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Abstract 

Kepler's equation, a cornerstone of celestial mechanics, relates the mean anomaly (mean angular 
position) of a celestial body in an elliptical orbit to its eccentric anomaly. While elegant in its 
formulation (x = y - e sin y), it lacks a general closed-form solution in terms of elementary functions. 
This article explores the significance of Kepler's equation, briefly traces its historical context, and 
presents a simplified approach to obtaining a closed-form solution using Mathematica. By 
expressing the sine function within Kepler's equation as a MacLaurin series, we derive an iterative 
algorithm that converges rapidly to the eccentric anomaly, providing a practical and 
computationally efficient method for solving this fundamental equation in celestial mechanics. 

 

1. Introduction 

Kepler's laws of planetary motion, formulated by Johannes Kepler in the early 17th century, 

revolutionized our understanding of celestial mechanics. These laws, derived from 

meticulous observations of Mars by Tycho Brahe, elegantly describe the motion of planets 

around the Sun. Among these laws, Kepler's second law, the law of equal areas, states that 

a planet sweeps out equal areas in equal times. This law directly leads to the formulation of 

Kepler's equation, a transcendental equation that relates the mean anomaly (M) of a 

celestial body to its eccentric anomaly (E).    

 

2. Significance of Kepler's Equation 

Kepler's equation plays a pivotal role in various fields, including: 
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• Celestial Mechanics: It is fundamental for predicting the positions of planets, 

asteroids, and comets in the solar system. 

• Spacecraft Navigation: Accurate determination of spacecraft trajectories relies 

heavily on solving Kepler's equation. 

• Satellite Orbit Prediction: Predicting the position and orbital parameters of 

artificial satellites requires precise solutions to Kepler's equation. 

 

3. Historical Context 

Kepler's equation itself was not explicitly derived by Kepler. It emerged later as a 

consequence of his laws and the geometrical properties of elliptical orbits. Newton's law 

of universal gravitation provided a deeper understanding of the underlying physics, but it 

did not alter the fundamental role of Kepler's equation in describing orbital motion. 

Kepler's Second Law of Planetary Motion, often referred to as the Law of Equal Areas, 

states that a planet sweeps out equal areas in equal times as it orbits the Sun. This 

groundbreaking discovery emerged from years of meticulous analysis of astronomical 

observations made by Tycho Brahe. 

Kepler, a mathematician and astronomer, meticulously examined Brahe's extensive data 

on the motion of Mars. He meticulously plotted the positions of Mars at various points in its 

orbit and meticulously calculated the areas swept out by the line connecting Mars to the 

Sun over equal time intervals. Through this painstaking process, a remarkable pattern 

emerged: the areas swept out were consistently equal, regardless of the planet's distance 

from the Sun. 

This observation challenged the prevailing geocentric model of the universe, which 

assumed uniform circular motion. Kepler's insight, however, revealed a profound truth 

about planetary motion: a planet's orbital speed varies depending on its distance from the 

Sun. When closer to the Sun, the planet moves faster to cover the same area in the same 



time, and vice versa. This crucial realization laid the foundation for a more accurate and 

comprehensive understanding of celestial mechanics. 

Kepler's Second Law, a direct consequence of the conservation of angular momentum, has 

far-reaching implications beyond planetary motion. It applies to any object moving under 

the influence of a central force, such as a satellite orbiting Earth or an electron orbiting an 

atomic nucleus. This fundamental principle continues to play a vital role in various fields of 

physics and astronomy, shaping our understanding of the universe and its intricate 

workings. 

 

4. Existing Solutions 

Kepler's equation, given by: [1] 

x = y - e sin y                                                                                                                                                        (1) 

where: 

• x is the mean anomaly 

• y is the eccentric anomaly 

• e is the eccentricity of the orbit (0 ≤ e < 1)    

lacks a general closed-form solution in terms of elementary functions (such as 

polynomials, trigonometric functions, exponentials, and logarithms). 

Numerous methods have been developed to solve Kepler's equation (cf, [1],[2],[3]), 

including: 

• Iterative Methods:  

o Newton-Raphson method: A widely used iterative method that converges 

rapidly for most eccentricities. 

o Lagrange reversion theorem: Provides an infinite series solution. 



• Series Expansions:  

o Fourier series: Expresses the eccentric anomaly as a series of trigonometric 

functions of the mean anomaly. 

• Graphical Methods:  

o Provide approximate solutions by visualizing the intersection of curves. 

 

5. Simplified Closed-Form Solution with MacLaurin Expansion 

This section outlines a simplified approach to obtaining a closed-form solution for Kepler's 

equation using Mathematica. This approach of MacLaurin series expansion has been 

described initially in Kohout & Layton, cf. ref. [4]. 

Algorithm: 

1. MacLaurin Series Expansion for sin(y): Express sin(y) as a MacLaurin series: 

sin(y) = y - y³/3! + y⁵/5! - y⁷/7! + ...                                                                                                                      (2) 

2. Substitute into Kepler's Equation: Substitute the MacLaurin series expansion for 

sin(y) into Kepler's equation: 

x = y - e(y - y³/3! + y⁵/5! - y⁷/7! + ...)                                                                                                                  (3) 

3. Rearrange and Solve for y: Rearrange the equation to isolate y. This may involve: 

o Collecting terms of the same order of y. 

o Using algebraic manipulation techniques (e.g., factoring, completing the 

square). 

o Employing iterative methods within Mathematica to solve the resulting 

polynomial equation. 



4. Iterative Refinement: Use the initial solution obtained from the MacLaurin series 

expansion as a starting point for a more accurate iterative method, such as Newton-

Raphson, to refine the solution for the eccentric anomaly. The Newton-Raphson 

method, also known as Newton's method, is a powerful iterative algorithm used to 

find the roots (or zeros) of a real-valued function. It's based on the idea of linear 

approximation, where the function is approximated by its tangent line at a given 

point.    

The essence of the Newton-Raphson method lies in its iterative formula:    

x<sub>n+1</sub> = x<sub>n</sub> - f(x<sub>n</sub>) / f'(x<sub>n</sub>)    

where: 

x<sub>n</sub> is the current estimate of the root.    

f(x<sub>n</sub>) is the value of the function at x<sub>n</sub>.    

f'(x<sub>n</sub>) is the derivative of the function at x<sub>n</sub>.    

The process begins with an initial guess, x<sub>0</sub>, for the root. 

Then, the formula is applied repeatedly to generate a sequence of approximations, 

x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, and so on. Ideally, this sequence 

converges to the actual root of the function. 

 

Mathematica Code (Illustrative Example): 

(* Define Kepler's equation with MacLaurin series approximation *) keplerEq[x_, y_, e_, n_] := x == y - 
e*(Sum[(-1)^k*y^(2*k + 1)/(2*k + 1)!, {k, 0, n}]) (* Example: Solve for y with e = 0.5, x = 1.0, and n = 5 
*) e = 0.5; x = 1.0; n = 5; sol = Solve[keplerEq[x, y, e, n], y][[1]] (* Refine solution using Newton-
Raphson method *) refinedSol = FindRoot[x - y + e*Sin[y], {y, y /. sol}] (* Print results *) 
Print["Eccentric Anomaly (MacLaurin Series): ", y /. sol] Print["Eccentric Anomaly (Refined): ", y /. 
refinedSol] 

 

6. Discussion: Can Kepler's Equation Account for Out-of-Plane Deviations? 



Kepler's equation, a cornerstone of celestial mechanics, elegantly describes the motion of 

a body in an idealized two-body system with elliptical orbits. However, its applicability is 

limited when considering real-world scenarios where out-of-plane deviations occur. One 

such deviation arises from the Magnus effect, a phenomenon where a spinning object 

experiences a force perpendicular to both its motion and its spin axis.    

Limitations of Kepler's Equation: 

• Two-Dimensional Assumption: Kepler's equation is inherently two-dimensional, 

confined to the plane of the elliptical orbit. It cannot directly account for forces that 

induce motion perpendicular to this plane, like the Magnus effect. 

• Idealized Conditions: The derivation of Kepler's equation relies on several 

simplifying assumptions, such as the absence of external forces beyond the 

gravitational attraction of the central body. The Magnus effect, by introducing an 

additional force, violates these assumptions. 

Addressing Out-of-Plane Deviations: 

To incorporate out-of-plane deviations, such as those arising from the Magnus effect, more 

sophisticated mathematical frameworks are necessary: 

• Perturbation Theory: This approach treats the Magnus force as a small perturbation 

to the idealized two-body problem. By employing techniques like the variation of 

parameters, it's possible to estimate the deviations from the Keplerian orbit caused 

by the Magnus effect. 

• Kustaanheimo-Stiefel (KS) Transformation: The KS transformation is a powerful 

mathematical tool that maps the three-dimensional Kepler problem into a four-

dimensional harmonic oscillator. This transformation may be extended further to 

include perturbing forces, such as the Magnus effect, and offers a more elegant and 

potentially more accurate way to model the out-of-plane motion.   [2] 

Challenges and Considerations: 



• Complexity: Incorporating the Magnus effect into orbital calculations significantly 

increases the complexity of the problem. Analytical solutions become more elusive, 

and numerical methods often become necessary. 

• Data Requirements: Accurate modeling of the Magnus effect requires precise 

knowledge of the object's spin rate, orientation, and the surrounding environment 

(e.g., atmospheric density, wind conditions).    

• Limitations of KS Transformation: While powerful, the KS transformation also has its 

limitations. It can introduce numerical instabilities, and its application to highly 

perturbed systems may require careful consideration. 

Kepler's equation, while a fundamental tool in celestial mechanics, cannot directly 

account for out-of-plane deviations caused by forces like the Magnus effect. More 

advanced techniques, such as perturbation theory and the KS transformation, are required 

to model these effects accurately. While these approaches present challenges, they offer 

valuable insights into the complex dynamics of real-world orbital systems. 

 

7. Concluding remark 

This article presented  a simplified approach to solving Kepler's equation using a 

MacLaurin series expansion. While this approach may not provide the most efficient 

solution for all cases, it offers a valuable framework for understanding the mathematical 

underpinnings of this fundamental equation in celestial mechanics. 

Kepler's equation, while a fundamental tool in celestial mechanics, cannot directly 

account for out-of-plane deviations caused by forces like the Magnus effect. More 

advanced techniques, such as perturbation theory and the KS transformation, are required 

to model these effects accurately. While these approaches present challenges, they offer 

valuable insights into the complex dynamics of real-world orbital systems. 

 



Acknowledgement 

Discussion with several physicists are acknowledged, including Prof Jean de Climont etc. The 
above algorithm is for illustration purposes only. The actual Mathematica code and the level of 
approximation will depend on the desired accuracy and the specific requirements of the 
application. This article is for informational purposes only and may not be suitable for all 
applications. 

 

References: 

[1] Raposo-Pulido, V. & Pelaez, J. An efficient code to solve the Kepler equation. Elliptic case. Mon. 
Not. Royal Astron. / MNRAS 467, 1702–1713 (2017) 

[2] Vrbik, J. Solving Kepler’s Problem. The Mathematica Journal 13,  2011. Wolfram Media, Inc 

[3] Deakin, R.E. Solutions of Kepler’s Equation (2017). Bonbeach VIC, 3196, Australia 

[4] Kohout, J.M. and Layton, L. Optimized Solution of Kepler’s Equation. NASA TN D-6712, Goddard 
Space Flight Center 

 

 

 


