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Abstract

     After introducing definitions related to the Collatz problem (Part
1), the concept of verified integers and several organizational rules
around this concept are presented (Part 2). A unique logical tool, the
axis of verified integers, is highlighted (Part 3). In Part 4, it is proven
that all bounded trajectories without non-trivial cycles are verified.
These elements allow the development of a systematic approach to
solving the Collatz problem with the help of inverse graphs (Part 5).
The issue of non-trivial cycles a n d divergent trajectories is then
explored (Parts 6 and 7).

     Ultimately, we arrive at two contradictory propositions:

1.  Either all integers satisfy the Collatz conjecture, or
2.  An infinite number of integers do not satisfy it.

     This eliminates the possibility that only a small number of integers
fail to satisfy the conjecture, while the rest do. The conclusion of this
study leans toward the first solution : all integers satisfy the Collatz
conjecture.
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Presentation of the problem

     The Collatz problem (also known as the (3n + 1) problem or the
Syracuse problem) was first proposed by Lothar Collatz in the 1930s.
Its statement is remarkably simple : the Collatz function associates
each positive integer n with a unique successor n′ such that:

• n′ = n / 2 if n is even
• n′ = (3n+1) / 2 if n is odd

     The successive results of iterating the Collatz function from any
given integer n are referred to as the « Syracuse trajectory of n ».

     The Collatz problem is to determine whether all Syracuse
trajectories, starting from any positive integer, eventually reach the
value 1 in a finite number of iterations. The Collatz conjecture is the
hypothesis that the answer is positive, meaning that all Syracuse
trajectories tend toward 1.

     Despite its simple formulation, this problem has remained unsolved
for over 80 years. The primary difficulty lies in the fact that the
operations of multiplication by (3n+1) / 2 or division by 2, depending
on the parity of the numbers obtained during the successive iterations,
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are difficult to predict based on the initial value. These operations
produce unpredictable results, resembling random phenomena.

     The approach proposed in this text is algorithmic in nature. Using
various logical techniques and an inverse graph-based framework, it
aims to provide a positive solution to the Collatz conjecture. The
significance of this approach is that other existing proofs obtained
through different methods can complement this algorithmic technique,
reinforcing the conclusions presented here.
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PART  1 

Definitions related to the Collatz problem

1)   The Collatz or Syracuse function

     Let's define the function C, known as the Collatz or Syracuse
function, which associates with any integer n € N* a unique integer
C(n) € N* such that :

     if n is even, C(n) = n / 2

     if n is odd,  C(n) = (3n + 1) / 2

2)   The trajectories Tn

     For any n € N* and i € N, we will define a sequence Tn (Syracuse
trajectory with the initial value n) composed of integers, which we
will represent in the form  Si (n) € N* with : 

     S0 (n) = n
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     Si+1 (n) = C(Si (n))  where C is the function defined previously.

     Thus, we can express  Tn as follows : for any n and i belonging to
N*,

Tn  = { n ; S1 (n) ; ... ; Si (n) ; Si+1 (n) ; ...} 

     For example, we have : 

     T1  = { 1; 2 ; 1 ; 2 ; 1 ; ...} 

     T3  = { 3 ; 5 ; 8 ; 4 ; 2 ; 1 ; 2 ; ... } 

3)   The set of verified integers V

     We will define n as a « verified integer » if there exists an integer k
such that Sk (n) = 1

     We will call V the set of verified integers.

     Proving the Collatz conjecture involves proving that V = N*.

4)   Verification of a trajectory

     The verification of a trajectory Tn  consists of determining whether
this trajectory converges to 1, meaning if there exists an integer k such
that Sk (n) = 1.
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5)   Even and Odd iterations

     In the following text, the general terms « odd iteration » or « even
iteration » will refer to an odd or even value, respectively, of any Sk

(n) belonging to any  Tn (thus leading to an odd iteration of the form 

C(Sk (n)) = (3Sk (n) + 1)/2 or an even iteration of the form C(Sk (n)) =
(Sk (n))/2, depending on the parity of Sk (n)). For example, saying
« there are three consecutive even iterations in this trajectory » means
that three even values occured in succession, leading to three even
iterations according to the Syracuse function. 
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PART  2 

Organizational rules for the set of verified
integers

     We can initialize the set of verified integers V by successively
verifying the trajectories for the first integers starting from 1 :

T1 = { 1 ; 2 ; 1 ; 2 ... } 
T2 = { 2 ; 1 ; 2 ; 1 ... }
T3 = { 3 ; 5 ; 8 ; 4 ; 2 ; 1 ; 2 ... }
T5 = { 5 ; 8 ; 4 ; 2 ; 1 ; 2 ... }
T7 = { 7 ; 11 ; 17 ; 26 ; 13 ; 20 ; 10 ; 5 ; 8 ; 4 ... }
T9 = { 9 ; 14 ; 7 ; 11 ; 17 ... }
T11 = { 11 ; 17 ; 26 ; 13 ... }

     For the first 11 trajectories, we observe that the set of verified
integers is equal to : (1 ; 2 ; 3 ; 4 ; 5; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; 13 ; 14 ; 17 ;
20 ; 26 ). It is noted that the trajectories for 4, 6, 8 and 10 do not need
to be studied, as their initial values are even, and they are divided by 2
in the first iteration, joining the trajectory of a previously verified
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value. Moreover, T 5  also did not need to be calculated because the
value 5 appeared in T3 . Therefore, we already know how the
trajectory from the value 5 evolves, we just need to refer to T3 .

     We will formalize these observations. Indeed, the set of verified
integers has internal rules.

1) Every value in a verified trajectory is automatically
considered verified

     We have :     T1 = { 1 ; 2 ; 1 ; 2 ; 1 ; ...}

     T1 is called the trivial cycle because as soon as a trajectory reaches
the value 1, it enters this trivial cycle, alterning between 1 and 2.

     Suppose n € V. This means that there exists an integer k such that
Sk (n) = 1.

     Thus, we have Tn = { n ; S1 (n) ; … ; Sk-1 (n) } + T1

     All Sp (n) with p € [1;k-1] belong to V.

     Indeed, since all Sp (n) are unique integers, clearly determined and
ordered by the Syracuse algorithm, we have : 

     TSp(n) = { Sp (n) ;  Sp+1 (n) ; … ; Sk-1 (n) } + T1

     As a result, we obtain the following theorem : 
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THEOREM 1 

     If n € V this implies that there exists an integer k such that Sk (n) =
1. Every integer Sp (n), for any p € [1 ; k-1], belongs to V. 

     Note : to take an example, 
     T3 = { 3 ; 5 ; 8 ; 4 ; 2 ; 1 ; 2 ; ... }. 

     The odd integer 5 appears in T3, which reaches 1 in a finite number
of iterations. Therefore, 5 is a verified integer ; we know that T5

reaches 1 in a finite number of iterations, so there is no need to
calculate the successive terms of T5  to be certain that T5  is verified.

2)   When a non-verified trajectory equals a verified integer, it
is automatically verified

     If one of the Sj (n) is equal to a verified integer n', then n is verified.

     For any n € N* and j € N, if Sj (n) = n' with n' € V, then there exists
a finite integer m such that : 
     T n' = { n' ; S1 (n') ; ... ; Sm-1 (n') } + T1  

     Hence,
     T n = { n ; S1 (n) ; ... ; Sj-1 (n) } + { n' ; S1 (n') ; ... ; Sm-1 (n') } + T1

     j and m are integers, so T n reaches the integer 1 in a finite number
of iterations. Therefore, n is a verified integer.

     As a result, we obtain the following theorem : 
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THEOREM 2 

     For any n € N* and j € N*, if Sj (n) = n' with n' € V, then n € V. 

     Note : to take an example T9 = { 9 ; 14 ; 7 ; 11 ; 17 ... }. The
integer 7 is verified because T7 is verified. T9 reaches a verified
integer in a finite number of iterations. Therefore, 9 is a verified
integer : we do not need to continue the calculations until reaching 1
to be certain of this.

3)   Every verified integer multiplied by any power of 2 is a
verified integer

     Suppose n € V. This implies that there exists an integer k such that
Sk (n) = 1.

     For any d belonging to N*, we have : 

     Tn·2
d = { n·2d  ; n·2d -1 ; ... ; 2n } + { n ; S1 (n) ; … ; Sk-1 (n) } + T1 

     k and d are integers, so Tn·2
d reaches the integer 1 in a finite

number of iterations.

     As a result, we obtain the following theorem : 

THEOREM 3
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     For any n and d € N*, if n € V, then n·2d € V. 

4)  Decomposition of the set of verified integers 

     We will decompose the set of verified integers V into three
subsets :

a) a finite subset A(n) consisting of an initial block [1 ; n] of verified
integers (computer calculations have shown, for example, that all
integers less than  n = 1020  verify the Syracuse conjecture).

b) a finite subset B(n) of verified odd integers belonging to [n+1 ; +∞[
. (B(n) consists of odd integers greater than n that appeared during the
successive verifications of the trajectories of A(n), see theorem 1).

c) an infinite subset C(n) of verified even integers belonging to [n+1 ;
+∞[. (C(n) consists of the set of verified integers belonging to A(n)
and B(n) multiplied by all powers of 2, see theorem 3).

     We can note that V is an infinite set. Moreover, each new verified
trajectory generates an infinite number of new verified integers.
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PART 3  

  The axis of verified integers

     Let's consider the set N*, as a vertical axis, starting from 1 and
extending to infinity, consisting of a pile of equal squares, each square
or cell being characterized by its numerical value, indicating its
position in N*.

     We will refer to such an axis as the « axis of verified integers »,
defined as follows :

   a) The cell for a given numerical value is white if the value in
question does not belong to V. The cell in question is said to be
unverified.

   b) The cell for a given numerical value is black if the value in
question belongs to V. The cell in question is said to be verified.

   c) An unverifed cell can become verified.

   d) Once a cell is verified, it remains so permanently.
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     If a trajectory during its iterations equals a verified cell, then all
cells of the trajectory are verified and become black (theorem 1 and
2). Every verified cell multiplied by all powers of 2 is verified
(theorem 3).

     Depending on the parity of the results of the iterations, the
trajectories go up (thanks to one or more successive odd iterations) or
go down (thanks to one or more successive even iterations) along the
axis of verified integers.

     As the successive verifications of Syracuse trajectories occur, the
number of verified integers along the axis increases (theorem 1).

     Let's consider this axis as having a starting set A(n). Since this axis
has a starting set A(n), it also has a finite set B(n) and an infinite set
C(n) (see Part 2 section 4) ).
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PART 4

The bounded trajectories with no non-trivial
cycles are verified

     Let us first assume that the Syracuse trajectories we analyse are all
bounded and do not contain non-trivial cycles. The problem of the
axis of verified integers then transforms into a sieve problem, of an
algorithmic nature.

     The case of non-trivial cycles will be addressed later (Part 6)

     The case of unbounded trajectories will also be analysed later
(Part 7) : we will assume the existence of a divergent, hence
unbounded, trajectory, and we will study the probabilities of the
existence of such a trajectory.

1)  The upper bound M   

     Let us assume that the axis of verified integers is equipped with an
initial set of verified integers A(n). Consider the trajectory starting at
n', a non-verified integer. We assume that the Syracuse trajectory of n'
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is bounded by M.

2)  The interval [n ; M] contains verified integers
 
     On the interval [n ; 2n], all even integers are verified, since all
integers in A(n) are verified.
     On the interval [2n ; 4n], half of the even integers are verified.
     On the interval [n·2i-1 ; n·2i], a proportion of 1/2i - 1 of all even
integers are verified.

     Thus, the interval [n ; M] contains at least these verified integers, at
least for those below M.

3)  Use of the verified integers sieve

 
    We assume that there is no non-trivial cycles in the considered
trajectory. Thus the trajectory of n' evolves between 3 and M without
entering a cycle.

      By the definition of the Collatz function, C(a) ≠ a for every integer
a € N*. Since the trajectory is bounded by M and we have assumed
that it has no non-trivial cycle, the trajectory will take different values
each time within the interval  [3 ; M].

     Since there are some verified integers in the interval [n ; M], the
Syracuse trajectory of n' has only three possible outcomes : 

a)  It becomes equal to a verified integer in [n ; M] and is therefore
verified.  

b)  It decreases below n, becomes equal to a value in A(n), and is
therefore verified.
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c)  It continues iterating until exhausting the possibilities of non-
verified integers within [n ; M]. Indeed, the trajectory cannot remain
constant since C(a) ≠ a for every integer a, and it cannot take the same
value twice, otherwise we would have a non-trivial cycle. This is
because each trajectory follows a clearly defined path, and if it revisits
a previously taken value, it will inevitably enter a non-trivial-cycle.
    Once all possible non-verified integers within [n ; M] are
exhausted, the next step for the trajectory is to reach a verified integer,
and thus, it becomes verified.

     We thus arrive at the following result : 

Theorem 4

     Consider an axis of verified integers with an initial set A(n). If the
Syracuse trajectory of n', an arbitrary non-verified integer, is bounded
and has no non-trivial cycle, then it is verified.

     From this theorem, we can deduce that as long as there is no
unbounded (i.e., divergent) trajectory and no non-trivial cycle, the
trajectories with starting values greater than A(n) are automatically
verified. The only obstacles to this verification process are therefore
the possibility of divergent trajectories and trajectories with non-trivial
cycles.

     We will examine the probabilities of existence of such trajectories
i n Parts 6 and 7. To do so, we will first address the question of
inverse graphs in Part 5.
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PART 5 

The inverse graphs

1)   Presentation of the problem

     We can observe that the Collatz function is not injective because,
to give just an example, C(3) = C(10) = 5. This means that some
values can have multiple predecessors.

     Definition : if we call z the predecessor of p under the Collatz
function, we have C(z) = p.

    Thus, 3 and 10 are predecessors of 5. Every integer p has at least
one predecessor, coming from an even iteration, which is simply twice
the integer in question. Indeed, C(2p) = p. However, under certain
conditions that we will analyze, the integer p may have a predecessor
smaller than p, coming from an odd iteration.

     Let's take the example of the verified integer 5 :

    Starting from 5, by multiplying by powers of 2, we can see that 10,
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20, 40 and 80 are, for instance, automatically verified. And some of
these values have odd predecessors : for example C(3) = 5, C(13) = 20
and C(53) = 80. Since the integers 3, 13 and 53 lead to a verified
integer under the Collatz function, they are considered verified
(Theorem 2). They themselves will have predecessors, and so on. The
numbers 10 and 40 do not have odd predecessors, only even ones.

     Therefore, we see that starting from the integer 5, certain
predecessors are known : 3, 10, 20, 40, 80. These predecessors
themselves have other predecessors : 13, 53... Hence, starting from
any integer p, we can create an infinite number of predecessors, as we
will have at least the infinity of p·2d as predecessors. 

2) The construction of inverse graphs

     We will now present in more detail what we can call the inverse
Collatz graph : 

     Suppose we start with an integer p, and we seek to determine if p
has an odd predecessor m = 2k + 1 such that (3m+1) / 2 = p

     We easily obtain m = (2p-1) / 3

      Thus, 2k + 1 = (2p – 1) / 3 and p = 3k + 2.

     Therefore, if p = 3k + 2, p admits an odd predecessor of the form m
= 2k + 1

     If p = 3k, then 2p - 1 = 6k – 1, which is never divisible by 3.

     If p = 3k + 1, then 2p – 1 = 6k + 1, which is never divisible by 3.

     Thus, if p = 3k or p = 3k + 1, p does not admit odd predecessor.

20



     We can then define the inverse Collatz relation of p, which gives
the predecessor of p, and which we will call I : 

     Definition : we can define the inverse Collatz relation I, which
associates to each p the integers I(p), the predecessors of p, defined as
follows:

     I(p) = {2p} if p = 3k or p = 3k + 1
     I(p) = {2p ; (2p – 1) / 3} if p = 3k +2

     Thus, we can see that I(p) gives us the predecessors of p according
to the Collatz application. Starting from the relation I, we can
iteratively construct the inverse Collatz graph of any integer p, which
we will call G(p).

     Definition : starting from any integer p, we look for I(p), i.e., the
predecessors of p. In the first step, the elements of the inverse graph
G1(p) are equal to I(p)

In the second step, we look for the predecessors of the predecessors
found in the first step. In the second step, G2(p) is equal to G1(p), plus
the new predecessors we have just found.

In step (k+1), we look for the predecessors of the predecessors found
in step k. Gk+1(p) is equal to Gk(p), plus the predecessors just found in
step (k+1).

By repeating this process indefinitely, we obtain G(p), the inverse
graph of p.

This means that any Collatz trajectory, starting from any integer
belonging to G(p), the inverse graph of p, will necessarily lead to p. 

     We can detail this process as follows :
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     Suppose I(p) = {p1 ; p2}

     Then we have G1(p) = {p1 ; p2}

     Suppose I(p1) = {p3} et I(p2) = {p4 ; p5}

     Then we have G2(p) = G1(p) U { p3 ; p4 ; p5}

     Suppose I(p3) = {p6 ; p7}, I(p4) = {p8} et I(p5) = {p9 ; p10}

     Then we have G3(p) = G2(p) U {p6 ; p7 ; p8 ; p9 ; p10}

     And so on.

     Example with p = 17 :

     17 is of the form 3k + 2. Therefore, I(17) = {34 ; 11}.

     We then analyze I(34) = {68}   I(11) = {22 ; 7}

     Next I(68) = {136 ; 45}   I(22) = {44}   I(7) = {14}

     Thus, we see that the inverse graph G(17) evolves as follows :

     G1(17) = {11 ; 34}

     G2(17) = {7 ; 11 ; 22 ; 34 ; 68}

     G3(17) = {7 ; 11 ; 14 ; 22 ; 34 ; 44 ; 45 ; 68 ; 136}

     All values in G3(17) have trajectories leading to 17.

     S3 (136) = 17

     S3 (44) = 17

     S2 (7) = 17
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3) First results

a)     First of all, the inverse graph of an integer p includes the inverse
graphs of all the elements that constitutes the inverse graph of p.
Indeed, we progressively compute all the predecessors of p, then the
predecessors of these predecessors, continuing this process
indefinitely. The predecessors of each of these predecessors - that is,
the inverse graph of each of these predecessors, will be included in the
inverse graph of the initial integer p.

     If G(p) = {p1 ; p2 ; … ; pi ; pi+1 ; ... }, then we have : 

     G(p) = G(p1) U G(p2) U... U G(pi) U G(pi+1) U ...

     Thus, we obtain the following result :

THEOREM 6 

     The inverse graph of an integer p includes all the inverse graphs of
the elements that compose the inverse graph of p.

b)     On the other hand, we can observe that the inverse graph of any
integer p is an infinite set. Indeed, according to the construction of
inverse graphs, each inverse graph G(p) contains at least an infinite
number of values corresponding to the set of p·2d  for any d.

     Thus, we obtain the following result : 

THEOREM 7
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     The inverse graph G(p) of any integer p is an infinite set.

c)     Moreover, suppose we seek the inverse graph G(p) of a verified
integer p. Since every Syracuse trajectory that starts from an element
of an inverse graph G(p) leads to p, all these trajectories are verified
(see theorems 1 and 2). Thus we can state that if p is verified, then
the entire inverse graph of p is verified. 

     As a result, we obtain the following theorem : 

THEOREM 8

     All elements of the inverse graph of a verified integer are verified. 

d)     Finally, we can state that if at least one element of the inverse
graph of any integer is verified, then the entire graph is verified.
     Indeed, all trajectories starting from a value within the inverse
graph of any integer p lead to that integer p. If one of the values in this
inverse graph is equal to a verified integer, it means its trajectory leads
to 1. Thus the trajectory equal to a verified integer leads not only to p
but also to 1.
     This implies that p converges to 1, meaning p is verified. Since p is
verified, its entire inverse graph is also verified (by theorem 8)

     Thus we arrive at the following result :

THEOREM 9
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     If an element of the inverse graph of any integer is verified, then
the entire inverse graph is verified.

4)  Application of the results to G(1)

     We can observe that all inverse graphs of the verified integers are
included in the inverse graph of 1, i.e., G(1), because, by definition,
all the values of these inverse graphs have trajectories leading to 1
(Theorems 6 and 8).

     The question that arises is the following : does the union of all
inverse graphs of all verified integers, i.e., G(1), cover N* ? This
would mean that G(1) progressively fills the axis of verified integers,
leaving no unverified integer. The Collatz conjecture can, in fact, be
reformulated as follows : proving that the inverse graph G(1) is equal
to N*, which is equivalent to saying that all integer trajectories
converge to 1.

     Experimental computer verifications show that all integer
trajectories up to 1020 converge, without exception, to 1. This means
that all these integers up to 1020 are contained in G(1). It also implies
that G(1) is at least the union of all inverse graphs of integers up to
102 0 without exception. Since an inverse graph contains an infinite
number of values, we understand that the union of all these inverse
graphs will progressively fill the axis of verified integers, making it
increasingly obscured in an irreversible manner (see Part 3).

     Eric Rosendaal is one of the people who contributed to verifying
the Syracuse conjecture for the first 1020  integers. On Eric Rosendaal’s
website (see ericr.nl, “3x+1 delay records”), it is observed that the
maximum flight times for integers up to 1020 do not exceed 3000. This
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means that a maximum of 3000 iterations is required for a Syracuse
trajectory to reach 1 from any starting point in the interval [1;1020 ]. If
we reverse the reasoning and consider the perspective of inverse
graphs, this also means that a maximum of 3000 iterations of the
inverse graph of 1 is sufficient to fully cover the interval [1;102 0 ] in
verified integers.

     When we observe that 3000 iterations in the construction of G(1)
are sufficient to verify all integers in the interval [1;102 0 ] - that is,
hundreds of billions of billions of integers - we may wonder what the
upper bound of A(n) will be when billions and billions of iterations
are applied to G(1). The more iterations are applied to G(1), the more
the initial set A(n) will progressively cover increasingly larger
intervals of N*.

     We must note that the construction of inverse graphs follows an
algorithmic process. This approach is therefore time-dependent.
However, we can also consider the entirety of the inverse graph of 1 -
or of any other integer - as already existing: the set of values leading
to 1 is, at a philosophical level, already present, true, and real, even if
we do not yet have the exact algorithmic and numerical confirmation
of all these values at the present moment. The algorithmic approach
merely reveals, step by step, the infinite and actual extent of each
inverse graph, particularly that of G(1).

5) Hypothesis that G(1) does not cover all of N*

     We have just seen that the union of billions upon billions of inverse
graphs of already verified integers makes the axis of verified integers
increasingly dark (see Part 3). Conversely, the set of integers that
have have not yet been verified on this axis becomes increasingly
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discontinuous.

     For a trajectory to remain unverified, it must necessarily transition
only between unverified integers. However, as we verify more
integers through successive iterations of G(1), the probability that any
remaining Syracuse trajectories (starting above the upper bound of
A(n)) will encounter a verified integer increases. This, in turn, causes
these trajectories to be verified more quickly, thereby generating even
more verified numbers (Theorems 1 and 2). Indeed, all these verified
trajectories and inverse graphs evolve along the same axis - the axis of
verified integers - which, with each verification step or extension of
G(1), continues to be filled with verified integers.

     This suggests that G(1) progressively covers all of N* as iterations
accumulate. Now, let us suppose that G(1) does not entirely cover N*.
This would imply the existence of "residual" integers whose
trajectories do not converge to 1. Such integers, which do not belong
to G(1), would necessarily be part of either a divergent trajectory or a
non-trivial cycle. Indeed, these are the only remaining possibilities,
since any bounded trajectory without a non-trivial cycle is
automatically verified (see Part 4). We will analyze these two
possibilities in Part 6 and 7, first the possibility of a non-trivial cycle
and then the possibility of a divergent trajectory.
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PART 6

The question of non-trivial cycles

     In Part 4, we showed that all bounded trajectories that do not
contain non-trivial cycles are verified. We will now examine the
hypothesis that one of the trajectories might contain a non-trivial
cycle.

     If we assume the existence of a non-trivial cycle in one of the
trajectories, then this trajectory must be bounded, as it cannot both
enter a non-trivial cycle and diverge. These two propositions are
contradictory. Indeed, once a trajectory enters a non-trivial cycle, it
continues to repeat this cycle indefinitely. The trajectory is thus
bounded by either the maximum value M of the non-trivial cycle or by
the maximum value M′ reached by the trajectory before entering the
non-trivial cycle. In both cases, a trajectory that contains a non-trivial
cycle is necessarily bounded.

     We can also observe that if there exists a trajectory with a non-
trivial cycle, then there must be an infinite number of such
trajectories. Indeed, consider the inverse graph of any value belonging
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to a trajectory with a non-trivial cycle. All values in this inverse graph
will have trajectories leading to the trajectory that contains the non-
trivial cycle. Moreover, the inverse graph of any integer is infinite
(Theorem 7).

     Thus, we obtain the following result :

THEOREM 10

     If there exists a trajectory with a non-trivial cycle, then there exists
an infinite number of trajectories with non-trivial cycles.

     Furthermore, no element of the inverse graph of the values in a
non-trivial cycle can be equal to a verified integer (Theorem 9). If
even a single one of these values were equal to a verified integer, it
would imply that at least one term of the non-trivial cycle converges
to 1, which would contradict the assumption that the trajectory
contains a non-trivial cycle.

     Thus, we obtain the following result : 

THEOREM 11

     If even a single value in the union of the inverse graphs of all terms
of a hypothetical non-trivial cycle is equal to a verified integer, then
the cycle cannot exist, and all these values must converge to 1.
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     In addition to Theorem 11, the characteristics of a non-trivial cycle
in a Syracuse trajectory impose various constraints. An analysis
conducted by S. Eliahou on the structure of non-trivial cycles in
Syracuse trajectories (S. Eliahou : the 3x+1 problem: new lower
bounds on non-trivial cycle lengths) states that if the first 252 integers
are verified (which they are, since the first 268 integers have been
verified), then the lower bound for the number of iterations in a non-
trivial cycle is 187,363,077. Moreover, we know that as the initial set
of verified integers A(n) increases, the lower bound for the number of
iterations in a non-trivial cycle also increases. If the upper bound of
A(n) exceeds 21000 then the lower bound for a non-trivial cycle would
be approximately 3.45·10500 .

     Thus, we face a double constraint : the larger the union of multiple
inverse graphs of all already verified integers (as they expand through
successive iterations of theses graphs), the more the axis of verified
integers fills up, leaving fewer unverified integers available on this
axis. This most likely leads to an ever-growing set A(n). However, the
larger the initial set of verified integers A(n), the greater the lower
bound for the number of iterations in a non-trivial cycle, reaching
extremely large values.

     A non-trivial cycle, since it cannot tend toward 1, must necessarily
transition only between unverified integers. It seems difficult to
conceive of non-trivial cycles with a minimum length of several
hundred million unverified integers without encountering a verified
integer - especially in the context of an ever-expanding set of verified
integers, leading to a progressive disappearance of unverified integers.

     Additionally, the verified integers forming the minimal length of a
non-trivial cycle would not be randomly distributed; they would have
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to be perfectly ordered according to the proportions dictated by the
properties of Syracuse trajectories. This further reduces the probability
of such a non-trivial cycle existing. Moreover, Theorem 10 shows
that if a non-trivial cycle exists, then an infinite number of trajectories
with non-trivial cycles must also exist, making this possibility even
more unlikely. This would imply the existence of an infinite number
of unverified integers, which contradicts various probabilistic
approaches (see, for example, Terence Tao : Almost all orbits of the
Collatz map attain almost bounded values), as well as inverse graph
analyses, both of which suggest that the probability of integers failing
to satisfy the conjecture is nearly zero. The increasingly discontinuous
nature of the set of unverified integers makes the hypothesis of a
nontrivial cycle lasting at least several hundred million iterations with
unverified integers highly improbable. Additionally, Theorem 11
requires that all values in the inverse graphs of the terms in a
hypothetical non-trivial cycle must never be equal to a verified
integer.

     Thus, we obtain the following result :

RESULT 1

     The probability of the existence of a Syracuse trajectory with a
non-trivial cycle is extremely low.
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PART 7

The question of divergent trajectories

     In Part 4 we showed that if all trajectories are bounded and contain
no non-trivial cycles, then they are verified. We have just examined
the hypothesis that trajectories might have non-trivial cycles and
concluded that the probability of a trajectory containing a non-trivial
cycle is very low.

     We now turn to the second unresolved hypothesis from Part 4 -
namely, whether a trajectory could be divergent, meaning that it is not
bounded.

     First, we can observe that if a divergent trajectory exists, then an
infinite number of such trajectories must exist. Consider the inverse
graph of any value in the divergent trajectory. All values in this
inverse graph will have trajectories leading to the divergent trajectory.
Moreover, the inverse graph of any integer is infinite (Theorem 6).

     Thus, we obtain the following result :
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THEOREM 12

     If a divergent trajectory exists, then an infinite number of divergent
trajectories exist.

     Furthermore, no element in the inverse graph of the values of a
divergent trajectory can be equal to a verified integer (Theorem 9). If
even one such value were equal to a verified integer, it would mean
that at least one term in the divergent trajectory converges to 1, which
would contradict the very definition of a divergent trajectory.

     Thus, we obtain the following result :

THEOREM 13

     If even one value in the union of the inverse graphs of all terms in a
hypothetical divergent trajectory is equal to a verified integer, then the
divergent trajectory cannot exist, and all such values must converge to
1.

     If a divergent trajectory exists, it means that each upper bound
reached by the trajectory is eventually surpassed by another upper
bound, and this process continues indefinitely. This implies that the
trajectory evolves within the limits of an upper bound, as we discussed
i n Part 4, without ever being equal to a verified integer. It then
surpasses this bound, evolves within the limits of a new upper bound
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without being equal to a verified integer, surpasses it again, and so on
infinitely.

     The same challenge we faced in needing to find several hundred
million non-verified integers to meet the minimal conditions for the
existence of a non-trivial cycle applies here : we would need an
infinite number of non-verified integers to support a divergent
trajectory. Here again, a major difficulty arises - executing an infinite
number of iterations while transitioning only between non-verified
integers, never equaling a verified integer, in the context of a
continuously growing set of verified integers and an almost zero
probability of the existence of integers that do not satisfy the
conjecture.

     It is as if the increasingly discontinuous set of non-verified integers
is incapable of "supporting" the infinite inverse graphs of the elements
of a divergent trajectory, which would require an infinite number of
non-verified integers while never equaling a verified integer.

     Thus, we arrive at the following result :

RESULT 2

     The probability that a divergent Syracuse trajectory exists is
extremely low.
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Conclusion

     We showed in Part 4 that all Syracuse trajectories that are bounded
and contain no non-trivial cycles are verified without exception. In
Parts 6 and 7, we observed that the probabilities of a Syracuse
trajectory being divergent or containing a non-trivial cycle are
extremely low. This is primarily due to two reasons :

1. Inverse graphs and probabilistic approaches suggest that the
probability of integers failing to satisfy the Syracuse conjecture
is very low.

2. A single integer failing to satisfy the conjecture would
necessarily imply the existence of a divergent trajectory or a non-
trivial cycle, which in turn would require an infinite number of
non-verified integers. Indeed, every element of the inverse
graphs of all terms within the non-trivial cycle or divergent
trajectory would also need to be non-verified.

     This discrepancy - between the estimated low number of integers
that might not satisfy the conjecture and the necessity of having an
infinite number of non-verified integers to sustain a hypothetical
divergent trajectory or a non-trivial cycle with a minimum length of
several hundred million terms - suggests that the probabilities of such
structures existing are extremely low.
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     In summary, we face two contradictory hypotheses:

(a) First hypothesis : There are no divergent trajectories and no non-
trivial cycles. All trajectories fall within the framework of Part 4 and
are thus verified. The Collatz conjecture holds, confirming that
G(1)=N*, since all trajectories tend toward 1.

(b) Second hypothesis : At least one integer is non-verified, meaning
that none of the elements in the inverse graphs of at least several
hundred million non-verified integers can be equal to a verified
integer.

     The study we have conducted strongly suggests that the probability
of G(1)=N* is extremely high, while the probability of the existence
of a divergent sequence or a non-trivial cycle is extremely low.

     The theoretical significance of the axis of verified integers is that
multiple research avenues can build upon this concept. For example,
we have seen that certain results concerning the structure of non-
trivial cycles impose constraints that make the existence of such
cycles highly improbable. By cross-referencing various findings -
whether from inverse graph theory, probabilistic approaches,
statistical verifications, or other domains - we can strengthen our
confidence that the conjecture holds. The fewer theoretical cases that
do not satisfy the conjecture, the less free space these increasingly rare
cases will have to maneuver along the axis of verified integers. In fact,
based on our current understanding, a very large number of non-
verified integers would be required to even hope to establish a
possibly non-verified trajectory.

     The advantage of inverse graphs is that they are computationally
accessible. A simple program could compute the inverse graphs of any
given integer. In terms of computational efficiency, it seems far more
practical to calculate the successive values of G(1) directly rather than
verifying each individual trajectory within the interval [1;102 0 ].
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Indeed, fewer than 3,000 iterations of G(1) are sufficient to verify all
integers within [1;102 0 ] (see Part 5, section 4). By carrying out this
iterative work on G(1), we could analyze the rate of evolution of this
set, particularly focusing on the initial set of verified integers A(n) that
constitutes it. 

     More and more proofs are converging toward confirming the
conjecture. The goal would be to assemble all these findings into a
coherent framework, leading to an almost certain confirmation that the
Collatz conjecture is valid. This would serve as an approximate
solution to the problem while awaiting a definitive, rigorous proof.
However, it is entirely possible that the Collatz problem is
undecidable (see J .H. Conway: "On unsettleable arithmetical
problems"). This could explain why no conclusive solution has been
found in over 80 years.
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