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Abstract
In this article, we examine the case of a body following a nongeodesic centripetal trajectory in

the Schwarzschild metric while maintaining a constant fraction of the speed of light. At any moment,
light signals can be sent to the body and recovered after reflecting off its surface. Nevertheless, in its
own comoving reference frame, the body would require only a finite amount of proper time to reach
the Schwarzschild radius. This raises a paradox: the ability to send and recover signals implies that
the body remains outside the event horizon, contradicting the usual interpretation of gravitational
collapse based on finite proper time. As the body follows a nongeodesic trajectory, we compute the
four-force necessary to sustain its motion.

1 Introduction

In a previous study, we analyzed the transmission of light signals between a freely falling body following
a geodesic trajectory and a fixed point in the Schwarzschild metric [1]. We showed that if the body
begins its motion at t0 = 0, there exists a critical time ∆tmax beyond which no light signal emitted from
a fixed point at r = r0 can ever reach the freely falling body. This observation might seem consistent
with the common interpretation that a freely falling body reaches the event horizon in a finite proper
time, while a distant observer perceives the process as infinite due to the increasing delay of light signals
emitted near the Schwarzschild radius.

Yet, we previously argued against this explanation by drawing an analogy with special relativity: A
particle asymptotically approaching the speed of light also ceases to receive signals from a fixed point
after a certain time. While it would reach the speed of light in its own reference frame in a finite proper
time, it distinctly never attains that speed. Thus, the requirement of a finite proper time to complete a
process does not necessarily imply that the process is ever fully completed, as the system’s “clocks” may
slow down to the extent that the finite proper time interval never effectively elapses.

To reinforce this argument, we now examine the motion of a body moving at a constant fraction β
of the speed of light. Since the trajectory is non-geodesic, an external force is required to sustain it,
such as a hypothetical tether to a continuously operating rocket. Although maintaining such a force
indefinitely is practically unfeasible, no fundamental physical law forbids it. We show that even though
the body would reach the Schwarzschild radius in a finite proper time, light signals can still be sent to
it at arbitrarily late times and recovered. This proves that the body remains outside the event horizon
not merely in appearance but as a physical reality.

2 Mathematical formulation and analysis

As is well known, the Schwarzschild metric can be written as follows [1]:

ds2 = c2
(
1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2. (1)

Since we consider purely radial trajectories, with dθ = dϕ = 0, the motion satisfies the following
condition:

ds2 = c2
(
1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1

dr2. (2)
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2.1 Motion of a body at a constant fraction β of the speed of light

Light trajectories satisfy the condition

ds2 = 0,

which implies that ∣∣∣∣drdt
∣∣∣∣ = c

(
1− 2GM

c2r

)
. (3)

Now, consider a body descending from an initial radius r0 to the event horizon at rS = 2GM
c2 , while

maintaining a constant fraction β of the speed of light:

dr

dt
= −βc

(
1− 2GM

c2r

)
= −βc

r − 2GM
c2

r
, (4)

where the negative sign takes into account that the motion is directed inward.
To solve equation (4), we introduce the following change of variables:

r∗ = r − 2GM

c2
, dr = dr∗, (5)

so that

dr∗

dt
= −βc

r∗

r∗ + 2GM
c2

=⇒
(
1 +

2GM

c2r∗

)
dr∗ = −βcdt. (6)

Integrating both sides, we obtain:[
r∗ +

2GM

c2
ln r∗

]r∗(t)
r∗0

= [−βct]
t
t0
, (7)

which yields

r∗ − r∗0 +
2GM

c2
ln

(
r∗

r∗0

)
= −βc(t− t0), (8)

or, in terms of the original coordinates,

r − r0 +
2GM

c2
ln

(
r − 2GM

c2

r0 − 2GM
c2

)
= −βc(t− t0). (9)

We set t0 = 0 as the moment when the body departs from r = r0, so that

r∗ − r∗0 +
2GM

c2
ln

(
r∗

r∗0

)
= −βct, (10)

r − r0 +
2GM

c2
ln

(
r − 2GM

c2

r0 − 2GM
c2

)
= −βct. (11)

For t ≫ t0, where r∗ ≈ 0, r∗0 ≈ 0, and r ≈ 2GM
c2 , the equations (10) and (11) can be approximated as

follows:

r∗ ≈ r∗0e
c2

2GM (r∗0−βct), (12)

r ≈ 2GM

c2
+

(
r0 −

2GM

c2

)
e

c2r0
2GM −1e−

c2

2GM βct. (13)
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2.2 Signal transmission

Assume that at t0 = t1, we send a light signal to the falling body from r0. Since for light β = 1, its
trajectory, according to equation (9), is given by:

rL − r0 +
2GM

c2
ln

(
rL − 2GM

c2

r0 − 2GM
c2

)
= −βc(t− t1). (14)

The light signal reaches the body at t = ta, when rL = r. From equations (11) and (14), this occurs
at

c(ta − t1) = cβta =⇒ ta =
t1

1− β
. (15)

Therefore, the time interval ∆t required for the light to reach the body is

∆t = ta − t1 =
β

1− β
t1. (16)

Since the Schwarzschild metric is time-independent, if the light signal is reflected by the body and
returns to r = r0, it will take the same time interval ∆t to travel back. Consequently, it will reach the
original point at

tb = ta +∆t =
1 + β

1− β
t1. (17)

Thus, at any time t1, we can always send a light signal to the body and receive it after reflection.
We must therefore conclude that, in our reference frame, the body is not merely apparently outside the
event horizon, it is actually outside it.

2.3 Motion of the body in proper time

Since dτ = ds
c , using equations (2) and (4), and dividing (2) by dt2, we obtain:(
dτ

dt

)2

=

(
1− 2GM

c2r

)
− 1

c2

(
1− 2GM

c2r

)−1(
dr

dt

)2

= (1− β2)

(
1− 2GM

c2r

)
. (18)

dτ

dt
=
√
1− β2

√
1− 2GM

c2r
. (19)

Alternatively, dividing (2) by dτ2 instead of dt2, and using dt
dτ =

(
dτ
dt

)−1
, we obtain:

1 =

(
1− 2GM

c2r

)(
dt

dτ

)2

− 1

c2

(
1− 2GM

c2r

)−1(
dr

dτ

)2

. (20)

(
dr

dτ

)2

= c2
(
1− 2GM

c2r

)2(
dt

dτ

)2

− c2
(
1− 2GM

c2r

)
= c2

β2

1− β2

(
1− 2GM

c2r

)
. (21)

dr

dτ
= − cβ√

1− β2

√
1− 2GM

c2r
, (22)

where we take into account that we are considering a centripetal motion, so that dr
dτ < 0.

To solve equation (22), we apply again the change of variables given by equation (5):

dr∗

dτ
= − cβ√

1− β2

√
r∗

r∗ + 2GM
c2

. (23)

Proceeding by separation of variables, we obtain:

dτ = −
√
1− β2

cβ

√
r∗ + 2GM

c2

r∗
dr∗. (24)

By integration ([4], pages 63 and 64),
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[dτ ]
∆τ
0 = −

√
1− β2

cβ

[√
r∗
(
r∗ +

2GM

c2

)
+

2GM

c2
ln

(√
1 +

c2r∗

2GM
+

√
c2r∗

2GM

)]r∗(t)
r∗0

. (25)

∆τ = K0 −
√
1− β2

cβ

[√
r∗
(
r∗ +

2GM

c2

)
+

2GM

c2
ln

(√
1 +

c2r∗

2GM
+

√
c2r∗

2GM

)]
, (26)

where

K0 =

√
1− β2

cβ

[√
r∗0

(
r∗0 +

2GM

c2

)
+

2GM

c2
ln

(√
1 +

c2r∗0
2GM

+

√
c2r∗0
2GM

)]
. (27)

For large times, when r∗ ∼ 0, we use the approximations:√
r∗
(
r∗ +

2GM

c2

)
≈
√

2GM

c2
r∗, (28)

ln

(√
1 +

c2r∗0
2GM

+

√
c2r∗0
2GM

)
≈ ln

(
1 +

√
c2r∗0
2GM

)
≈
√

c2r∗0
2GM

. (29)

Thus, for large times:

∆τ ≈ K0 −
√

1− β2

cβ

√
8GM

c2
r∗. (30)

We note that an equivalent expression could be obtained by simplifying equation (24) as follows:

dτ = −
√
1− β2

cβ

√
1 +

2GM

c2r∗
dr∗ ≈ −

√
1− β2

cβ

√
2GM

c2r∗
=⇒

=⇒ ∆τ ≈ −
√
1− β2

cβ

√
8GM

c2
r∗ + C. (31)

Expressing ∆τ in terms of t instead of r using equation (12) in (30):

∆τ ≈ K0 −
√
1− β2

cβ

√
8GM

c2
r∗0e

c2

4GM (r∗0−βct). (32)

The proper time ∆τrS at which the body reaches the event horizon in its own reference frame occurs
at t → ∞, yielding:

∆τrS = lim
t→∞

∆τ = K0. (33)

However, we can send and recover signals from the body at any time t, indicating that it has not
crossed the event horizon: the finite proper time ∆τrS has not yet elapsed for it.

2.4 Calculation of the Four-Force

The equation for the four-force in general relativity is given by:

fµ = m

(
duµ

dτ
+ Γµ

νλu
νuλ

)
, (34)

where m is the mass of the body, uµ represents the four-velocity components, and Γµ
νλ are the

Christoffel symbols.
The Christoffel symbols for the Schwarzschild metric are given by the following set of equations:
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Γt
tr =

GM
c2

r
(
r − 2GM

c2

) , Γr
tt =

GM

r3

(
r − 2GM

c2

)
, Γr

rr = −
GM
c2

r
(
r − 2GM

c2

) , (35)

Γr
θθ = −

(
r − 2GM

c2

)
, Γr

ϕϕ = −
(
r − 2GM

c2

)
sin2 θ, Γθ

rθ =
1

r
, (36)

Γθ
ϕϕ = − sin θ cos θ, Γϕ

rϕ =
1

r
, Γϕ

θϕ = cot θ. (37)

We restrict our analysis to late times, when r∗ ≪ 2GM
c2 . Under this assumption, the Christoffel

symbols simplify to:

Γt
tr =

GM
c2(

r∗ + 2GM
c2

)
r∗

≈ 1

2r∗
, (38)

Γr
tt =

GM(
r∗ + 2GM

c2

)3 r∗ ≈ c6r∗

8G2M2
, (39)

Γr
rr = −

GM
c2(

r∗ + 2GM
c2

)
r∗

≈ − 1

2r∗
, (40)

Γr
θθ = −r∗, Γr

ϕϕ = −r∗ sin2 θ, (41)

Γθ
rθ =

c2

2GM
, Γθ

ϕϕ = − sin θ cos θ, (42)

Γϕ
rϕ =

c2

2GM
, Γϕ

θϕ = cot θ. (43)

Since we consider a purely radial motion, we have uθ = uϕ = 0. Furthermore, all Christoffel symbols
that include the indices θ or ϕ appear in terms that necessarily include at least one factor of uθ or uϕ in
the second term on the right-hand side of Eq. (34). This leads to:

fθ = fϕ = 0. (44)

Thus, only f t and fr need to be computed.
At late times, the components of the four-velocity are given by:

ur =
dr

dτ
=

−cβ√
1− β2

√
1− 2GM

c2r
=

−cβ√
1− β2

√
r∗

r∗ + 2GM
c2

≈ −cβ√
1− β2

√
c2r∗

2GM
, (45)

ut =
dt

dτ
=

1√
1− β2

1√
1− 2GM

c2r

=
1√

1− β2

√
r∗ + 2GM

c2

r∗
≈ 1√

1− β2

√
2GM

c2r∗
. (46)

To compute the components of the four-force, we first determine dur

dτ and dut

dτ . As τ = τ(r∗), using
the chain rule:

dur

dτ
=

dur

dr∗
dr∗

dτ
≈ c2β2

1− β2

c2

4GM
, (47)

dut

dτ
=

dut

dr∗
dr∗

dτ
≈ cβ

1− β2

1

2r∗
. (48)
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2.4.1 Calculation of fr

The radial component of the four-force is given by:

fr

m
=

dur

dτ
+ Γr

tt(u
t)2 + 2Γr

tru
tur + Γr

rr(u
r)2. (49)

Substituting the known values:

fr

m
=

1

1− β2

c4

4GM
. (50)

2.4.2 Calculation of f t

The temporal component of the four-force is given by:

f t

m
=

dut

dτ
+ Γt

tt(u
t)2 + 2Γt

tru
tur + Γt

rr(u
r)2. (51)

Since Γt
tt = 0 and Γt

rr = 0, we get:

f t

m
=

−cβ

1− β2

1

2r∗
. (52)

It can be observed that the “power” required to slow down the body diverges as it approaches the
Schwarzschild radius. However, it remains finite at any finite distance from the horizon.

3 Conclusion

The results indicate that the finiteness of proper time is not a sufficient criterion for determining whether
an object crosses the event horizon. The ability to send and recover signals at arbitrarily late times
demonstrates that the body never crosses the Schwarzschild radius. This suggests that the clocks of its
system may slow down to such an extent that the finite proper time interval never elapses. By analogy,
the usual interpretation of gravitational collapse should thus be reconsidered.
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