from the centre of a cosmic event like from a supernova? If such data exists and this data would
hint to some constant factor deviating from 0.5625, it would effectively falsify the idea about the
Mirrored Model and possibly about the Klick Model as such.

The following diagram combines our world and a supposed ’dark world’ in one picture. The
bold dotted line marked by Kr = Ki corresponds to the empty set.

Figure 4: Motion/State Propagation in a hypothetical World limited by Photons and Bagongs.

If related to our world, this picture suggests that particles of the light and the dark world can
only interact with particles of the same domain. If this is true, the only common ground between
the Light World and the Dark World is Space, i.e., processes can only be detected in either world
through effects of changes of space (through gravity).

But how could both worlds share the same space and how could it be tested? Maybe space has
a strange ’fabric’. Imagining a chessboard with light and black squares and moving white and black
bishops (not a true proposal) may help our imagination.

25Regarding the Energy-Momentum-Relation the Klick Model would suggest E → mc2 instead of E = mc2, which
indeed might be a problem to defend the design of the model.

26Some data seem to exist, e.g. [5], but I do not have a sufficient understanding to include these works here.
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6 Conclusions

Time is whatever physics defines it on our scales. The question, whether time is a fundamental
category would normally call for a proof by contradiction. To find a constructive approach in form
of the proposed model appears more difficult, but could provide more insights, like age might be
more fundamental than time on smallest scales.

Although I think that space is discrete, which is not essential to the model, it paid off to avoid
considerations about the structure of space. Looking at Hermann Weyl’s Tile Argument I think
that Pythagoras’ Law is correct, not because of an implied geometry or metric but as a preserving
law (between motion and states of particles).

Einstein’s Theories proved that the motions of particles in space are content-dependent. Zooming
into smallest scales the motions of particles in space should be even more content-dependent. This
makes it difficult to impossible to find a definition of space and time.

Motion and State Implementation seem to be more fundamental than Time. Maybe the under-
lying categories could also be composite, leading to more open questions. Euclidian Geometry is
omnipresent in our daily lives and appears to us as a perfect match between a theory and day-to-day
physical reality. Although it fits well with our Meso World scales, we know it is incompatible with
large scales, and not applicable to small scales.

On smallest Scales (5, 3, 4) and 4
3 might determine the speed of light. The triple (5, 3, 4) defines

the smallest possible values for implementing and relocating klicks. We related its multiples to
conceptual and indirectly to real particles travelling at maximum speed like photons, which led to
a speed limit determined by the relation of relocating to implementing klicks as T[43 ,

4
3 ]. The triple

(5, 3, 4) defines an end-point in the model for speed/mass relations on smallest scales.

Can the model explain the same speed of photons having no mass and neutrinos with some mass?
Maybe yes. The Klick Model defines the speed of any object as limited by the Klick Relation Kr/Ki

not exceeding 4/3. In other words, the maximum speed of a physical object is not determined by
its mass related to Ki but through its relation between relocating and implementing klicks.

Probability of Quantum Theory [8] is possibly based on Ambiguity on smallest Scales. The
Klick Model relies on intrinsic ambiguities of Pythagorean Triples and compatibility constraints of
two-particle events. The bargain could be to exchange probability by ambiguity. If true, Quantum
Theory would be an approximation to a finer-grained reality.

Acknowledgments

The idea to write up own ideas from the perspective of Informatics was triggered by an essay from
astrophysicist Andreas Müller [13] explaning time as bound to our mesoscopic scales.27

27An extract of Andreas Müller’s essay ’Was ist Zeit?’ or ’What is Time?’ [14]: "Simply said, the problem to
understand the term time is a problem with scales: humans are living on a mesoscopic scale, which is the daily
experienceable world. Quantum Theory governs microscopic scales. On this scale, there are processes difficult to
understand like the tunnel effect, the uncertainty principle, the quantum vacuum, and manipulative measurements.
On the other side, on a macroscopic scale, there are the laws of Relativity Theory. Also, here we find on a mesoscopic
scale strange effects like time dilatation, Lorentz Contraction, curvature of space, and gravitational lenses. Even
more, there are overlapping areas of the grand theories ...
These considerations should make clear that the classical physical theories [...] are on the mesoscopic scale: They

are simply more intuitive because they can be transferred more easily to our today’s world.
For a long time, until the beginning of the 20th century, the mesoscopic standpoint and the ’contemporary per-

spective’ hampered the cognitive and scientific view ...
But even a hundred years after the big grand theories, Relativity and Quantum Theories, mankind still fights for

an understanding. Old definitions are evolving into new. A main problem certainly exists because human terms
stemming from mesoscopic thinking cannot be simply transferred to other scales. This is why it should not be a
surprise that the understanding of the term time only make sense where it was invented: Our earth, moving in a
slow and flat sector defined by Relativity Theory."
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Appendix A Tables of Klick Relations between CF- and VF-Particles

A.1 Tables for Pythagorean Triples and CF-/VF-Particles

Table 3 and Table 4 refer to the sets P]0,∞[ and T]0,∞[, Pythagorean Triples, which are not
directly related to CF-/VF-Particles. Table 5 and Table 6 are limited by their quotient of b/a-legs
in ]1, 43 [ and therefore are meant to refer to CF-/VF-Particles.

Each line refers to triples (c, a, b) with c2 = a2 + b2 for c < M with a < b. The value N is the
total number of triples with c < M . The values for avgA and avgB are determined correspondingly.
Each value of c may refer to multiple triples, like c = 65, or to no triples, like c = 1.

The columns with π refer to a discrete version of π, borrowed from the work of Michelle Rudolph-
Lilith [12]. I think the value is possibly the same for Table 3 as suggested in the article.

Table 3: Primitive Pythagorean Triples ∈ P]0,∞[
M N avgC avgA avgB avgAB avgA/avgB πP]0,∞[ πP]0,∞[

1 ∗ 105 15918 50018 18653 45032 31843 0.4142271 3.1738169 3.1414320
2 ∗ 105 31818 99969 37275 90005 63640 0.4141458 3.1739784 3.1415530
4 ∗ 105 63668 200026 74577 180095 127336 0.4141010 3.1740456 3.1416025
8 ∗ 105 127325 400011 149179 360135 254657 0.4142318 3.1740026 3.1415528
16 ∗ 105 254648 800009 298364 720253 509309 0.4142488 3.1740119 3.1415560
32 ∗ 105 509275 1599945 596669 1440454 1018561 0.4142228 3.1740397 3.1415782
64 ∗ 105 1018585 3199991 1193333 2881015 2037174 0.4142058 3.1740565 3.1415915
128 ∗ 105 2037175 6399977 2386668 5762016 4074342 0.4142071 3.1740609 3.1415943
256 ∗ 105 4074385 12800062 4773419 11524111 8148765 0.4142115 3.1740603 3.1415931
512 ∗ 105 8148717 25599970 9546819 23048071 16297445 0.4142134 3.1740595 3.1415923
1024 ∗ 105 16297459 51199987 19093679 46096178 32594928 0.4142139 3.1740595 3.1415922
2048 ∗ 105 32594898 102399893 38187262 92192315 65189789 0.4142131 3.1740599 3.1415927

Table 4: Primitive and non-primitive Pythagorean Triples ∈ T]0,∞[
M N avgC avgA avgB avgAB avgA/avgB πT]0,∞[ πT]0,∞[

1 ∗ 105 161430 52468 21381 46598 33990 0.4588434 3.1099128 3.0846639
2 ∗ 105 344883 104609 42409 92984 67696 0.4560861 3.1139976 3.0882300
4 ∗ 105 733926 208672 84206 185620 134913 0.4536501 3.1175963 3.0913785
8 ∗ 105 1556102 416358 167321 370608 268964 0.4514768 3.1207968 3.0941824
16 ∗ 105 3288692 830956 332695 740084 536390 0.4495369 3.1236507 3.0966864
32 ∗ 105 6930510 1658783 661889 1478173 1070031 0.4477751 3.1262244 3.0989480
64 ∗ 105 14567048 3311866 1317452 2952694 2135073 0.4461865 3.1285435 3.1009888
128 ∗ 105 30546276 6613411 2623443 5898781 4261112 0.4447433 3.1306466 3.1028419
256 ∗ 105 63916820 13207988 5225969 11785501 8505735 0.4434236 3.1325656 3.1045345
512 ∗ 105 133481757 26381420 10413628 23548851 16981240 0.4422138 3.1343213 3.1060848
1024 ∗ 105 278260068 52699394 20756895 47057039 33906967 0.4411007 3.1359343 3.1075104
2048 ∗ 105 579112771 105281717 41384016 94039027 67711522 0.4400728 3.1374213 3.1088259

Table 5: Primitive Pythagorean Triples ∈ P]1, 43 [
M N avgC avgA avgB avgAB avgA/avgB π

P]1, 4
3
[

π
P]1, 4

3
[

1 ∗ 105 2877 50046 32762 37776 35269 0.8672699 2.8379421 2.8379166
2 ∗ 105 5746 99934 65428 75427 70428 0.8674338 2.8379440 2.8379185
4 ∗ 105 11499 199972 130904 150949 140927 0.8672046 2.8379640 2.8379384
8 ∗ 105 23003 399992 261861 301918 281889 0.8673251 2.8379607 2.8379350
16 ∗ 105 46010 800062 523768 603898 563833 0.8673123 2.8379634 2.8379377
32 ∗ 105 92009 1599949 1047418 1207668 1127543 0.8673064 2.8379648 2.8379391
64 ∗ 105 184017 3199839 2094773 2415311 2255042 0.8672893 2.8379664 2.8379406
128 ∗ 105 368053 6399948 4189725 4830823 4510274 0.8672901 2.8379667 2.8379410
256 ∗ 105 736113 12800017 8379564 9661709 9020636 0.8672962 2.8379666 2.8379409
512 ∗ 105 1472219 25599968 16759081 19323371 18041226 0.8672959 2.8379667 2.8379410
1024 ∗ 105 2944448 51200095 33518233 38646891 36082562 0.8672944 2.8379668 2.8379411
2048 ∗ 105 5888877 102399711 67036223 77293360 72164792 0.8672960 2.8379667 2.8379410

Table 6: Primitive and non-primitive Pythagorean Triples ∈ T]1, 43 [
M N avgC avgA avgB avgAB avgA/avgB π

T]1, 4
3
[

π
T]1, 4

3
[

1 ∗ 105 43997 51645 32746 39858 36302 0.8215725 2.8456068 2.8455572
2 ∗ 105 91959 103123 65476 79512 72494 0.8234677 2.8452752 2.8452258
4 ∗ 105 191898 205991 130955 158692 144823 0.8252098 2.8449708 2.8449216
8 ∗ 105 399746 411505 261909 316768 289339 0.8268170 2.8446908 2.8446419
16 ∗ 105 831385 822129 523816 632399 578107 0.8282995 2.8444328 2.8443842
32 ∗ 105 1726559 1642632 1047629 1262696 1155162 0.8296770 2.8441939 2.8441456
64 ∗ 105 3580684 3282230 2095246 2521478 2308362 0.8309594 2.8439721 2.8439242
128 ∗ 105 7416491 6558805 4190467 5035663 4613065 0.8321580 2.8437656 2.8437180
256 ∗ 105 15343251 13107072 8380904 10057723 9219313 0.8332804 2.8435728 2.8435255
512 ∗ 105 31706905 26194329 16761684 20089920 18425802 0.8343331 2.8433924 2.8433455
1024 ∗ 105 65454754 52351603 33523217 40132041 36827629 0.8353230 2.8432232 2.8431766
2048 ∗ 105 134991369 104633546 67046123 80174247 73610185 0.8362551 2.8430642 2.8430180

The results are calculated based on a 64bit arithmetic up to a common maximum limit to avoid
arithmetic overflows for some of the parameter combinations.
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A.2 Table Columns and their Correlations

An explanation of columns in Table 3 is given below, including correlations between them.

avgC(M) =

n<M∑
n=1

c

n
, avgA(M) =

n<M∑
n=1

a

n
, avgB(M) =

n<M∑
n=1

b

n
(A.1)

avgAB(M) =

n<M∑
n=1

a+b
2

n
(A.2)

avgAbyAvgB(M) =
avgA(M)

avgB(M)
(A.3)

πP]0,∞[(M) = 2 ∗

n<M∑
n=1

c
avg(a,b)

n
(A.4)

πP]0,∞[(M) = 2 ∗ n
n<M∑
n=1

avg(a,b)
c

(A.5)

Based on this table, increasing values of maxC seem to converge to the following values28.

M/N → 1

2π
(A.6)

M/avgAB → 1

π
(A.7)

avgA/avgB → 1

1 +
√
2

(A.8)

Because we want to associate motion/state propagation of real world particles with a subset
of T]0,∞[, the above tables are not really helpful. The set P]0,∞[ looks promising because of the
above convergences, but it is unclear how to come from P]0,∞[ to T]0,∞[.

28For the first converging values of A.6, see Lehmer [3].
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A.3 Algorithm

// Program generating the Tables for Klick Model Appendix A (V1.5)
import java.io.PrintWriter;
public class GenAppendixA {
// ---------------------- Parameters & Counters -----------------------
static long M = 2048*100000; // maximum allowed "c-value" for a Pythagorean Triple ("radius of C-Values")
static boolean withMultiples = false; // true, if non-primitive triples are included
static boolean with3x4Limits = false; // true, if only triples in T]1,4/3[ included
static boolean printTriples = false; // true, if triples printed to text file
static long nTriples = 0; // number of enumerated triples
static long sumC=0, sumA=0, sumB = 0; // sum over all c,a,b-values of all enumerated triples
static double sum_avg_ab = 0.0; // sum over all avg(a,b) - values
static double sum_c_by_avg_ab = 0.0; // sum over all (c/avg(a,b) - values
static double sum_avg_ab_by_c = 0.0; // sum over all (avg(a,b)/c) - values
static PrintWriter pw = (PrintWriter)null; // output files for results

public static void main(String[] args)
{
long startTime = System.currentTimeMillis();
generateTriples( "AppendixA.txt" );
System.out.println( "Done in " + (System.currentTimeMillis() - startTime)/1000 + " sec." );

}

static void generateTriples( String filename )
{
try {
pw = new PrintWriter( filename, "UTF-8" ); // output file for results
for ( int table = 1; table <= 4; ++ table ) // run through 4 parameter settings to create tables
{
if ( table == 1 ) { withMultiples = false; with3x4Limits = false; } else
if ( table == 2 ) { withMultiples = true; with3x4Limits = false; } else
if ( table == 3 ) { withMultiples = false; with3x4Limits = true; } else { withMultiples = true; with3x4Limits = true; }

System.out.println( "withMultiples=" + withMultiples + " and with3x4Limits=" + with3x4Limits
+ "\nM & N & avg-c & avg-a & avg-b & avg-ab-by-n & avg-a-by-avg-b"

+ "& sum-c-by-avg-ab-by-n-times-2 & n-by-sum-avg-ab-by-c-times-2\\\\" );

for ( long maxC = 100000; maxC <= M; maxC *=2 ) // more produces arith. overflows for some combinations with a 64bit arithmetic)
{
nTriples = 0; sumC = sumA = sumB = 0; sum_avg_ab = sum_c_by_avg_ab = sum_avg_ab_by_c = 0.0;

enumTriples( maxC, 3, 4, 5 );

double avg_c = (double)sumC / nTriples;
double avg_a = (double)sumA / nTriples;
double avg_b = (double)sumB / nTriples;
double avg_ab_by_n = sum_avg_ab / nTriples;
double avg_a_by_avg_b = avg_a / avg_b;
double sum_c_by_avg_ab_by_n_times_2 = 2 * (sum_c_by_avg_ab / nTriples);
double n_by_sum_avg_ab_by_c_times_2 = 2 * (nTriples / sum_avg_ab_by_c);

String maxCStr = (maxC/100000) + "*10^5";
String str = String.format( "$%s$ & %d & %.0f & %.0f & %.0f & %.0f & %.07f & %.07f & %.07f\\\\", maxCStr, nTriples,

avg_c, avg_a, avg_b, avg_ab_by_n, avg_a_by_avg_b, sum_c_by_avg_ab_by_n_times_2, n_by_sum_avg_ab_by_c_times_2 );
String str2 = String.format( "%d\t%d\t%.0f\t%.0f\t%.0f\t%.0f\t%.010f\t%.012f\t%.012f", maxC, nTriples,

avg_c, avg_a, avg_b, avg_ab_by_n, avg_a_by_avg_b, sum_c_by_avg_ab_by_n_times_2, n_by_sum_avg_ab_by_c_times_2 );
System.out.println( str ); pw.println(str2);

}
}
pw.flush(); pw.close();

} catch (Exception e) { e.printStackTrace(); System.exit(1); }
}

// Enumerate Pythagorean Triples with one of the ternary tree methods (see http://en.wikipedia.org/wiki/Tree_of_primitive_Pythagorean_triples).
public static void enumTriples ( long maxC, long a, long b, long c )
{
if ( c >= maxC || a >= maxC || b >= maxC ) return;
addTriple( maxC, a, b, c );
enumTriples ( maxC, a - 2*b + 2*c, 2*a - b + 2*c, 2*a - 2*b + 3*c );
enumTriples ( maxC, a + 2*b + 2*c, 2*a + b + 2*c, 2*a + 2*b + 3*c );
enumTriples ( maxC, -a + 2*b + 2*c, -2*a + b + 2*c, -2*a + 2*b + 3*c );

}

// evaluate new primitive triple and its multiples depending on parameter setting
static void addTriple ( long maxC, long a, long b, long c)
{
if ( a > b ) { long x = a; a = b; b = x; } // make sure a < b
evalTriple( a, b, c );

if ( withMultiples ) // add all multiples of a primitive triple
for ( long j = 2; c*j < maxC; ++j )
evalTriple( a*j, b*j, c*j );

}

// evaluate triple - always being invoked with a < b
static void evalTriple( long a, long b, long c )
{
if ( (with3x4Limits && ( b*3 > a*4 )) || c == 5 ) return; // exclude also (5,3,4)-Triple, not being included in T]1,4/3[
++nTriples;
if ( printTriples ) pw.println( c + "\t" + a + "\t" + b );
double avg_ab = (a+b)/2.0; sumC += c; sumA += a; sumB += b; sum_avg_ab += avg_ab; sum_c_by_avg_ab += c/avg_ab; sum_avg_ab_by_c += avg_ab/c;

}
}
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Appendix B Algorithm enumerating Generic Ensembles

// Source file: GenericEnsembles.java - Generating Generic Ensembles / V1.5a 27.01.2025
import java.io.PrintWriter;

public class BlackBody {
// ---------------------- Parameters & Counter -----------------------
static long MaxC = 800000; // maximum M
static boolean withMultiples = false; // true, if non-primitive triples are included (not used in the paper)
static boolean withRatioLimit = true; // true, if only triples in T[4/3,1] included (true for use in paper)
static boolean withPrinting = false; // true, if output to file Statistics.txt
static boolean withPrEStatesStat = false; // true, if to print number of states per level
static boolean withLimitLevel2One = false; // limit output to two levels, so that nLevel = 1

public static void main(String[] args)
{
long startTime = System.currentTimeMillis();

String filename = "Statistics.txt";

try {
PrintWriter pw = new PrintWriter( filename, "UTF-8" );
System.out.println( "Writing to: " + filename );

enumTriples( 3, 4, 5 );

Triple.addExcStates( MaxC, withLimitLevel2One, pw, withPrinting );
if ( withPrinting ) Triple.printTriples( pw );

System.out.println("Evaluating results after " + (System.currentTimeMillis() - startTime)/1000 + " sec. ...");
Triple.evalResults( MaxC, pw, withPrEStatesStat );

pw.flush(); pw.close();
} catch (Exception e) { e.printStackTrace(); System.exit(1); }

System.out.println( "Done checking " + Triple.nTriples + " triples in " + (System.currentTimeMillis() - startTime)/1000 + " sec." );
}

/* ------------------------ Generate Pythagorean Triples ------------------------------ */
public static void enumTriples ( long a, long b, long c )
{
if ( c >= MaxC ) return;
addTriple( MaxC, a, b, c );

enumTriples ( a - 2*b + 2*c, 2*a - b + 2*c, 2*a - 2*b + 3*c );
enumTriples ( a + 2*b + 2*c, 2*a + b + 2*c, 2*a + 2*b + 3*c );
enumTriples ( -a + 2*b + 2*c, -2*a + b + 2*c, -2*a + 2*b + 3*c );

}

// evaluate new primitive triple and its multiples depending on parameter setting
static void addTriple ( long maxC, long a, long b, long c)
{
if ( a > b ) { long x = a; a = b; b = x; } // make sure a < b
if ( withRatioLimit && (b*3 > a*4) || c == 5 ) return;

Triple.mkTriple( a, b, c );

if ( withMultiples ) // add all multiples of a primitive triple
for ( long j = 2; c*j < MaxC; ++j )
Triple.mkTriple( a*j, b*j, c*j );

}
}

// Source file: Triple.java - Generating Generic Ensembles / V1.5a 27.01.2025
import java.io.PrintWriter;

public class Triple {
long a, b, c; // with c^2 = a^2 + b^2
State s; // list of states, i.e. combinations of ground states with multiples of (5,3,4)
int nStates; // length of this list
double p; // quotient between successif values of total c-values (s.tc)

static final long N_TRIPLES = 100000000; // should be more than needed for an example
static Triple triples[] = new Triple[(int)N_TRIPLES]; // stored triples
static int nTriples = 0; // number of VF-Particles in isolated or ground states
static int nEStates = 0; // number of VF-Particles in excited state
static int nIStates = 0; // number of VF-Particles in ground states not having exited states in the set
static long nGStates = 0; // number of VF-Particles in ground states having at least one excited state
static long sumOfFs = 0;
static long sumOffPkgs = 0;
static int fPkgMax = 0; // largest fPkg value in the set of states
static int nLevel = 0;

// enter a triple into the triples array triples[]
public static Triple mkTriple( long a, long b, long c ) // always being invoked with a < b
{
Triple newt = new Triple();
newt.a = a; newt.b = b; newt.c = c;

if ( nTriples >= N_TRIPLES )
{
System.err.println( "Error: triples[] array overflow -> increase N_TRIPLES" ); System.exit(1);;

}
triples[nTriples++] = newt;
return newt;

}
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static boolean isTriple( long a, long b )
{
long cc = a*a + b*b;
long c = (long)Math.sqrt(cc);
if ( c*c != cc ) return false; // not a perfect square
return true;

}

// evaluate, which CF-States with factor "f" can be added to a ground state forming an excited state
public static void addExcStates( long maxC, boolean withLimitLevel2One, PrintWriter pw, boolean withPrinting )
{
// for ground states, which are described by PPTs ...
for ( int i = 0; i < nTriples; ++i )
{
Triple t = triples[i];
boolean hasExcStates = false;
State lastState = null;

for ( int f = 1, count = 0; ; ++f )
{
long tt_a = 3*f, tt_b = 4*f;
long a = t.a + tt_a, b = t.b + tt_b;
if ( a <= 0 || b <= 0 ) { System.out.println("Error -> Arithmetic Overflow!"); continue; }

long cc = a*a + b*b;
long c = (long)Math.sqrt(cc);
if ( c >= maxC ) break; // limit while adding 534 multiples
if ( c*c != cc ) continue; // not a perfect square

hasExcStates = true;
State s = new State(); ++nEStates;
s.c = c; s.a = a; s.b = b; s.tb = (t.c + 4*f);
s.f = f; s.level = count++;
s.fPkg = t.s == null ? f : f - lastState.f;
s.p = lastState == null ? (s.tb-t.b)/(double)s.b : (s.tb-lastState.tb)/(double)lastState.tb;
sumOfFs += f; sumOffPkgs += s.fPkg;

if ( t.s == null ) { t.s = s; lastState = s; } else lastState.next = s;
lastState = s;

if ( s.fPkg > fPkgMax ) fPkgMax = (int)s.fPkg;
if ( count > nLevel ) { nLevel = count; System.out.println("nLevel=" + nLevel); }
if ( withLimitLevel2One ) break;

}
if ( !hasExcStates ) ++nIStates;
t.p = ((double) t.nStates) / ((maxC-t.c)/5);

}
nGStates = nTriples - nIStates;

}

public static void printTriples( PrintWriter pw )
{
for ( int i = 0; i < nTriples; ++i )
{
Triple t = triples[i];
if ( t.s == null ) continue; // print only excited states

String line = "", tripleStr = t.c + " " + t.a + " " + t.b /*+ " " + String.format("%.09f", t.p)*/;

for ( State s = t.s; s != null; s = s.next )
{
line += " " + s.tb; // line += " " + s.fPkg; //line += " " + String.format("%.09f", s.p);

}
pw.println( tripleStr + " " + line );

}

// eval excited states per level
long nPerLevel[] = new long[(int)nLevel];
double pPerLevel[] = new double[(int)nLevel];

for ( int i = 0; i < nTriples; ++i ) // count all fDeltas ...
{
Triple t = triples[i];

for ( State s = t.s; s != null; s = s.next )
{
++nPerLevel[s.level]; pPerLevel[s.level] += s.p;

}
}

String l1 = "x x " + nTriples + " ", l2 = "x x x ";
for ( int i = 0; i < nLevel; ++i )
{
l1 += " " + nPerLevel[i]; l2 += " " + String.format("%.05f", pPerLevel[i] / nPerLevel[i]);

}
pw.println( "---" + "\n" + l1 + "\n" + l2 );

}
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public static void evalResults( long maxC, PrintWriter pw, boolean printEStatesStat )
{
long nB12 = 0L, nB21 = 0L, nA21 = 0L, nUniqPkg = 0L;
int count[] = new int[fPkgMax+1];
boolean done[] = new boolean[fPkgMax+1];

// count all fPkg’s ...
for ( int i = 0; i < nTriples; ++i )
{
Triple t = triples[i];
for ( State s = t.s; s != null; s = s.next )
++count[(int)s.fPkg];

}

// calculate g_* values
int gMax = 0;
for ( int i = 0; i < count.length; ++i )
{
int f = count[i];
if ( f == 0 ) continue;
if ( f > gMax ) gMax = f;

}

for ( int i = 0; i < nTriples; ++i ) // for each ground state ...
{
Triple t = triples[i];
if ( t.s == null ) continue;

for ( State s = t.s; s != null; s = s.next )
{
int this_fPkg = (int)s.fPkg;
int fPkgCount = count[this_fPkg];

if ( done[this_fPkg] ) continue; // already processed at first occurence of this value
done[this_fPkg] = true; // avoids to process this fPkg value for its next instances
++nUniqPkg; // add to number of unique excited states

if ( fPkgCount == 1 )
{
++nB12; ++nA21; continue; // only one occurance of this fPkg value

}

// otherwise there are multiple instances of this fPkg value
nB12 += fPkgCount; nB21 += fPkgCount;

}
}

if ( printEStatesStat )
{
int cnt[] = new int[gMax+1], cntSum[] = new int[gMax+1];
done = new boolean[fPkgMax+1];

// for all excited states ...
for ( int i = 0; i < fPkgMax; ++i )
{
if ( count[i] == 0 || done[i] ) continue;
pw.println( i + "\t" + count[i] );
++cnt[count[i]]; cntSum[count[i]] += count[i];
done[i] = true;

}
pw.println( "---" );
for ( int i = 0; i < gMax+1; ++i )
{
if ( cnt[i] > 0 )
pw.println( i + "\t" + cnt[i] + "\t" + cntSum[i] );

}
}

String line = "MaxC=" + maxC + " nTriples=" + nTriples + " nIStates=" + nIStates + " nGStates=" + nGStates + " nEStates=" + nEStates + "
nUniqPkg=" + nUniqPkg
+ " nA21=" + nA21 + " nB21=" + nB21 + " nB12=" + nB12
+ " fAvg=" + sumOfFs / nEStates + " fPkgAvg=" + sumOffPkgs / nEStates
+ " nLevel=" + nLevel + " gMax=" + gMax
+ " r_n=" + String.format("%.09f", ((double)nA21 * nEStates) / (nB12 * (nTriples-nIStates) - nB21 * nEStates));

System.out.println( line );
}

}

// Source file: State.java - Generating Generic Ensembles / V1.5a 27.01.2025
public class State {
long a,b,c,tb; // overall values including factors of (5,3,4)-Multiples and total c-value with f*5
long f; // factor - a multiple of (5,3,4) to be added to the ground state
long fPkg; // multiple of (5,3,4) appied to the underlying ground or excited state
int level; // position in chain of states
double p; // to calculate probability to get next f
State next; // next state for a given groundstate plus f*(5,3,4)

}

25


	Introduction and Prelimineries
	Introduction
	Notations for Pythagorean Triples

	Basic Klick Model - based on free abstract Particles
	Two Categories of abstract Particles
	Properties of abstract VF- and CF-Particles
	The Klick Relation for VF- and CF-Particles
	Overloading Model Properties with Terms from our World

	Extended Klick Model - based on Two-Particle Events
	CF-Packets - The smallest CF-Particle and its Multiples
	Coupling VF-Particles and CF-Packets
	States resulting from Coupling Events
	Isolated States, Ground States and Excited States of Abstract Particles
	Generic Ensembles of States
	Modelling State Transitions in Generic Ensembles of States
	Examples of Generic Ensembles
	Probability of VF-Particles coupling with CF-Packets 

	Events between VF-Particles

	Mirrored Klick Model - based on mathematical Symmetries
	Categories of Particles mirroring CF- and VF-Particles
	A combined View of the Basic Klick Model and its Mirror

	Looking for Tests of the Klick Model
	Applying the Basic Klick Model to the Twin-Paradox
	Applying the Klick Relation to the Energy-Momentum Relation
	Predicting the Non-Existence of massless and motionless Particles
	Explaining the exactly same speed of Photons and Neutrinos
	Possible Method to falsify the Mirrored Klick Model

	Conclusions
	Appendix  Tables of Klick Relations between CF- and VF-Particles
	Tables for Pythagorean Triples and CF-/VF-Particles
	Table Columns and their Correlations
	Algorithm

	Appendix Algorithm enumerating Generic Ensembles

