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Abstract 

This study presents the mathematical derivation of geons, gravitationally stable spacetime structures, as an alternative to dark 

matter. Assuming galaxies are embedded in galactic-sized geons, the observed flat galaxy rotation curves can be explained 

without requiring the standard dark matter halo. This concept has been applied to the case of the Milky Way and profiles of 

density, pressure and rotation velocity have been derived, demonstrating a close correspondence with the observations. The 

geon’s Gaussian density profile naturally explains the flat central density cores observed in dwarf galaxies, providing a 

compelling solution to the core-cusp problem. Furthermore, the early formation of geons shortly after the Big Bang offers a 

framework for understanding the rapid emergence of massive galaxies, addressing the challenges posed by recent James Webb 

Space Telescope observations. These findings suggest that geons could serve as both the gravitational scaffolding for galaxy 

formation and a replacement for cold dark matter, unifying multiple cosmological phenomena under a single theoretical 

framework. 
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1. Introduction 

The enigmatic nature of galaxy rotation curves, first observed 

in the 1970s, remains one of the most compelling puzzles in 

astrophysics. Measurements of rotational velocities in 

galaxies exhibit a perplexing flatness at large radii, deviating 

from the expected Keplerian decline. This phenomenon has 

traditionally been attributed to the presence of unseen mass, 

commonly referred to as dark matter. However, despite 

decades of dedicated research, direct detection of dark matter 

particles has proven elusive [1], motivating alternative 

explanations rooted in the fundamental physics of gravitation. 

In this context, we revisit the concept of gravitational geons, 

self-sustaining field configurations governed purely by 

Einstein's Field Equations (EFE) [2]. Originally introduced by 

John Archibald Wheeler in 1955, geons (“gravitational 

electromagnetic entity”) were envisioned as stable, localized 

energy constructs formed from gravitational and 

electromagnetic fields [3]. However, these geons were 

primarily considered in small-scale scenarios, often limited by 

their susceptibility to radiation leakage and other instabilities. 

Wheeler did not present explicit geon solutions to the 

vacuum Einstein field equation, a gap which was partially 

filled by Brill and Hartle in 1964 [4]. In their paper they 

applied their method to the case of a static spherically 

symmetric background geometry and found that gravitational 

waves can remain confined in a region for a time much longer 

than the region’s light-crossing time. This so-called 

gravitational geon is generated by a large number of high 

frequency, small amplitude gravitational waves. The time 

average of the curvature due to these waves creates the 

background geometry of the geon, and this background 

geometry traps the waves for a long time in a region of space 

called the “active” region. 

 In this paper, we will investigate a geon type of solution 

which is very different in nature from previously investigated 

types of geons. Here we will focus on a spherically 

symmetric, stationary geon with a spatial extension similar to 

that of galaxies, or even larger. The existence of such geons 

was already conjectured in 1998 [5], although a mathematical 

proof was not provided. Strictly speaking, the only non-trivial, 

matter-free solutions to the Einstein Field Equations are the 

Schwarzschild and Kerr spacetimes.  Nevertheless, we will 

here introduce a modification to the EFE in which the 

momentum-energy content within the vacuum is treated as an 

effective stress-energy tensor which has similarities to the 

https://en.wikipedia.org/wiki/Einstein_field_equation
https://en.wikipedia.org/wiki/James_Hartle
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cosmological term. In that case, we find exact, non-trivial, 

analytical solutions to the EFE. Imagining that galaxies are 

embedded within such geons, we will demonstrate that it is 

possible to explain the observed, relatively flat, galaxy 

rotation curves. Further, it will be argued that such galactic 

sized geons can play a role in galaxy formation, providing an 

explanation for the observation of galaxies in the early 

universe (300 million years after the Big Bang), which are 

difficult to explain within the standard ΛCDM model [6-8]. 

1. Mathematical geon description 

The Einstein Field Equations (EFE) contain 10 independent 

equations due to the symmetric 4 × 4 tensor 𝐺𝜇𝜈 . However, 

under the assumptions of spherical symmetry, stationarity, 

and no rotation, the system simplifies significantly: 

− Spherical Symmetry: Ensures that the metric 

components depend only on the radial coordinate 𝑟, 

reducing complexity. 

− Stationarity: Implies time-independence, eliminating 

time derivatives. 

− No Rotation: Eliminates cross-terms like 𝐺𝑡𝜃 . 

 

This symmetry reduces the independent components of 𝐺𝜇𝜈  

to: 

− The 𝑡𝑡-component (energy density) 

− The 𝑟𝑟-component (radial pressure) 

− The 𝜃𝜃- or 𝜙𝜙-component (angular pressure) 

The conservation of energy-momentum, ∇𝜈𝑇𝜇𝜈 = 0, ensures 

consistency among the equations, leaving three independent 

equations. 

We will use a stress-energy tensor of the form 𝑇𝜇𝜈 =

diag(𝜌𝑒2𝜙 , 𝑝𝑟𝑒2Λ, 𝑝𝑡𝑟2, 𝑝𝑡𝑟2𝑠𝑖𝑛2𝜃) 

The metric ansatz for a spherically symmetric, stationary 

spacetime is: 

𝑑𝑠2 = −𝑒2𝛷(𝑟)𝑑𝑡2 + 𝑒2𝛬(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑𝜙2)         (1)  

The Einstein Field equations are given by  

𝐺𝜇𝜈 + 𝛬 𝑔𝜇𝜈 = 8 𝜋 𝑇𝜇𝜈                                                        (2)  

In which Λ is the cosmological constant. In the following 

derivations, Λ is initially not considered. 

Since we want a non-trivial solution without singularity at the 

origin, we chose a profile for the energy density which has a 

finite value at the origin, for which the derivative at r=0 is zero 

and which decays for larger values of r. Here we chose a 

Gaussian density profile for the geon: 

𝜌(𝑟) = 𝜌0𝑒−𝑟2/𝑅2
 (3) 

where 𝜌0 is the central density and 𝑎 determines the 

characteristic size. 

The 𝑡𝑡-equation is: 

1

𝑟2

𝑑

𝑑𝑟
[𝑟(1 − 𝑒−2𝛬)] = 8𝜋𝜌(𝑟)                                             (4)

   

Substitute 𝜌(𝑟) = 𝜌0𝑒−𝑟2/𝑅2
: 

1

𝑟2

𝑑

𝑑𝑟
[𝑟(1 − 𝑒−2𝛬)] = 8𝜋𝜌0𝑒−𝑟2/𝑅2

 (5) 

Define the mass function: 

𝑚(𝑟) =
1

2
𝑟(1 − 𝑒−2𝛬) (6) 

which represents the enclosed mass at radius r. The equation 

becomes: 

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟)                                                                   (7)  

Substituting 𝜌(𝑟): 

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌0𝑒−𝑟2/𝑅2

  (8) 

Integrating: 

𝑚(𝑟) = 4𝜋𝜌0 ∫ 𝑥2𝑟

0
𝑒−𝑥2/𝑅2

𝑑𝑥  (9) 

The integral has a known solution: 

𝑚(𝑟) = 4𝜋𝜌0 [√𝜋𝑅3

4
erf (

𝑟

𝑅
) −

𝑅3

2
𝑒−𝑟2/𝑅2

]  (10) 

Taking the integral from 0 to infinity, the integral becomes: 

𝑀𝑔𝑒𝑜𝑛 = 𝜋3/2𝜌0 𝑅3                                                           (11) 

Thus, 𝑒−2𝛬(𝑟) can be determined from: 

𝑒−2𝛬 = 1 −
2𝑚(𝑟)

𝑟
                                                               (12)                                                           

The 𝑟𝑟-equation is: 

2

𝑟
𝛷′(𝑟)𝑒−2𝛬 −

1

𝑟2
(1 − 𝑒−2𝛬) = 8𝜋𝑝𝑟(𝑟)   (13) 

Substitute equation (12) 

2

𝑟
𝛷′(𝑟) (1 −

2𝑚(𝑟)

𝑟
) −

1

𝑟2 (
2𝑚(𝑟)

𝑟
) = 8𝜋𝑝𝑟(𝑟)   (14) 

Simplify: 

𝛷′(𝑟) =
𝑟

2(1−
2𝑚(𝑟)

𝑟
)

(8𝜋𝑝𝑟(𝑟) +
2𝑚(𝑟)

𝑟3 )                              (15)  



 R. Van Nieuwenhove 
  

 3  
 

The 𝜃𝜃-equation is: 

𝑒−2𝛬 (𝛷″ + 𝛷′2 − 𝛷′𝛬′ +
𝛷′

𝑟
−

𝛬′

𝑟
) = 8𝜋𝑝𝑡(𝑟)                 (16) 

Using equation (12), computing derivatives of 𝛷(𝑟) and 

𝛬(𝑟), this equation provides consistency between 𝑝𝑡(𝑟), 

𝑝𝑟(𝑟), and 𝜌(𝑟). 

In addition, one has to satisfy the conservation equation: 

𝛻𝜈𝑇𝜇𝜈 = 0   (17) 

For the radial component 𝜇 = 𝑟, and 

we get: 

𝑑𝑝𝑟

𝑑𝑟
= −(𝜌 + 𝑝𝑟)

𝑑𝛷

𝑑𝑟
+

2

𝑟
(𝑝𝑡 − 𝑝𝑟)                                        (18)  

Next, we need to introduce the equation of state, relating the 

energy density to the pressure. One could consider 𝑝𝑟 =  + 𝜌 

or 𝑝𝑟 =  − 𝜌. After some algebra, one can show that both 

choices lead to a solution of the EFE. Since we are aiming at 

a geon type solution, we will use therefore the second option, 

namely. 

𝑝𝑟 =  − 𝜌   (19) 

In this way, we are sure that we are not dealing with some 

ordinary gas or plasma.  

Using this choice of equation of state, we can now work out 

the solution. Since both the density and the radial pressure are 

already defined, we only need to find the tangential pressure 

pt. This can be obtained either from the -equation or from 

the pressure balance equation (18) which is in fact the 

generalized Tolman-Oppenheimer-Volkov equation [9]. This 

results in the following expression for pt; 

𝑝𝑡 =  −𝜌 (1 −  
𝑟2

𝑅2)   (20) 

When choosing pr = +  one obtains pt = +  (1 – r2 / R2) . 

In fact, there are some higher order corrections to pt 

containing terms like 2 r2,  m, m2 r4 but when converting 

back from geometrized units to SI units, these are to be 

multiplied by very small factors such as G/c2 or G/c4. It is 

worth mentioning that these solutions were never derived 

before.  

The energy-momentum tensor 𝑇𝜇𝜈 might be interpreted as an 

effective vacuum energy plus an anisotropic correction: 

𝑇𝜇𝜈 = −𝜌𝑔𝜇𝜈 + 𝑇𝜇𝜈
corr   (21) 

where the correction term 𝑇𝜇𝜈
corr accounts for the deviation in 

𝑝𝑡: 

𝑇𝜇𝜈
corr = diag (0,0, 𝜌

𝑟2

𝑅2 , 𝜌
𝑟2

𝑅2). ( 22) 

In this interpretation, the term −𝜌𝑔𝜇𝜈 behaves as a vacuum 

energy (proportional to the metric tensor) and thus consistent 

with the EFE including the cosmological constant (see 

equation (2)) However, in this case, ρ is not a constant but 

depends on r. In the scalar field theories [10], Λ is replaced by 

a dynamic scalar field whose energy density evolves over time 

and space and in f(R) gravity theories [11], the cosmological 

constant emerges as a dynamic entity related to the form of 

f(R). The correction 𝑇𝜇𝜈
corr represents anisotropic stresses or 

deviations from a pure cosmological constant. In many 

modified gravity theories, corrections to the Einstein 

equations involve higher-order curvature terms such as 𝑅2    or 

𝑅𝜇𝜈𝑅𝜇𝜈. These terms introduce modifications to the stress-

energy tensor that naturally depend on the radial coordinate r, 

often scaling as r2. The anisotropic correction term 𝑇𝜃
𝜃 

𝑟2

𝑅2 

suggests a second-order geometric effect arising from such 

modifications, where curvature contributions feed back into 

the stress-energy distribution, leading to additional pressure 

anisotropies in the angular components. 

It is interesting to note that we are still free in the choice of 

the energy density at the origin, as well as in the value of the 

scale length R in the Gaussian energy density profile. So, 

these solutions can describe very small entities (scale of 

atoms) to very large entities (scale of galaxies or larger). Also, 

it is very likely that solutions, similar to this one, can be found 

in which the geon rotates. Because of the higher complexity, 

this path was not explored further.  

2. Application to the Milky Way 

In the following we will imagine that our galaxy is embedded 

in a geon, extending beyond the galaxy. As an example, we 

will take the case of the Milky Way (MW).  

There is still a significant uncertainty in the total mass of the 

MW, and here we will consider some reasonable values for 

total, baryonic and bulge mass only for the sake of providing 

an idea of the effect of the geon on the galaxy rotation curve. 

Our aim is thus not to provide a detailed modelling of the 

MW. On the other hand, there are recent rotation curve results 

by the Gaia DR3 measurements [12]  which we will use as a 

guidance. These results show rotation velocities of the order 

of 230 km/s, some decline beyond 15 kpc and a pronounced 

decline beyond 19 kpc. In our very simplistic model, we will 

use here a uniform (baryonic mass) of 4.6 1010 M☉   up to a 

radius of 4 kpc. If we assume for instance a total mass of the 
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MW of 2.06 1011
 M☉ and a baryonic mass 4.6 1010 M☉   we 

will choose the mass of the geon to be the difference between 

the two, namely 1.6 1011 M☉. Thus, the geon mass takes the 

roll of “dark matter”. Then we chose a suitable scale length 

(R) of the Gaussian energy density profile, and we adjusted 

the central density such as to obtain the required total mass of 

the geon (using equation (11)). The scale length in this case 

should be somewhere between 8 and 12 kpc and in what 

follows, we choose the value R = 9 kpc. In fact, at this point, 

we use it as a fitting parameter to the MW rotation curve. 

However, this might also hint to a connection between the 

mass accumulated in the geon (see next chapter) and the 

properties of the geon. In the weak field approximation, we 

can safely assume that the gravitational force on a test mass is 

the sum of the forces due to the central (baryonic) mass and 

the force due to the geon. The force on a test mass can be 

obtained by using the equation for  Φ'(r) (equation (15)) in 

which we substitute pr = - and where we use the 

approximation that 2m/r ≪ 1, resulting in 

 

𝐹 =  𝑚𝑡𝑒𝑠𝑡 𝛷′(𝑟) = 𝑚𝑡𝑒𝑠𝑡 (−4𝜋 𝑟  +
𝑚

𝑟2) (23) 

When reverting to SI units, the first term needs to be 

multiplied by G/c2 and the second term by G. Then we find 

that the first term becomes negligible, resulting in the simple 

equation: 

𝐹 =  
𝑚𝑡𝑒𝑠𝑡 𝑚

𝑟2    (24) 

Thus, the force on test mass, due to the geon, is just the 

Newtonian gravitational force, induced by the enclosed 

mass. 

The profiles of the density (Gaussian, with scale length 9 kpc) 

and the calculated enclosed mass are shown in Figure 1. 

 

Figure 1. Density and enclosed mass of the geon. The units 

are scaled; The density (in kg/m3) is obtained by 

multiplying the scaled values by 10- 21. The enclosed mass 

(in solar masses) is obtained by multiplying the scaled 

values by 1011. 

The calculated pressure profiles are shown in Figure 2. Note 

the region in which the tangential pressure changes sign. 

 

Figure 2. Radial and tangential pressure profiles of the geon. 
The units are scaled; the pressures (in Pa) are obtained by 

multiplying the scaled values by 10-38. 

Finally, the impact of the geon on the Milky Way rotation 

curve (simplistic model) is shown in Figure 3. The 

additional mass of the geon results in a relatively flat 

rotation curve and a decline in the region 15-20 kpc (in 

agreement with recent observations [12]). 

 

Figure 3. Calculated velocity profiles for the Milky Way 

(simplistic model), showing the Newtonian decay and the 

relatively flat profiles obtained by the additional force of the 

geon.  

3. Early galaxy formation and the role of geons 

The ΛCDM model predicts a hierarchical structure formation 

process. Dark matter halos form first, through gravitational 

collapse, providing the scaffolding for baryonic matter to cool 

and condense into stars and galaxies. However, recent 

observations from the James Webb Space Telescope (JWST) 
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of massive, mature galaxies at only 250–300 million years 

after the Big Bang seem to challenge this scenario [13]. 

The rate of star formation in these galaxies appears 

inconsistent with the cooling timescales of baryonic gas 

expected under the ΛCDM model. These galaxies show signs 

of well-developed morphologies, such as disk-like or compact 

structures, which are surprising given the chaotic 

environments expected during early galaxy formation. 

Geons, hypothesized as localized configurations of 

spacetime, offer an alternative mechanism for structure 

formation. Unlike dark matter, geons are fundamentally 

gravitational phenomena and may have unique properties that 

make them ideal candidates for explaining early galaxy 

formation. 

In this hypothesis, geons could form very early in the 

universe's history, shortly after the inflationary phase ended 

(≈10−32 seconds). During this period, quantum fluctuations in 

the spacetime fabric—amplified by inflation—could generate 

regions of intense curvature. These regions might stabilize 

into geons through quantum gravitational effects. 

Importantly, geons could form seconds to minutes after the 

Big Bang, far earlier than the formation of large dark matter 

halos (between 100000 yr to 300 Myr years after the Big 

Bang). Geons forming almost immediately after inflation, 

could begin clustering well before recombination. Once 

baryonic matter decoupled from radiation, geons would 

already have deep potential wells in place, potentially 

allowing them to attract baryonic matter more efficiently than 

dark matter halos. This earlier gravitational influence might 

explain how galaxies could form more rapidly and maturely 

than expected under the standard dark matter model. 

The size and "depth" of a geon (related to its curvature profile 

and energy density) could determine the amount of baryonic 

matter it captures. This provides a physical basis for the 

observed relation between galaxy size and mass. 

4. Geons as a solution to the cusp-core problem 

The Navarro-Frenk-White (NFW) profile [14], which 

describes the density of dark matter halos based on 

simulations, predicts a cuspy central density scaling as 1/r. At 

small radii, this results in a steep rise in the density near the 

halo center. In contrast, observations of dwarf galaxies and 

low-surface-brightness galaxies often show a core, where the 

density flattens to a roughly constant value near the center 

[15]. This discrepancy challenges the validity of the standard 

cold dark matter model or suggests that additional physical 

processes (e.g., baryonic feedback, alternative dark matter 

models, or geons) are needed to explain the observations [16]. 

One of the most promising solutions to this cold dark matter 

issue is the stellar feedback mechanism but it seems to be only 

designed for gas-rich dwarfs, while the problem still remains 

for gas-poor dwarf spheroidal galaxies. Here, geons with a 

Gaussian density profile could provide a natural solution since 

the gradient of the density becomes zero at the centre. 

5. Discussion 
 

The geon solutions rely implicitly on assumptions about the 

quantum vacuum’s properties. While the vacuum is often 

treated as homogeneous and isotropic, its complexity at 

microscopic scales suggests the potential for anisotropic 

effects, such as direction-dependent pressures. These effects 

could play a significant role in the stability and structure of 

geons and might have observable consequences in galaxy 

dynamics. Understanding the interplay between these effects 

and the broader cosmic environment remains an intriguing 

direction for future research. 

 

Geons also offer testable predictions that could distinguish 

them from standard dark matter models. Their smooth density 

profiles may produce gravitational lensing patterns and 

rotation curves subtly different from those predicted by dark 

matter halos with Navarro-Frenk-White profiles. 

Additionally, their role in early galaxy formation could leave 

imprints on the large-scale structure of the universe or in the 

properties of high-redshift galaxies observed by telescopes 

like the James Webb Space Telescope. 

 

Their behavior across different scales, ranging from dwarf 

galaxies to galaxy clusters, requires deeper analysis. 

Integrating geons into the broader cosmological framework, 

particularly in relation to dark energy and cosmic expansion, 

is also an open question. 

 

6. Conclusions 

It has been shown that a geon type solution exists to the 

Einstein Field Equations with a Gaussian density profile and 

for which the radial pressure is minus the energy density, 

being reminiscent of a vacuum equation of state. Real geon 

solutions could exist within the framework of modified or 

extended gravity theories. Such galactic sized geons can take 

over the role of dark matter, being distributed gravitational 

structures with a significant mass content. It has been shown 

that the observed relatively flat galaxy rotation curves can be 

explained when considering the galaxies to be embedded in 

large geons. In particular, the rotation curve for the Milky 

Way has been modelled using a simple baryonic mass profile 

embedded in a geon. Besides explaining the flat rotation 

curves, the geon concept can also offer an explanation to the 

observation of mature galaxies in the early universe, and it 

offers also a solution to the core-cusp problem in gas-poor 

dwarf spheroidal galaxies.  
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