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ABSTRACT

The Collatz conjecture, also known as the Syracuse conjecture or the 3x+ 1 problem, is a mathematical
conjecture according to which the Collatz sequence always reaches the value 1, and then repeats the cycle
(1, 4, 2) indefinitely, regardless of the first term of the sequence as long as it is a strictly positive integer.
It originated in the 1930s and its authors are mainly Lothar Collatz and Helmut Hasse. The latter shared
it in the United States during a visit to Syracuse University, and the Collatz sequence then became known
as the Syracuse sequence. To date, this conjecture has not been proven either true or false.

The purpose of this study is to prove, as clearly and precisely as possible, that this conjecture is true.
The proof is based on classical mathematics which should not pose any major difficulties.
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1 Introduction

First, we are going to define the Collatz sequence. Let the sequence be {un}n∈N such that u0 = p, where
p∈N∗, and such that:

for n∈N∗, un =

{
3un−1 + 1 if un−1 is odd,

un−1

2 if un−1 is even.

Then, according to the conjecture, there exists l∈N∗ such that ul = 1, ul+1 = 4, ul+2 = 2, ul+3 = 1, ul+4 =

4, ul+5 = 2, etc. In other words, from rank l the sequence enters a cycle that repeats the numbers 1, 4, 2

ad infinitum. We can express this sequence in another way, indeed, if p is odd then we have:

u1 = 3p+ 1 is even,

u2 =
3p+ 1

21
, if u2 is even then u3 =

3p+ 1

22
,

. . . ,

until u1+α0
=

3p+ 1

2α0
is odd.

Let :
v0 = u1+α0

=
3p+ 1

2α0

Where α0 is the exponent corresponding to the number of times u1 must be divided by 2 to obtain an
odd number. Repeating the same process, we have:

u1+α0+1 = 3u1+α0
+ 1 is even,

u1+α0+1+1 =
3u1+α0

+ 1

21
, if u1+α0+1+1 is even then u1+α0+1+2 =

3u1+α0
+ 1

22
,

. . . ,

until u1+α0+1+α1 =
3u1+α0

+ 1

2α1
is odd.

Let:

v1 = u1+α0+1+α1
=

3u1+α0
+ 1

2α1

Where α1 is the exponent corresponding to the number of times u1+α0+1 must be divided by 2 to obtain
an odd number. By reformulating v1, we have:

v1 =

(
3
(
3p+1
2α0

)
+ 1
)

2α1
=

3 (3p+ 1) + 2α0

2α0+α1
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And by an easily verifiable recurrence (see Appendix 8.1), we obtain that for all l∈N∗:

vl =
3l (3p+ 1) +

∑l−1
i=0(3

l−1−i(2
∑i

j=0 αj ))

2
∑l

i=0 αi
=

3l (3p+ 1)

2
∑l

i=0 αi
+

l−1∑
i=0

3l−1−i

2
∑l

j=i+1 αj

The resulting sequence {vl}l∈N has all its values in 2N + 1, and it is therefore equal to the sequence
{un}n∈N without the even-valued terms of the latter. Thus, the cycle of length 3 and values (1, 4, 2) of
the sequence {un} corresponds to the cycle of length 1 and value (1) of the sequence {vl}. If p is even,
there exists α∈N∗ such that p = 2αq, where q∈2N+1, and it suffices to replace p with q in the expression
of the term v0, which does not change the demonstration.

Definition 1.1. Let f = 2αp, where α∈N and p∈2N+1, the sequence {vl}l∈N, the so-called reformulated
Collatz sequence, is defined for all l∈N as follows:

vl =


3p+1
2α0

if l = 0,

3l(3p+1)

2
∑l

i=0
αi

+
∑l−1

i=0
3l−1−i

2
∑l

j=i+1
αj

if l > 0.

Where α0 is the exponent such that v0 is odd and the αi, for i ∈ {1, . . . , l}, are the exponents such that
vi =

3vi−1+1
2αi

is odd.

Let Al =
3l(3p+1)

2
∑l

i=0
αi

and Bl =
∑l−1

i=0
3i

2
∑l

j=l−i
αj

, then for l > 0, vl = Al +Bl.

2 Sums of the exponents

The aim here is to study the sums of the exponents
∑l

i=r αi of the terms Al and Bl, where r ∈ [0, l], from
a probabilistic point of view, in order to establish conjectures that will be demonstrated later. Let γ∈R∗

+

such that 2γq = 3q+1, where q is odd, then γ =
ln(3+ 1

q )
ln(2) and converges decreasingly to β = ln(3)

ln(2)
∼=1, 58496

when q tends to infinity. Similarly, for each term in the sequence {vl}l∈N∗ , we have:

2γlvl−1 = 3vl−1 + 1 =⇒ γl =
ln
(
3 + 1

vl−1

)
ln (2)

This means that multiplying the term vl−1 by 3 and then adding 1 is equivalent to multiplying it by 2γl .
Therefore, to the extent that for any i∈ [0, l] the exponent αi is a non-zero natural number and that γi

is always closer to 2 than to 1, the probability that αi≥2, such that the term :

vi =


3p+1
2α0

if i = 0,

3vi−1+1
2αi

if i > 0.

is odd, is significantly greater than the probability that αi = 1 (see Appendix 8.2). Consequently, we can
formulate the following conjecture:
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Conjecture 2.1. There exists a rank Lp of the sequence {vl} such that for any l ≥ Lp:

β(l + 1) <

l∑
i=0

αi ⇐⇒ 1∑l
i=0 αi

<
1

β(l + 1)

Where β = ln(3)
ln(2) and Lp means that L depends on p (see Definition 1.1).

The irrational nature of β (l + 1) (see Appendix 8.3) and the fact that
∑l

i=0 αi is a sum of strictly positive
integers ensure that β (l + 1) cannot be equal to

∑l
i=0 αi. This justifies, if the conjecture is true, that:

β (l + 1) <

l∑
i=0

αi

Just as for i∈ [0, l], for i∈ [r, l], the probability that αi ≥ 2, such that the term vi mentioned above is
odd, is also significantly greater than the probability that αi = 1, we can therefore formulate another
conjecture concerning the partial sums of the exponents of the term Bl:

Conjecture 2.2. There exists a rank Lp > 0 of the sequence {vl} such that for any l ≥ Lp:

l−1∑
i=0

1∑l
j=l−i αj

<

l−1∑
i=0

1

β(i+ 1)

Where β = ln(3)
ln(2) and Lp means that L depends on p (see Definition 1.1).

The proof of these conjectures will be given in Section 4.

3 Behavior of the sequence

Considering Conjectures 2.1 and 2.2 as true, we are going to demonstrate that regardless of the value of
p, the sequence {vl} is always upper bounded.

Theorem 3.1. For all p ∈ 2N+1, such that v0 = 3p+1
2α0

, there exists a rank ωp of the sequence {vl} such
that for any l ∈ N, vl ≤ vωp .

Proof . According to Definition 1.1, for all l > 0:

vl =
3l(3p+ 1)

2
∑l

i=0 αi
+

l−1∑
i=0

3l−1−i

2
∑l

j=i+1 αj
=

3l(3p+ 1)

2
∑l

i=0 αi
+

l−1∑
i=0

3i

2
∑l

j=l−i αj
.

Note that we refer in this section to the terms Al =
3l(3p+1)

2
∑l

i=0
αi

and Bl =
∑l−1

i=0
3i

2
∑l

j=l−i
αj

defined in section
1, and let us remind that p, which appears as the exponent of a variable, means that this variable depends
on p (see Definition 1.1).
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Conjecture 2.1 says that there exists Lp
0 ∈ N such that for any l ≥ Lp

0:

1∑l
i=0 αi

<
1

β(l + 1)
⇐⇒ 1

2
∑l

i=0 αi
<

1

2β(l+1)
⇐⇒ Al <

3l(3p+ 1)

2β(l+1)

And according to Conjecture 2.2, there exists Lp
1 ∈ N such that for any l ≥ Lp

1:

l−1∑
i=0

1∑l
j=l−i αj

<

l−1∑
i=0

1

β(i+ 1)
⇐⇒

l−1∑
i=0

1

2
∑l

j=l−i αj
<

l−1∑
i=0

1

2β(i+1)
⇐⇒ Bl <

l−1∑
i=0

3i

2β(i+1)

As a result, for all l ≥ (Lp = max{Lp
0, L

p
1}):

Al +Bl <
3l(3p+ 1)

2β(l+1)
+

l−1∑
i=0

3i

2β(i+1)

On the other hand, given that there is an infinity of real numbers between β(l+ 1) and
∑l

i=0 αi, as well
as between β(i+1) and

∑l
j=l−i αj , for i ∈ {0, . . . , l−1}, and because of the facts related to the sequence

{vl}, there exists βp > β such that for all l ≥ Lp:

vβ
p

=
3l(3p+ 1)

2βp(l+1)
+

l−1∑
i=0

3i

2βp(i+1)
<

3l(3p+ 1)

2β(l+1)
+

l−1∑
i=0

3i

2β(i+1)
= vβ

And such that:
vl ≤ vβ

p

Then for all l ≥ Lp we have (see Appendix 8.4 on the existence of βp):

vl ≤ vβ
p

l < vβl

Where the sequences {vβl }l∈N∗ and {vβ
p

l }l∈N∗ are defined as follows:

vβl =
3l(3p+ 1)

2β(l+1)
+

l−1∑
i=0

3i

2β(i+1)

vβ
p

l =
3l(3p+ 1)

2βp(l+1)
+

l−1∑
i=0

3i

2βp(i+1)

Let Aβp

l = 3l(3p+1)
2β

p(l+1) and Bβp

l =
∑l−1

i=0
3i

2β
p(i+1) , and let’s study the evolution of these two terms when

l → +∞.

The term Aβp

l
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This term is a geometric sequence with a common ratio of 3
2β

p :

Aβp

l =
3l(3p+ 1)

2βp(l+1)
=

3p+ 1

2βp

(
3

2βp

)l

Considering that 3
2β

p < 1, since βp > ln(3)
ln(2) , A

βp

l converges to 0 when l → +∞.

The term Bβp

l

The term Bβp

l =
∑l−1

i=0
3i

2β
p(i+1) is a geometric series:

l−1∑
i=0

3i

2βp(i+1)
=

1

2βp

l−1∑
i=0

(
3

2βp

)i

=
1

2βp ·
(

3
2β

p

)l − 1
3

2β
p − 1

As before, considering that 3
2β

p < 1 and βp > ln(3)
ln(2) , when l → +∞:

Bβp

l =
1

2βp − 3
< +∞

Hence:
lim

l→+∞

(
vβ

p

l

)
= lim

l→+∞

(
Aβp

l

)
+ lim

l→+∞

(
Bβp

l

)
< +∞

Finally, since the sequence {vl} takes values in 2N+ 1, there exists Mp ∈ 2N+ 1 such that:

lim
l→+∞

(vl) ≤ lim
l→+∞

(
vβ

p

l

)
≤ Mp

Insofar as the values in the sequence {vl} are natural numbers, from a certain rank, all its terms will be
less than or equal to Mp. This implies that there exists ωp ∈ N, such that for any l ∈ N, vl ≤ vωp , which
is equivalent to saying that the values taken by the sequence are in a finite subset of N. Consequently,
assuming that Conjectures 2.1 and 2.1 are true, the sequence {vl} is always upper bounded. □

4 Proof of Conjectures 2.1 and 2.2

To establish that Conjectures 2.1 and 2.2 are true, we will study the hypothetical cases where one
of the conjectures is false and where both conjectures are false. As in Section 3, Al = 3l(3p+1)

2
∑l

i=0
αi

and

Bl =
∑l−1

i=0
3i

2
∑l

j=l−i
αj

.

First case: Conjecture 2.1 is true and Conjecture 2.2 is false
If Conjecture 2.1 is true, then there exists L0 ∈ N such that for any l ≥ L0:

1∑l
i=0 αi

<
1

β(l + 1)
⇐⇒ Al <

3l(3p+ 1)

2β(l+1)
.
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Given 3
2β

= 1 and Al is always positive, we have:

0 ≤ lim
l→+∞

(Al) ≤ lim
l→+∞

(
3l(3p+ 1)

2β(l+1)

)
=

3p+ 1

3

If Conjecture 2.2 is false, then for any L1 ∈ N there exists l ≥ L1 such that:

l−1∑
i=0

1∑l
j=l−i αj

≥
l−1∑
i=0

1

β(i+ 1)
⇐⇒ Bl ≥

l−1∑
i=0

3i

2β(i+1)
.

Considering that 3
2β

= 1 and that we can take L1 as large as desired, when l → +∞, the term:

l−1∑
i=0

3i

2β(i+1)
=

1

2β

l−1∑
i=0

(
3

2β

)i

=
1

2β
l

tends toward infinity. Hence:

lim
l→+∞

(vl) = lim
l→+∞

(Al) + lim
l→+∞

(Bl) = +∞

If this case were proven the sequence {vl} would diverge.

Second case: Conjecture 2.1 is false and Conjecture 2.2 is true
If Conjecture 2.1 is false, then for any L0 ∈ N, there exists l ≥ L0 such that:

1∑l
i=0 αi

≥ 1

β(l + 1)
⇐⇒ Al ≥

3l(3p+ 1)

2β(l+1)

And we have:

lim
l→+∞

(Al) ≥ lim
l→+∞

(
3l(3p+ 1)

2β(l+1)

)
=

3p+ 1

3

If Conjecture 2.2 is true, there exists L1 ∈ N such that for any l ≥ L1:

l−1∑
i=0

1∑l
j=l−i αj

<

l−1∑
i=0

1

β(i+ 1)
⇐⇒ Bl <

l−1∑
i=0

3i

2β(i+1)

And we have:

0 < lim
l→+∞

(Bl) ≤ lim
l→+∞

(
l−1∑
i=0

3i

2β(i+1)

)
= lim

l→+∞

(
1

2βl

)
= +∞

Hence:
lim

l→+∞
(vl) = lim

l→+∞
(Al) + lim

l→+∞
(Bl) >

3p+ 1

3
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If this case were proven, there would exist a rank L of the sequence {vl} such that for any l ≥ L, vl > 3p+1
3 .

Since p ≥ 1 and the sequence {vl} takes values in 2N+1, from rank L all the terms in the sequence would
be greater than or equal to 3.

Third case: both conjectures are false
In the case where both conjectures would be false, considering that for any L ∈ N there would exist l ≥ L

such that:

Al ≥
3l(3p+ 1)

2β(l+1)
and Bl ≥

l−1∑
i=0

3i

2β(i+1)

And given that:

lim
l→+∞

(vβl ) = lim
l→+∞

(
3l(3p+ 1)

2β(l+1)

)
+ lim

l→+∞

(
l−1∑
i=0

3i

2β(i+1)

)
= +∞

the sequence {vl} would diverge.

These three cases show that for any p ∈ 2N + 1, either the sequence {vl} diverges or there is a rank
from which its terms are always greater than or equal to 3. This contradicts the fact that the sequence
eventually enters the cycle of length 1 and value (1), whenever p is of the form 22a−1

3 , for a ∈ N∗, or
p ∈ {1, 3, 5, 7, 9, . . . , 8400511, . . . }. This leads us to conclude that both conjectures are necessarily true,
and that the sequence {vl} is truly upper bounded for all p ∈ 2N + 1, as demonstrated in Section 3.
Therefore, Theorem 3.1 is true. □

5 Cycles of the sequence

We are going to study whether the sequence {vl} can enter a cycle, under what conditions and what
cycles are possible. We will start with cycles of lengths 1, 2 and 3, and then study the general case. The
mathematical expression of the terms in the sequence, with the exponents αi, is the same as the one
presented in the introduction, and to simplify matters, we will start counting the exponents from 0. This
is equivalent to initialise the term v0 with the first value of a possible cycle.

The cyclicity condition common to the cycles of lengths 2, 3 and t lies in the fact that the cycle values
(within a cycle) must be different from one another. Otherwise, considering the definition of the sequence
{vl}, the repetition of a value would form a cycle of a shorter length.

5.1 Cycle of length 1

It will be demonstrated that for any odd value of p, the one and only cycle of length 1 into which the
sequence {vl} can enter is the cycle of value (1).

Theorem 5.1. For all p ∈ 2N+1, such that v0 = 3p+1
2α0

, the one and only cycle of length 1 in the sequence
{vl} can be the cycle of value (1).

Proof . The sequence {vl} has a cycle of length 1 if there exists L∈N such that for any l≥L, vl+1 = vl.
Let q the value of the term of rank l in the sequence, then vl+1 = vl if:

vl = q =
3q + 1

2α0
= vl+1 =⇒ q =

1

2α0 − 3
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This is only possible if 2α0 = 4 =⇒ α0 = 2, and implies that q = 1. Reciprocally, we check that if vl = 1

then for any k∈N∗, vl+k = 1. The only cycle of length 1 into which the sequence {vl} can enter from a
certain rank is therefore the cycle of value (1), which corresponds to the cycle of values (1, 4, 2) of the
sequence {un}. □

5.2 Cycle of length 2 or 3

It will be demonstrated that for any odd value of p, the sequence {vl} has neither a cycle of length 2 nor
a cycle of length 3.

Theorem 5.2. For any p ∈ 2N+ 1, such that v0 = 3p+1
2α0

, the sequence {vl} has neither a cycle of length
2 nor a cycle of length 3.

Proof there is no cycle of length 2. Similarly, the sequence {vl} has a cycle of length 2 if there exists
L∈N such that for any l≥L, vl+2 = vl. Let q the value of the term of rank l in the sequence, then vl+2 = vl

if:
q =

3 (3q + 1) + 2α0

2α0+α1
=⇒ q =

3 + 2α0

2α0+α1 − 9

This is only possible if q ∈ 2N + 1 and 2α0+α1 > 9 =⇒ α0 + α1≥4. For α0 + α1 = 4, we get that
q = 1 for (α0, α1) = (2, 2) and is not integer for the other values of (α0, α1). And for α0 + α1 > 4, q is
not integer because 2α0+α1 − 9 > 3 + 2α0 , for any α0≥1. Since for q = 1 we have established that the
sequence becomes stationary from rank l, the sequence {vl} cannot enter a cycle of length 2. □

Proof there is no cycle of length 3. The sequence {vl} has a cycle of length 3 if there exists L∈N
such that for any l≥L, vl+3 = vl. Let q the value of the term of rank l in the sequence, then vl+3 = vl if:

q =
32 (3q + 1) + 3.2α0 + 2α0+α1

2α0+α1+α2
=⇒ q =

9 + 3.2α0 + 2α0+α1

2α0+α1+α2 − 27

This is only possible if q ∈ 2N + 1 and 2α0+α1+α2 > 27 =⇒ α0 + α1 + α2≥5. For α0 + α1 + α2 = 5,
q is not integer. For α0 + α1 + α2 = 6, we obtain that q = 1 for (α0, α1, α2) = (2, 2, 2), and is not
integer for the other values of (α0, α1, α2). Finally, for α0 + α1 + α2 > 6, q is not integer because
2 (2α0+α1+α2 − 27) > (9 + 3.2α0 + 2α0+α1). Therefore, we conclude that the sequence {vl} cannot have
a cycle of length 3. □

5.3 Cycle of length t

After proving that the sequence {vl} cannot enter a cycle of length 2 or 3, we are going to demonstrate
that the sequence {vl} cannot have a cycle of length greater than or equal to 4.

Theorem 5.3. Let t ≥ 4, for any p ∈ 2N + 1, such that v0 = 3p+1
2α0

, the sequence {vl} has no cycle of
length t.

Proof . The sequence {vl} has a cycle of length t≥4 if there exists L∈N, such that for any l≥L, vl+t = vl.
Let q the value of the term of rank l in the sequence, such that q > 1 to discard the cycle of length 1 and

10



value (1), then vl+t = vl if:

q =
3t−1(3q + 1) +

∑t−2
i=0

(
3t−2−i

(
2
∑i

j=0 αj

))
2
∑t−1

i=0 αi

=⇒ q =
3t−1 +

∑t−2
i=0

(
3t−2−i

(
2
∑i

j=0 αj

))
2
∑t−1

i=0 αi − 3t

The cyclicity condition specific to the cycle of length t can also be expressed, such that for any k∈N∗,vl+kt =

vl, which is equivalent to:

q =
3kt−1 +

∑kt−2
i=0

(
3kt−2−i

(
2
∑i

j=0 αj

))
2
∑kt−1

i=0 αi − 3kt

Either for any k≥2 if:

q =
3t−1 + C1

2e1 − 3t
=

3kt−1 + Ck

2ek − 3kt

Where e1 =
∑t−1

i=0 αi, C1 =
∑t−2

i=0 3
t−2−i.2

∑i
j=0 αj , ek =

∑kt−1
i=0 αi, Ck =

∑kt−2
i=0 3kt−2−i.2

∑i
j=0 αj , which

gives: (
2ek − 3kt

) (
3t−1 + C1

)
=
(
2e1 − 3t

) (
3kt−1 + Ck

)
And finally, either for any k≥2 if:

2e1A = 3tB (5.1)

Where A = 3kt−1 + Ck − 2ek−e1 .3t−1 − 2ek−e1C1 is odd, and B = Ck − 3kt−tC1 is even.

First case A = B = 0

The equation 5.1 can have solutions if A = B = 0. However:

B =

kt−2∑
i=0

3kt−2−i.2
∑i

j=0 αj −
t−2∑
i=0

3kt−2−i.2
∑i

j=0 αj =

kt−2∑
i=t−1

3kt−2−i.2
∑i

j=0 αj > 0

The term B is a series that tends to +∞ when k −→ +∞, and given that it is always strictly positive,
this case is not possible.

Second case A < 0 and B > 0

If A < 0 then 2e1A < 3tB, this case is either not possible.

Third case A > 0 and B > 0

Since 2 and 3 are prime numbers and the decomposition of an integer into prime numbers is unique,
according to equation 5.1 we have:

A = 3tm and B = 2e1m

where m∈2N+1, because A is odd and B even. Since we are considering the possibility that the sequence
{vl} can have a cycle length of t, for any i ∈ {0, . . . , t−1, . . . , kt−2}, we will have αi ∈ {α0, . . . , αt−1}, and
the equation B = 2e1m will have a solution if there exist m ∈ 2N+ 1, t ≥ 4 and (α0, . . . , αt−1) ∈ (N∗)t,
such that for any k ≥ 2, B = 2e1m and A = 3tm.
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It is clear that for m = 1, for any t≥4 and (α0, . . . , αt−1)∈ (N∗)
t, simply take k = 2 to get B > 2e1m.

If there existed m > 1, t≥4 and (α0, . . . , αt−1)∈ (N∗)
t, such that for certain value of k≥2, B = 2e1m,

then, since we know that B tends toward infinity exponentially when k −→ +∞ and that it is possible
to take k as large as desired, it would be sufficient to take k + 1 for that B > 2e1m. So, there is no
m∈2N+1, t ≥ 4 and (α0, . . . , αt−1) ∈ (N∗)t such that for any k≥2, B = 2e1m, and therefore the equation
5.1 has no solution.

This implies that for any p∈2N + 1, there is no cycle of length t≥4 into which the sequence can enter
from a certain rank, and confirms that the sequence does not have a cycle of length 2 or 3, since there is
nothing to prevent t taking the value 2 or 3 in equation 5.1. Therefore, the sequence {vl} can have as its
only cycle the cycle of length 1 and value (1). □

6 Stationarity of the sequence

We have demonstrated that for all odd value of p, the sequence {vl} is upper bounded, that it is also
lower bounded by 1, and that consequently all its terms are in the finite set V p = {x∈2N+ 1 : x≤vωp},
where vωp was defined at the end of Section 3. It remains to be proved that for all odd value of p, all the
terms in the sequence are equal to 1 from a certain rank.

Theorem 6.1. For all p ∈ 2N+ 1, such that v0 = 3p+1
2α0

, all the terms in the sequence {vl} are equal to
1 from a certain rank.

Proof . Suppose that for any l∈N, vl ̸=1, then, since the only cycle of length 1 is the cycle of value (1),
there exist c∈N and t≥2 such that vc = q = vc+t, where q ∈ V p\{1}. Indeed, since we have demonstrated
that {vl} is an application from N to a finite subset of N (see Theorem 3.1), following the principle of
drawers (known as the pigeonhole principle), we know that there are at least two elements of N which
have the same image by the application {vl}.

Therefore, there exist c∈N and t≥2 such that:

vc+t = q = vc,

vc+t+1 =
3q + 1

2α0
= vc+1,

. . . ,

vc+2t =
3t−1(3q + 1)

2
∑t−1

i=0 αi

+

t−2∑
i=0

3t−2−i

2
∑l−1

j=i+1 αj

= vc+t = q,

. . .

Thus forming the following cycle:

vc−1 → vc → vc+1 → . . . → vc+t−1 → vc+t = vc → vc+t+1 = vc+1 → . . .

Now, we have just demonstrated that the sequence {vl} has no cycle of length t≥2 (See Theorems 5.2
and 5.3), which implies that there exists l∈N such that vl = 1. Therefore, for all p∈2N + 1, such that

12



v0 = 3p+1
2α0

, all the terms in the sequence {vl} will be equal to 1 from a certain rank, which corresponds
for the sequence {un} to repeating ad vitam aeternam the cycle (1, 4, 2). □

7 Conclusion

First, we have made conjectures about the sums of the exponents αi, whose accuracy has been proven,
then we have demonstrated that the sequence {vl} is bounded, and finally we have determined its possible
cycles. This allowed us to demonstrate that all the terms in the sequence are equal to 1 from a certain
rank, in other words that the sequence becomes stationary. The main stages of the demonstration can be
represented graphically as follows, where the black arrows correspond to the mathematical implications.

Reformulation
of the sequence

Conjectures on
the sums of

the exponents

Upper bound
of the sequence

Cycle 1 as
unique potential

cycle of
the sequence

And

Cycle 1 as
the end point of

the sequence

Stationarity of
the sequence

Figure 1. Diagram of the demonstration

Insofar as the sequence {vl} is equal to the sequence {un} without the even-valued terms of the latter
(see Section 1), we have demonstrated that for any q∈N∗, such that u0 = q, the sequence {un} always
ends up reaching the cycle (1, 4, 2). Thus, we have proved that the Collatz conjecture is true.
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8 Appendix

8.1 General formula for a term in a sequence {vl}

We know that the formula is valid for the second term in the sequence. Suppose that for l < L, where
L ≥ 2:

vl =
3l(3p+ 1) +

∑l−1
i=0

(
3l−1−i · 2

∑i
j=0 αj

)
2
∑l

i=0 αi

And calculate vl+1 as a function of vl:

vl+1 =
3vl + 1

2αl+1
=

3

 3l(3p+1)+
∑l−1

i=0

(
3l−1−i·2

∑i
j=0 αj

)
2
∑l

i=0
αi

+ 1

2αl+1

Thus, we get:

vl+1 =
3l+1(3p+ 1) +

∑l
i=0

(
3l−i · 2

∑i
j=0 αj

)
2
∑l+1

i=0 αi

This shows that for all l ∈ N∗:

vl =
3l(3p+ 1) +

∑l−1
i=0

(
3l−1−i · 2

∑i
j=0 αj

)
2
∑l

i=0 αi

8.2 Probabilities of the exponent values

For each term in the sequence {vl}l∈N∗ , such that 2γlvl−1 = 3vl−1 + 1, we have:

γl =
ln
(
3 + 1

vl−1

)
ln (2)

Although the values of the exponents are not the result of chance, insofar as for any i∈ [0, l] , γi ∈ ]1, 2[

and the exponents are strictly positive integers, the value of γi gives an indication of closeness. It is in
fact clear that if γi is closer to 2 than 1, the chances of αi being greater than or equal to 2, will be higher
than the chances giving αi = 1. Thus, we can consider that the probability that αi≥2 is γi− 1, while the
probability that αi = 1 is 1− (γi − 1).

8.3 Irrational nature of β (l + 1)

We will show that the term β (l + 1) introduced in Section 2 is irrational. Assume that β = ln(3)
ln(2) is

rational, then there exists (p, q)∈N∗ × N∗ such that:

ln (3)

ln (2)
=

p

q
⇐⇒ ln (3q) = ln (2p) ⇐⇒ eln(3

q) = eln(2
p) ⇐⇒ 3q = 2p

This is obviously false, so β is irrational. And consequently, so is β (l + 1), because a rational multiplied
by an irrational gives an irrational.
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8.4 Existence of βp

Let us take Lp = max{Lp
0, L

p
1} as defined in Section 3. The variables βi and Ki, below, also depend on p

but to simplify writing the exponent p has not been indicated. Let β0 ∈ R∗
+ such that β < β0, it is then

clear that for all l ∈ N∗:

vβ0

l =
1

2β0

(
3l(3p+ 1)

2β0(l)
+

l−1∑
i=0

3i

2β0(i)

)
<

1

2β

(
3l(3p+ 1)

2β(l)
+

l−1∑
i=0

3i

2β(i)

)
= vβl

Assume that there exists K1 ≥ Lp such that vβ0

K1
< vK1 < vβK1

and remind that according to Conjectures
2.1 and 2.2 for all l ≥ LP , vl < vβl , then, since it is possible to take β0 as close to β as desired, and that
the function fl : [β, β0] → R∗

+ defined by:

fl(x) =
1

2x

(
3l(3p+ 1)

2x(l)
+

l−1∑
i=0

3i

2x(i)

)

is clearly continuous and strictly decreasing for all l ∈ N∗, there exists β1 ∈]β, β0[ such that vK1 ≤
fK1

(β1) = vβ1

K1
< vβK1

, and so for all l ∈ [LP ,K2[, if there exists K2, or for all l ≥ LP , otherwise,
vl ≤ vβ1

l < vβl .

By induction, if there exists Ki > Ki−1 > K1 such that v
βi−1

Ki
< vKi

< vβKi
, then, for the same reasons,

there exists βi ∈]β, βi−1[ such that vKi
≤ fKi

(βi) = vβi

Ki
< vβKi

, and so and so for all l ∈ [LP ,Ki+1[, if
there exists Ki+1, or for all l ≥ LP , otherwise, vl ≤ vβi

l < vβl . Consequently, assuming that for any i ∈ N
there exists Ki > Ki−1 such that v

βi−1

Ki
< vKi

< vβKi
, for all l ≥ Lp there exists βϕ(l) ∈]β, β0] such that:

vl ≤ v
βϕ(l)

l < vβl

Where ϕ(l) =

0 if l < K1,

i if l ∈ [Ki,Ki+1[.

However, there cannot be an infinity of Ki such that v
βi−1

Ki
< vKi

< vβKi
and such that βi ∈]β, βi−1[ to

ensure that vKi
≤ vβi

Ki
, because considering that for all i ∈ N:

v
βi−1

Ki
< vKi ≤ vβi

Ki
< vKi+1 =⇒ vKi < vKi+1

the sub-sequence {vKi
} would diverge. Which would imply that the sequence {vl} also diverges, whatever

the value of p, thus contradicting the fact that for many values of p the sequence {vl} eventually reaches
the value 1, as demonstrated at the end of Section 4. The number of Ki is therefore finite and there
exists βp > β such that for all l ≥ LP , vl ≤ vβ

p

l < vβl .
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