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The three generations problem is an open enigma concerning some types of leptons and 
of quarks in the standard model. The search for explanations dates back at least to the 
early 1980s. This document is a modest attempt to bring this research out of the nimbus 
of numerology. In a first step I introduce a special family of (3-3) matrices. Some of them 
are the representations of unit four-dimensional spheres via a Euler-Rodrigues 
parametrization. In a second step, I confront them with a condition formally preserving 
the definition of the Poynting vector in a changing geometrical context. 

 

I. The standard model of particle physics  

The particles can be classified into diverse categories. Inside the fermions, leptons 
(charged and neutral) and quarks (down type and up type) have identical electric and 
strong interactions but manifest themselves under three representations differing by their 
masses and their flavour quantum numbers. This fact has no explanation and this open 
question is what is called the unsolved three generations problem in particle physics. 

 

II. The quest  

Theoreticians hate unsolved problems and like to look for explanations, for combinations, 
for links between topics. This is why numerous tries have been made and are done to 
understand the existence of these three generations. In this document, I shall also 
propose my vision in focusing my research on the charged leptons. 

 

III. The charged leptons  

The attention of the scientific community has been drawn at the beginning of the eighties 
(20th century) to an empirical prediction made by a Japanese professor. At this time, the 
masses of the (classical) electron (me – first generation) and of the muon (m - second 
generation) were already known. The prediction said that the mass of the tau (m - third 
generation) can be calculated with a specific formula which is nowadays labelled with the 
name of this professor [01; (I.1)]: 
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K = 
𝑚𝑒+𝑚+𝑚

( √𝑚𝑒
2  + √𝑚

2  + √𝑚
2  )

2 = 2
3

 

The first measurements of the mass of the tau were not convincing but their repetition 
and refinement ended up proving the prediction right; for now, with me = 0,511 MeV/c2, m 
= 105,66 MeV/c2 [02] and m = 1777,09  0,14 MeV/c2 [03], it can easily be verified that:    

K = 0,511 + 105,66 + 1777,09

(0,7148 + 10,2791 + 42,1555)2 = 1883,261

2824,8587
 = 0,66667  2/3  

Hazard, chance, obscure numerology or rational underground explanation? This is the 
question. 

 

IV. The quarks  

The next logical interrogation is to ask if the same formula applies to the quarks.  

Considering the following measurements concerning the up-type quarks, quark up : 2,2 
MeV/c2, quark charm : 1 280 MeV/c2 and quark top : 173 100 MeV/c2, I state that K = 0,8486.  

Considering the following measurements concerning the down-type quarks, quark down 
4,67 MeV/c2, quark strange : 93,4 MeV/c2 and quark bottom : 4180 MeV/c2, I state that K = 
0,7314. 

The ratio K(quark-up) and the ratio K(quark-down) are not the same as the one 
characterizing the charged leptons. At a first glance, this fact drastically reduces the 
generality of the formula. 

 

V. Looking for an explanation concerning the charged leptons  

1. Definition: The ratio K 

Let generalize the formula connecting the masses of the three charged leptons in writing: 

K(b1, b2, b3) = 
(𝑏1)

2
 + (𝑏2)

2
 + (𝑏3)

2

(𝑏1 + 𝑏2 + 𝑏3)2  

The original formula concerning the charged leptons is recovered in writing: 

b1 = √𝑚𝑒
2 , b2 = √𝑚

2 , b3 = √𝑚
2  

Let consider a space vector V = E(3, K). If the triple (b1, b2, b3) represents the components 
of some vector b in V, then this generalized K-ratio can be synthetized as: 

K(b) = ||𝑏||2

(𝑏)
2 

… where ||b|| denotes the classical Euclidean norm of b whilst b denotes the sum of its 
components. 
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2. Definition: a special set of matrices- the perian matrices 

Let consider a space vector V = E(3, K) again and a pair (p, q) in V2. A so-called perian 
matrix is, per convention, a representation of that pair in M(3, K) such that: 

(a, b) → [M(a, b)] = . Id3 + . T2()(b, b) + . [J](b) 

• The triple (, , ) represents the components of p in the dual of V. 
• Id3 is the identity matrix in M(3, K), usually: 

Id3 = [
1 0 0
0 1 0
0 0 1

] 

• The matrix T2()(b, b) is a so-called Pythagorean table involving the components 
of q: 

T2()(b, b) = [
𝑏1 . 𝑏1 𝑏2 . 𝑏1 𝑏3 . 𝑏1

𝑏1 . 𝑏2 𝑏2 . 𝑏2 𝑏3 . 𝑏2

𝑏1 . 𝑏3 𝑏2 . 𝑏3 𝑏3 . 𝑏3

]  M(3, K) 

• The matrix [J](q) is the representation of an axial rotation: 

[J](q) = [
0 −𝑏3 𝑏2

𝑏3 0 −𝑏1

−𝑏2 𝑏1 0

]  M(3, K) 

Remark: the sum of the entries of a perian matrix 

The sum of the entries of a perian matrix is an application linking M(3, K) and K such that: 

Equ.(0) 

[M(a, b)] → [M(a, b)] = 3. + . (b)2  

… where (recall) b is the sum of the components of q. It does not depend on the 
component . 

3. Remark: perian matrix and Euler parametrization 

Any four-dimensional sphere with radius 1 can be represented with a (3-3) matrix, thanks 
to the Euler-Rodrigues parametrization.  

(𝑢0)2  +  (𝑢1)2  +  (𝑢2)2  +  (𝑢3)2  =  1  

 

M((4)u) 

= 

[

(𝑢0)2  +  (𝑢1)2  −  (𝑢2)2  −  (𝑢3)2 2. (𝑢2 . 𝑢1  −  𝑢0 . 𝑢3) 2. (𝑢3 . 𝑢1 +  𝑢0 . 𝑢2)

2. (𝑢1 . 𝑢2  +  𝑢0 . 𝑢3) (𝑢0)2  −  (𝑢1)2  +  (𝑢2)2  −  (𝑢3)2 2. (𝑢3 . 𝑢2  −  𝑢0 . 𝑢1)

2. (𝑢1 . 𝑢3  −  𝑢0 . 𝑢2) 2. (𝑢2 . 𝑢3  +  𝑢0 . 𝑢1) (𝑢0)2  −  (𝑢1)2  −  (𝑢2)2  +  (𝑢3)2

] 
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= 

{2. (u0)2 - 1}. Id3 + 2. T2()(b, b) + 2. u0. [J](b) 

= 

[M((3)a, (3)b)] 

In writing: 

Equ.(1) 

(3)a: (2. (u0)2 - 1, 2, 2. u0) = ((u0)2 - ||(3)b||2, 2, 2. u0) = (<(4)u, (4)u>[(+ - - -)], 2, 2. u0) 

(3)b: (u1, u2, u3) 

This matrix is obviously a special type of perian matrices.  

Remark 

The sum of the components of any element in this subset of perian matrices is: 

M((4)u) = [M((3)a, (3)b)] = 3. <(4)u, (4)u>[(+ - - -)] + 2. ((3)b)2   

When the K-ratio of (3)b is the one of the charged leptons, then: 

K(3)b) = ||𝑏||2

(𝑏)
2 = 2

3
  

 

M((4)u) = [M((3)a, (3)b)] = 3. ((u0)2 - ||(3)b||2) + 2. ((3)b)2 = 3. (u0)2 

The sum of the entries of any perian matrix [M((3)a, (3)b)] 

• which is the representation of a Euler-Rodrigues parametrization for some four-
dimensional sphere with unit radius and … 

• of which the K-ratio of the second argument is the K-ratio of the charged leptons  

… is equal to three times the square of the component u0. 

4. Remark: looking for a physical link with a 4D unit sphere 

This first result gives rise to a question: “Is there an argument justifying the existence of a 
link between the K-ratio of the charged leptons and a physical unit four-dimensional 
sphere?”  

Let examine the following example. In particle physics, the leptons respect the energy-
impulse relation [08; p.4, (5)]: 

E2 = m2. c4 + c4. p2 

It can be more precisely rewritten as: 
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𝐸2

𝑐2
 = m2. c2 + ||(3)p2|| 

Hence when the 4D momentum (4)p has the components: 

(p0 = m. c, p1 = m. v1, p2 = m. v2, p3 = m. v3) 

… this relation can also be rewritten in a context related to a metric with the signature (+ 
+ + +) as: 

< (4)p, (4)p >[+ + + +] = 𝐸
2

𝑐2
 

Or as: 

E  0  𝑐2

𝐸2
. < (4)p, (4)p >[(+ - - -)] = 1 

 interpreted as the equation of a four-dimensional unit sphere in a metric with signature 
(+ + + +) and there exists a vector (4)u: 

u0 = 𝑚.𝑐2

𝐸
, u1 = 𝑚.𝑐

𝐸
. v1, u2 = 𝑚.𝑐

𝐸
. v2, u3 = 𝑚.𝑐

𝐸
. v3  (4)u = 𝑚.𝑐

𝐸
. (4)v 

… if I write (v0 = 1). 

Coming back to the main topic of this discussion, a logical link between the charged 
leptons, their K-ratio (2/3) and this specific unit 4D sphere implies: 

<(4)u, (4)u>[+- - -] = (𝑚.𝑐2

𝐸
)2 - (𝑐

𝐸
)2.|| (3)p|| = 2. (𝑚.𝑐2

𝐸
)2 - 1 

(3)a: (<(4)u, (4)u>[+- - -], 2, 2. u0) = (2. (𝑚.𝑐2

𝐸
) - 1, 2, 2. 𝑚.𝑐2

𝐸
) 

 (3)b = 𝑚.𝑐

𝐸
. (3)v 

[M((3)a, (3)b)] = {2. (𝑚.𝑐2

𝐸
)2 – 1}. Id3 + 2. (𝑚.𝑐

𝐸
)2. T2()((3)v, (3)v) + 2. 𝑚

2.𝑐3

𝐸2 . [J]( (3)v) 

(3)b = 𝑚.𝑐

𝐸
. (3)v, ||(3)b|| = 𝑚.𝑐

𝐸
. ||(3)v||, K((3)b) = K((3)v) = ||v||2

(v)
2 

In that case, the K-ratio at hand coincides with the one of the spatial speed of the particle 
at hand, here: an electron, a muon or a tau. But this way of thinking could also be applied 
to any particle for which the energy-momentum relation is true. 

5. Discussion 

Let analyse the plausibility of an intervening of the energy-momentum relation further.  

A. The eventual effective existence of a direct link between the K-ratio related to the 
energy-momentum relation and the original one would then automatically impose 
a supplementary condition looking like this one: 

 a = 1, 2, 3: va  ma  
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It immediately introduces a problem related to the logic because word for word 
this condition would mean that a given charged lepton (precisely its mass) must 
be associated with a given components of the spatial speed of … what? a collective 
triple  of particles? Formulated in that way, this condition makes seemingly no 
sense.  

Each particle (precisely its mass) is usually associated with the three components 
of a spatial speed, not with only one component of a collective speed. This basic 
fact induces that the discussion must introduce three matrices of that type.  

But it also means that a link between the original K-ratio related to the masses and 
each of the three ratios K((3)ve), K((3)v) and K((3)v) related to the existence of an 
energy-momentum relation can only be indirect. 

B. Another problem is that there is no reason to believe that the three generations of 
charged leptons exist and interact at a same instant in each frame. Such 
eventuality can better be envisaged for the quarks from which we know that they 
are confined in protons or in neutrons.  

Having these thoughts in mind, I shall now look for a rational argument explaining the 
simultaneous existence of three perian matrices. 

 

VI. The evolutions of the Poynting vector in a changing geom etry  

The Morley and Michelson experiments [04] are at the origin of a deep revolution in our 
understanding of space-time. Not only the electromagnetic waves propagate at a given 
speed (it is not infinite) – see J. C. Maxwell’s work [05]-  but this speed is invariant for 
observers situated at the origin of inertial frames. This experimental fact gives rise to the 
Lorentz-Poincare transformations which indirectly appear in the first version of the 
Einstein’s theory of relativity [06].  

The leptons are the source of electromagnetic fields; concretely: they can be understood 
as a set of pairs of spatial vectors ((3)E, (3)B). A Poynting vector (3)S can be associated with 
each state of these fields. Its usual definition is a classical cross product [07-G; p.90, 
(31,2)]:    

(3)S =  𝑐 

4.
.  (3)E  (3)B 

It gives information on the energy carried by them [07-G; p.111, (47,5)]:    

(3)S = .  𝑐 

4.
. (3)n, ||(3)n|| = < (3)n, (3)n >Id3 =  1 

Starting from here, within a 3D classical Euclidean geometry, I can write a scalar product: 

< (3)S, (3)S >Id3 = (  𝑐 

4.
)2. < (3)E  (3)B, (3)E  (3)B >Id3 = (  𝑐 

4.
)2. 2 
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The geometry, even the one of the empty regions of the universe, is not necessary 
invariant. The cross product can be understood as a tensor product which has been 
deformed by an antisymmetric (3-3-3) cube. Therefore, I propose to consider that any 
variation of the geometry deforms the Levi-Civita cube into some (3-3-3) cube D 
(hypothesis 1).  

cube  → cube D 

And I suppose (hypothesis 2) that this modification formally preserves the definition of 
the Poynting vector: 

< (3)S, (3)S >Id3 = (  𝑐 

4.
)2. 2 → < (3)S’, (3)S’ >[G] = (  𝑐 

4.
)2. ’2 

Since the speed of light remains a universal invariant for observers at the origins of inertial 
frames, the hypotheses 1 and 2 together allow: 

Equ.(2) 

1

2. < (3)E  (3)B, (3)E  (3)B >Id3 = (  𝑐 

4.
)2 = 1

′2. < D((3)E’,(3)B’), D((3)E’,(3)B’) >[G]
 

In the language of components, this relation is equivalent to: 

1

2. . (. E. B). (. E. B) = 1

′2. g. (d. E‘. B‘). (d. E‘. B‘) 

Some manipulations transform the left-hand term in: 

l.h.t. = 1

2. (.  - . ). E. B. E. B 

Concerning the right-hand term, because the exact formalism of the transformations 
linking the pair ((3)E’,(3)B’) to the pair ((3)E,(3)B) is unknown, I shall only presuppose 
(hypothesis 3) the existence of two matrices without logical connection with the Lorentz-
Poincare transformations and such that: 

Equ.(Hypothesis 3) 

|(3)E’ > = []. |(3)E > and |(3)B’ > = []. |(3)B > 

This hypothesis allows the concrete calculation of the r.h.t. and delivers the relations: 

Equ.(3) 

 1

2. (.  - . ) = 1

′2. g. A. A 

A =  

A = 
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The l.h.t. can always be understood as a peculiar representation of the object: 

Equ.(4) 

T = g. g - g. g 

Precisely, the one which is obtained when (3)[G] can be identified with the Euclidean 
geometry:  

Equ.(5) 

1

2. Lim [G] → Id3 T   = 1

′2. g. A. A 

As a matter of mathematical facts, the object “T” owns the same properties than the 
Rieman’s curvature tensor: 

Equ.(6) 

T = - T  

T = - T 

T = T  

T + T + T = 0 

The latter allows to go further: 

1

2. (Lim [G] → Id3 T + Lim [G] → Id3 T + Lim [G] → Id3 T)  

= 

 1

′2. g. (A. A + A. A + A. A) 

= 

0  

Hence, the definition of the Poynting vector remains formally unchanged when, whatever 
the geometry is, the entries of these cubes respect the relation: 

Equ.(7) 

A. A + A. A + A. A = 0 

After some cumbersome manipulations, this relation can be reformulated as: 

Equ.(8) 

 n = 1, 2, 3: {[nA]}2 + {[nA]2 + [nA]t. [nA]} = 0 
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VII. Looking for the formalism of the admissible matrices  

1. Definition: admissible cubes and admissible matrices 

The next logical step of this quest is to look for the generic formalism of the matrices 
composing the admissible cubes A, i.e.: the cubes preserving the definition of the 
Poynting vector in a changing background (synonym: geometry, provided the geometry is 
indirectly represented by the cubes).  

2. Behaviour of the perian matrices 

Let start in considering any perian matrix. A lot of annoying calculations delivers the 
condition defining the subset containing the perian matrices which can be included into 
the admissible cubes; here are the details of the calculations: 

[A] = . Id3 + . T + .  

[A]t = . Id3 + . T - .  

[A]t. [A] 

= 

(. Id3 + . T - . ). (. Id3 + . T + . ) 

= 

(2 + 2. ||b||2). Id3 + (.  + .  + 2. ||b||2 - 2). T + (.  - . ).  

[A]2 

= 

 (. Id3 + . T + . ). (. Id3 + . T + . ) 

= 

(2 - 2. ||b||2). Id3 + (.  + .  + 2. ||b||2 + 2). T + (.  + . ).  

[A]2 + [A]t. [A] 

= 

2. 2. Id3 + 2. (.  + .  + 2. ||b||2). T + 2. . .  

Therefore: 

[A] = 3. . + . (b)2  

{[A]}2 = 9. 2 + 6. . . (b)2 + 2. (b)4 

{[A]2 + [A]t. [A]} = 6. 2 + 2. (.  + .  + 2. ||b||2). (b)2 



 

© Thierry PERIAT The three generations problem in particle physics 20 February 2025 

10 

And, when the discussion occurs on a set equipped with a commutative multiplication, 
the condition is:  

Equ.(9) 

2. (b)4 + (10. .  + 2. 2. ||b||2). (b)2 + 15. 2 = 0 

It does not depend on . 

3. The perian matrices representing a Euler-Rodrigues parametrization 

When, for example, this perian matrix is the representation of some Euler-Rodrigues 
parametrization of a four-dimensional unit sphere, then due to Equ.(1): 

a: (, , ) = (2. (u0)2 - 1, 2, 2. u0) 

And the condition of admissibility writes more precisely: 

4. (b)4 + {20. (2. (u0)2 - 1) + 8. ||b||2}. (b)2 + 15. ((2. (u0)2 - 1)2 = 0 

But in that case, because of the equation of the unit 4D-sphere (recall): 

(u0)2  + ||b||2 = 1 

This equation transforms the condition in: 

4. (b)4 + {20. (1 - 2. ||b||2) + 8. ||b||2}. (b)2 + 15. (1 - 2. ||b||2)2 = 0 

It can be rewritten as: 

Equ.(10) 

4. (b)4 + {20 - 32. ||b||2}. (b)2 + {60. ||b||4 - 60. ||b||2 + 15} = 0 

a) If furthermore the K(b) exists and is equal to 2/3: 

3. ||b||2 = 2. (b)2, b  0  

Then the condition is reformulated as: 

Equ.(11) 

9. ||b||4 + {10 - 16. ||b||2}. 3. ||b||2 + {60. ||b||4 - 60. ||b||2 + 15} = 0 

3. ||b||4 + {10 - 16. ||b||2}. ||b||2 + {20. ||b||4 - 20. ||b||2 + 5} = 0 

(3 - 16 + 20). ||b||4 + (10 - 20). ||b||2 + 5 = 0 

7. ||b||4 - 10. ||b||2 + 5 = 0 

b) If the sum of the components of b vanishes (b = 0), then the K-ratio of b does not exist 
and Equ.(10) imposes: 

||b||2 = ½  
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The system: 

Equ.(12) 

||b||2 = ½ and b = 0 

… has solutions; they respect the relations: 

Equ.(13) 

b1. b2 + b2. b1 + b2. b3 + b3. b2 + b3. b1 + b1. b3 = - ½  

b1 + b2 + b3 = 0 

4. Proposition 
There are perian matrices such that (i) K(b) = 2/3, b  0 and (ii) the condition preserving 
the definition of the Poynting vector in a changing background is true which are not the 
representation of some Euler-Rodrigues parametrization related to a four-dimensional 
unit sphere. 

Proof: A separate calculation proves that the polynomial: 

Equ.(14) 

4. (b)4 - 16. (b)2 + 15 = 0 

… has two solutions: 

Equ.(15,1 and 2) 

(b)2 = 3/2 and (b)2 = 5/2 

Hence with (15,1) and the supplementary condition: 

Equ.(16) 

||b|| = 1  

All perian matrices preserving the formal definition of the Poynting vector have a K(b) ratio 
equal to 2/3 when, because of Equ.(9): 

2. (b)4 + (10. .  + 2. 2. ||b||2). (b)2 + 15. 2 = 0 

2. (3/2)4 + (10. .  + 2. 2). (3/2)2 + 15. 2 = 0 

{(81/16) + (18/4)}. 2 + (90/4). .  + 15. 2 = 0 

Equ.(17) 

153. 2 + 360. .  + 240. 2 = 0,   

They are never identifiable with a representation of some Euler-Rodrigues parametrization 
because when - recall Equ.(1): 
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(3)a: (2. (u0)2 - 1, 2, 2. u0) = ((u0)2 - ||(3)b||2, 2, 2. u0) = (<(4)u, (4)u>[(+ - - -)], 2, 2. u0) 

Then, due to Equ.(16) and to the equation of the unit 4D-sphere (recall): 

(u0)2 + ||b||2 = 1 

It follows that: 

(u0)2 = 0,  = 0,  = 2 

And that: 

153. 2 + 360. .  + 240. 2 = 612  0,   

5. Lemma 
The set of perian matrices is greater than the set of matrices representing Euler-Rodrigues 
parametrization. 

6. Perian matrices not representing a Euler-Rodrigues parametrization 

Since I am mainly interested in looking for specific matrices [M(a, b)] allowing (i) the 
definition of a K-ratio for b and (ii) preserving the definition of the Poynting vector in a 
changing background, the main condition must be calculated in starting with Equ.(9): 

 (, , )  K 

2. (b)4 + (10. .  + 2. 2. ||b||2). (b)2 + 15. 2 = 0 

… and with the condition of existence for a K-ratio: 

 ||b||, b  0 

Recalling now the information contained in Equ.(14) and (16), I consider the system: 

Equ.(18,1 to 17,4) 

 k  

2 = 4. k 

10. .  + 2. 2. ||b||2 = -16. k 

15. 2 = 15.k 

… because it is equivalent to the polynomial: 

{4. (b)4 - 16. (b)2 + 15}. k = 0 

… which has the ad hoc solution (see § VII 4.), at least when k = 1 and ||b|| = 1. The 
Equ.(18,3) imposes: 

 = k 
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Let inject this condition into Equ.(18,3), due to Equ.(18,2), I obtain: 

20. k + 8. k. ||b||2 = -16. k 

Or equivalently: 

 k: 20 + 8. ||b||2 = -16 

The consequence of which is either: 

||1b||2 = - 9
2

 

Or: 

||2b||2 = + 1
2

 

These results are compatible with a ratio K(b) equal to 2/3 when respectively:  

Equ.(19) 

{ K(b) = 2/3, ||1b||2 = - 9
2

 }  (1b)2 = - 27

4
 

{ K(b) = 2/3, ||2b||2 = + 1
2

 }  (2b)2 = + 3
4

 

These results seem to be in contradiction with the ones of § VII 4. although they were 
inspired by them! Are they? Why? In fact: no, there is no contradiction because the 
Equ.(14) has nothing to do with the problem at hand. 

Perian matrices 
 

[M(a, b)]  
= 

 . Id3 + . T2()(b, b) + . [J](b) 
 

 Any matrix 
 

[A] 

Preservation of the Poynting vector 
Equ.(9) 

2. (b)4 + (10. .  + 2. 2. ||b||2). (b)2 + 15. 
2 = 0 

 

  
{[A]}2 + {[A]2 + [A]t. [A]} = 0 

Table 1 
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For the perian matrices only 
 

Euler parametrization 
< u, u>Id4 = 1 

(u0)2 + ||b||2 = 1 
(, , ) 

= 
((u0)2 - ||(3)b||2, 2, 2. u0) 

 
Equ.(10) 

4. (b)4 + {20 - 32. ||b||2}. (b)2 + {60. ||b||4 - 
60. ||b||2 + 15}  

= 
 0 
 

 Not a Euler parametrization 

b  0 
 K(b) = 2/3 

Equ.(11) 

b = 0 
not  K(b) 
||(3)b||2 = ½  

 b  0 
 K(b) = 2/3 

Equ.(19) 

b = 0 
not  K(b) 
 = 0 

Table 2 

 

VIII. End of the discussion and perspective  

The purpose of this document was to propose rational arguments connecting the three 
masses of a given type of particles. Unfortunately, only a small part of the travel on the 
road going to the goal has been done. I explain why. 

If it is believed that the masses of the three generations of a given type of particles are 
related with the help of a K-ratio, then there exist elements taken in a specific family of (3-
3) matrices (the so-called perian matrices) depending on the components of a pair of 
vectors which (i) preserve the formal definition of the Poynting vector despite of geometric 
deformations and (ii) are the ad hoc mathematical objects to build these K-ratios.  

This document illustrates this affirmation in focusing attention on the charged leptons 
because their masses are effectively related via a K-ratio equal to 2/3.   

A subset of these specific matrices can be identified with representations of Euler-
Rodrigues parametrizations. But an identification with this kind of representations is not 
a necessary condition. It is only a sufficient one. 

At this stage, the approach developed in the first part of this document allows the 
definition of perian matrices. Each of them can represent a Euler-Rodrigues 
parametrization related to the energy-momentum relation associated with one given type 
of particles. Focusing attention on charged leptons, this is resulting in three K-ratios, 
K((3)ve), K((3)v) and K((3)v), at each given instant of some chronology.  
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But except if the discussion does no more concern the charged leptons, there is no reason 
to believe that these particles exist at the same time in the frame of an observer and that 
the three generations interact in that frame. If they do, prior calculations carry no 
information on this topic. 

The second part of this exploration suggests that the admissible matrices should preserve 
the formalism of the Poynting vector in a changing background; that’s all. Until now, I did 
not verify if the matrices which have been discovered in the first part preserve this 
formalism. If they do, the Equ.(10) must be true (recall): 

4. ((3)b)4 + {20 - 32. ||(3)b||2}. ((3)b)2 + {60. ||(3)b||4 - 60. ||(3)b||2 + 15} = 0 

With here (recall):  

(3)b = 𝑚.𝑐

𝐸
. (3)v 

If the particle at hand is moving at c speed in the frame where the discussion occurs, then: 

||(3)b||2 = 𝑚
2.𝑐4

𝐸2   

Let remark that the energy-momentum relation for such a particle writes: 

E2 = m2. c4 + c4. p2 = m2. c4. (1 + c2)  m2. c6  

 

 ||(3)b||2. c2 = 𝑚
2.𝑐6

𝐸2   1  

 

||(3)b||2  0 

Note that the same approximative result is obtain when a particle moving at c speed is 
massless (m  0). The condition preserving the Poynting vector formalism is then 
approximately: 

4. ((3)b)4 + 20. ((3)b)2 + 15 = 0 

It implies that either the components of the speed or, but more probably, the masses of 
the particles at hand must be pure imaginary complex numbers! Imaginary energies can 
be envisaged in quantum mechanics. They describe virtual particles and/or energetic 
transitions; see example in [09; Tome 1, complement HIV ; pp. 468-473].  

If the approach presented in this document is correct, then it only applies to virtual 
particles. But are the charged leptons or the quarks virtual particles? The leptons are quite 
certainly not, the quarks are perhaps. The question is open. 

Furthermore, the question concerning the link between the diverse charged leptons (resp. 
quarks), more precisely between their masses and their speeds is yet not clear. 
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All these thoughts introduce deep doubts: 

• Doubts on the choice which has been made to privilege the energy-momentum 
relation. Other objects perhaps better reflect the physical situation concerning the 
masses of the charged leptons (resp. of the quarks).  

• More dramatically, doubts on the way of thinking which is promoted here. 

This is the reason why a future exploration will study the links between the perian matrices 
and the main parts of the decompositions of some deformed cross product. The 
confrontation will prove that these matrices can be linked with the polynomials 
systematically associated with the decompositions.  

The hope is that some of these polynomials will give useful information concerning the 
masses of the charged leptons (resp. of the quarks). At the end of the day, it will no matter 
if they don’t because the failure of some essays save time for others. 

© Thierry PERIAT, 20 February 2025. 
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