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Abstract

In this paper an identity is established connecting to consecutive primes.
Bertrand’s postulate is used together with the identity to establish a quadratic
inequality that can be used to establish minimum intervals containing at least
three primes in between its limits. A generalization of the quadratic inequality
is introduced to establish theminimum interval containining at least one pair of
primes for Goldbach partitition. The concepts of Goldbach partition deviation
and Goldbach partition interval are introduced by which it is shown that the
minimum number of Goldbach partitions of a composite even number is 1.
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Introduction

Bertrand’s postulated, proved in 1852, states that there is always a prime number
between m and 2m (m is an integer greater or equal to 2) meaning that 𝑝𝑖+1 < 2𝑝𝑖.
This also means 𝑔𝑛 < 𝑝𝑛. Hoheisel [6] in 1930, was the first to show that there
exists a constant 𝜃 < 1 such that

𝜋(𝑥 + 𝑥𝜃) − 𝜋(𝑥) ≈ 𝑥𝜃

ln𝑥𝑥 → ∞

hence showing that
𝑔𝑖 < 𝑝𝜃

𝑖
for a sufficiently large 𝑝𝑖.

Ingham [4] showed that for a positive constant c, If

𝜁(1
2 + 𝑖𝑡) = 𝑂(𝑡𝑐)

Then
𝜋(𝑥 + 𝑥𝜃) − 𝜋(𝑥) ≈ 𝑥𝜃

ln𝑥𝑥 → ∞
for any 𝜃 > (1 + 4𝑐)/(2 + 4𝑐)
A result due to Baker, Haman and Pintz [5] in 2001 shows that 𝜃 may be taken to
be 0.525. Thus the best proven bound on gap sizes is 𝑔𝑖 < 𝑝0.525

𝑖 for 𝑖 sufficienty
large. It is observed that maximal gaps are significantly smaller than the above
gap. There are hypothesis like the Oppermann’s conjecture that claim that 𝜃 can
be reduced to 𝜃 = 0.5.
The twin prime conjeecture has a form similar to the binary Goldbach conjecture.
We know ,from paper reference [2] , If :

𝑝1 + 𝑝2 = 2𝑚
Then

𝑝1 − 𝑝2 = 2√𝑚2 − 𝑝1𝑝2
Meaning that

𝑝1 = 𝑚 + √𝑚2 − 𝑝1𝑝2
and

𝑝2 = 𝑚 − √𝑚2 − 𝑝1𝑝2
Thus Goldbach partition of an even number requires solving the linear equation

𝑥 = 𝑚 + √𝑚2 − 𝑝2𝑥
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Where 𝑥 is the unknown. The solution of ths above linear equation is× = 2𝑚−𝑝2
On the other hand if we have the equation

𝑝1 = 𝑛 + √𝑛2 + 𝑝1𝑝2

then 2𝑛 = 𝑝2 − 𝑝1. This means the equation for generating twin primes is given
by

𝑝1 = 1 + √1 + 𝑝1𝑝2
This means twin primes can be generated by solving the equation

𝑥 = 1 + √1 + 𝑥𝑝2

The solution of the above linear equation is 𝑥 = 2 + 𝑝2. For 𝑝2 > 6, we note that
1 + 𝑝1𝑝2 = 36𝑛2. This means that 𝑝1𝑝2 = (6𝑛 + 1)(6𝑛 − 1).
The Binary Goldbach conjecture states that the equation 𝑝1 + 𝑝2 = 2𝑚 has at
least one solution with 𝑝1, 𝑝2 prime for any given even number 2𝑚 ≥ 4. Again
in the paper reference [2] it was shown that every positive integer 𝑚 > 1 has to
meet some neccessary and sufficient conditions for the composite even number
,2𝑚, to have a Goldbach partition. The peove necessary and sufficient condition
is that the square of an integer greater than 1 is equal to the square of an integer
greater than or equal to zero and a Goldbach partition semiprime. That is:

𝑚2 = 𝑛2 + 𝑝1𝑝2 ∧ 𝑛 ≥ 0
The proof presented of the necessary and sufficient condition for Goldbach parti-
tion of a composite even number did not require to solve some parity obstruction
problem.

Bertrands postulate requires that for every 𝑚 > 1 there is always 1 prime p in
there interval (𝑚,2𝑚). This is to say that 𝜋(𝑚,2𝑚) ≥ 1. However if 𝑅(2𝑚)
represents the number of Goldbach partitions, by paper reference [1] it was shown
that 𝜋(𝑚,2𝑚) ≥ 𝑅(2𝑚) − 1 ≥ 0. It was also shown that
𝜋[𝑚,2𝑚] ≥ 𝑅(2𝑚) ≥ 1.

Deriving an identity connecting to consectutive primes

Consider two numbers represented by two algebraic terms 𝑎 and 𝑏. We can es-
tablish an identity connecting a and b through the steps below.

𝑎𝑏 + (𝑎 − 𝑏
2 )2 = 4𝑎𝑏 + 𝑎2 − 2𝑎𝑏 + 𝑏2

4 = 𝑎2 + 2𝑎𝑏 + 𝑏2

4 = (𝑎 + 𝑏
2 )2 (1)

Therefore
𝑎𝑏 + (𝑎 − 𝑏

2 )2 = (𝑎 + 𝑏
2 )2 (2)
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Now consider two consecutive primes 𝑝𝑖 and 𝑝𝑖+1 If we now set 𝑎 = √𝑝𝑖+1 and
𝑏 = √𝑝𝑖 then

√𝑝𝑖𝑝𝑖+1 + (
√𝑝𝑖+1 − √𝑝𝑖

2 )2 = (
√𝑝𝑖+𝑖 + √𝑝𝑖

2 )2 (3)

For the purpose of achieving a quadratic inequality, the above identity will be
rearranged to a more covenient form. That is:

√𝑝𝑖+1 + √𝑝𝑖 = 2√((
√𝑝𝑖+1 − √𝑝𝑖

2 )2 + √𝑝𝑖𝑝𝑖+1) (4)

It also means that

√𝑝𝑖+1 + √𝑝𝑖 = 2√((
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1) (5)

This also means

√𝑝𝑖+1 + √𝑝𝑖 = 2√(𝑝𝑖𝑝𝑖+1)1
2 (𝑝𝑖 − 𝑝𝑖+1

2 )2(( 2
𝑝𝑖 − 𝑝𝑖+2

)2 + 1
𝑝𝑖𝑝𝑖+1

) (6)

That is

√𝑝𝑖+1 + √𝑝𝑖 = 2(𝑝𝑖𝑝𝑖+1)1
4

√𝑝𝑖+1 − √𝑝𝑖
2 √( 2√𝑝𝑖+1 − √𝑝𝑖

)2 + 1
(𝑝𝑖𝑝𝑖+1)1

2
(7)

√𝑝𝑖+1 + √𝑝𝑖 = 2(𝑝𝑖𝑝𝑖+1)1
4 √1 + (√𝑝𝑖+1 − √𝑝𝑖)2

4(𝑝𝑖𝑝𝑖+1)1
2

(8)

Using Bertrand’s postulate in a rearranged form to ob-
tain a quadratic inequality for solving the prime gap
problem

Bertrand’s postulate postulate requres 𝑝𝑖+1 < 2𝑝𝑖. Therefore. Therefore substi-
tuting 𝑝𝑖+1 = 2𝑝𝑖
√𝑝𝑖+1 − √𝑝𝑖

2 √( 2√𝑝𝑖+1 − √𝑝𝑖
)2 + 1

(𝑝𝑖𝑝𝑖+1)1
2

<
√𝑝𝑖(

√
2 − 1)

2 √( 2√2𝑝𝑖 − √𝑝𝑖
)2 + 1√

2𝑝𝑖
(9)

4



Therefore
√𝑝𝑖+1 − √𝑝𝑖

2 √( 2√𝑝𝑖+1 − √𝑝𝑖
)2 + 1

(𝑝𝑖𝑝𝑖+1)1
2

< √1 + (
√

2 − 1)2

4
√

2
= 1.015 (10)

Now because √𝑝𝑖+1 + √𝑝𝑖 > 2√𝑝𝑖+1𝑝𝑖 (11)

1 <
√𝑝𝑖+1 − √𝑝𝑖

2 √( 2√𝑝𝑖+1 − √𝑝𝑖
)2 + 1

(𝑝𝑖𝑝𝑖+1)1
2

< 1.015 (12)

The function
𝑓(𝑝𝑖) = 1.05 1

𝑝𝑖 ∧ 𝑝𝑖 > 3 (13)
lies within the interval (1, 1.05) Therefore intervals containing three primes are
determined by solving the quadratic inequality below.

√𝑝𝑖+1 + √𝑝𝑖 < 2 × 1.05 1
𝑝𝑖 4√𝑝𝑖+1𝑝𝑖 (14)

The important result about the above quadratic inequality is that primes greater
than 9500 achieve the gap result

𝑔𝑖 < 𝑝𝑖0.525

Using the quadratic inequality (14) to obtain intervals
containing three primes

Example 1 Find the integer inteval centered around 𝑝𝑖 = 7 containing at least
three primes

Solution √𝑥 +
√

7 < 4√7𝑥 × 1.051
7

calculator step

4 ≤ 𝑥 ≤ 11
In this interval the three primes are 5, 7 and 11.

Example 2 Use the inequality above to find at least 3 primes centering around
23.
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Solution √𝑥 +
√

23 < 4√23𝑥 × 1.051
7

Calculator step. The integer interval is:

17 ≤ 𝑥 ≤ 29
In the above interval the primes are 17, 19, 23 and 29. The limitations of inequality
(13) is that it cannot account for the observable gaps 𝑝𝑖 < 𝑝𝑖. There is still need
to come up with an approach that takes care of these gaps.

Goldbach partition deviation and interval

If 2𝑚 is a composite even number, we will define a Goldbach partition deviation
as the ratio of m to the number of Goldbach partitions of 2m. If𝑅(2𝑚) is the num-
ber of Goldbach partitions of 2m and 𝑑𝑔 is Goldbach partition Goldbach partition
deviation then

𝑑𝑔 = 𝑚
𝑅(2𝑚) (15)

Thus by the above definition all composite even numbers wih having 1 Goldbach
partition 𝑑𝑔 = 𝑚 A Goldbach partition interval is an interval containing at least 1
Goldbach partition and its limits are defined as

𝑚 − 𝑑𝑔 < 𝑖𝑔 < 𝑚 + 𝑑𝑔 (16)

The number 100 has 6 Goldbach partitions. This means 𝑑𝑔 = 8. An interval
containining primes for one Goldbach partition of 100 is 42, 58. The Goldbach
partition prime pairs in this are (47, 53). Now we can construct an equation that
determines this interval given

√
50 + √𝑥 < 2 × 1.05 1

50
4√50𝑥 (17)

and we note that
41.9 < 𝑥 < 59.7

In this interval the Goldbach partition pairs are (41, 59) and (47, 53). The above
the length of the above interval is 2𝑑𝑔
Now Consider the composite even number 12.
The composite even number will have 1 Goldbach partition if 𝑑𝑔 = 𝑚 = 6 This
would mean that the interval containing primes making up one Goldbach partition
would be (0, 12. The quadratic inequality:

√
6 + √𝑥 < 2 × 1.051

6

The interval from the solution of the above is (3.6 < 𝑥 < 10). The Goldbach
partition primes pair in this interval is (5, 7).
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Extending the derived quadratic inequality to derive an
interval containing at least one pair of primes for Gold-
bach partition

The interval containing one pair primes for Goldbach partition of a composite even
number, 2m can be determining through solving the quadratic inequality below.√𝑚 + √𝑥 < 2 × 1.05 1

𝑚 4√𝑚𝑥 (18)

Laws governing the number of Goldbach partition

From the solution of the quadratic inequality, the length of the interval containing
three primes is given

( 4√𝑝𝑖(1.05 1
𝑝𝑖 )+√( 4√𝑝𝑖(1.05 1

𝑝𝑖 )2 − √𝑝𝑖)4− 4√𝑝𝑖(1.05 1
𝑝𝑖 )−(√( 4√𝑝𝑖(1.05 1

𝑝𝑖 )2 − √𝑝𝑖)4

(19)

The maximum length of interval containing a pair of Goldbach partition primes

( 4√𝑚(1.05 1
𝑚 )+√( 4√𝑚(1.05 1

𝑚 )2 − √𝑚)4−( 4√𝑚(1.05 1
𝑚 )−(√(√𝑚(1.05 1

𝑚 ))2 − √𝑚)4)
(20)

It is observed that if

( 4√𝑚(1.05 1
𝑚 )+√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4− 4√𝑚(1.05 1
𝑚 )−(√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4 ≤ 2𝑚
(21)

Then 2m has at least one Goldbach partition. It should be noted that 2m is the
largest possible Goldbach partition interval, while m is the largest possible Gold-
bach partition deviation. It is also observed that If

( 4√𝑚(1.05 1
𝑚 )+√( 4√𝑚(1.05 1

𝑚 )2 − √𝑚))4−( 4√𝑚(1.05 1
𝑚 )−√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4 ≤ 𝑚
(22)

then 2m has at least 2 Goldbach partitions. Thus by the two equations above,
composite even numbers less than 14 have at least one Goldbach partition. and
those greater or equal to 14 have at least two Goldbach partitions. Thus the
number of Goldbach partitions function 𝑅(2𝑚) is governed by the inequality
𝑅(2𝑚) ≥ 𝑚

( 4√𝑚(1.05 2
𝑚 ) + 4√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4 − ( 4√𝑚(1.05 1
𝑚 ) − √( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4

(23)
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Let 𝑆𝐺 represent the sum of Goldbach Partition primes Now

𝑅(2𝑚) = 𝑆𝐺
2𝑚 (24)

Therefore

𝑆𝐺
2𝑚 ≥ 𝑚

( 4√𝑚(1.05 1
𝑚 ) + √( 4√𝑚(1.05 1

𝑚 )2 − √𝑚))4 − ( 4√𝑚(1.05 1
𝑚 ) − √( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4

(25)
This means that

𝑆𝐺 ≥ 2𝑚2

( 4√𝑚(1.05 1
𝑚 ) + √( 4√𝑚(1.05 1

𝑚 )2 − √𝑚))4 − ( 4√𝑚(1.05 2
𝑚 ) − √( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚)4

(26)
Substituting (23) into (24) we establish that

𝑆𝐺 ≥ 𝑚 (27)

Therefore
𝑅(2𝑚) ≥ 1

2 (28)

This confirms the Goldbach conjecture to be true.

Again it should be noted that

𝑅(2𝑚) = 𝑆𝐺
2𝑚 = 𝑚

𝑑𝑔
(29)

This means that

𝑆𝐺 = 2𝑚2

𝑑𝑔
(30)

since
𝑑𝑔 ≤ 𝑚 (31)

then 𝑆𝐺 ≥ 2𝑚 and 𝑅(2𝑚) ≥ 1 Again it is noted

𝑚 ≈
( 4√𝑚(1.05 1

𝑚 ) + √( 4√𝑚(1.05 1
𝑚 ))2 − √𝑚)2 + ( 4√𝑚(1.05 1

𝑚 ) − √( 4√𝑚(1.05 2
𝑚 ))2 − √𝑚)4

2
(32)
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This result means that the minimum interval one can find Goldbach partition
primes of 2𝑚 is

(( 4√𝑚(1.05 2
𝑚 )−√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4, 4√𝑚(1.05 1
𝑚 )+(√( 4√𝑚(1.05 1

𝑚 ))2 − √𝑚))4)
(33)

Thus for 2𝑚 = 140, the minimum interval for Goldbach partition of 140 for by the
above equation is (60.3, 81.3) or conveniently (60, 80) In this interval the Goldbach
partition pairs are (61, 79) and (67, 73)
The minimum interval that can be taken to confirm that 4000 has a Goldbach parti-
tion is (1944, 2056). In this interval the Goldbach partition pairs are (1973, 2027)
and (1997, 2003).
The minimum interval that can be taken to confirm that 128 has a Goldbach par-
tition is (54, 74). In this interval the Goldbach partition pair is (61, 67).
The minimum interval that can be taken to confirm that 32 has a Goldbach parti-
tion is (11, 21). In this interval the Goldbach partition pair is (13, 19).
From reference paper [2], the minimum interval of primes of Goldbach partition
is

(𝑚 + √𝑚2 − 𝑠𝑔𝑚𝑎𝑥,𝑚 − √𝑚2 − 𝑠𝑔𝑚𝑎𝑥) (34)

Where 𝑠𝑔𝑚𝑎𝑥 largest Goldbach partition semiprime. If

𝑎 = ( 4√𝑚(1.05 2
𝑚 − √( 4√𝑚(1.05 2

𝑚 ))2 − √𝑚)2 (35)

𝑏 = ( 4√𝑚(1.05 2
𝑚 ) + (√( 4√𝑚(1.05 2

𝑚 )2 − √𝑚)2 (36)

and
𝑐 = 𝑏 − 𝑎

2 (37)

Then
𝑎𝑏 ≤ 𝑠𝑔𝑚𝑎𝑥 ≤ 𝑎𝑏 + 𝑐2 (38)

Thus the maximum Goldbach partition semiprime of 128 is given by 54 × 74 =
3996 ≤ 𝑠𝑔𝑚𝑎𝑥 ≤ 54 × 74 + 102 = 4096 The largest Goldbach partition semiprime
is actually 4087. If thecomposite even number 2𝑚 is not semiprime then the
Goldbach partition prime pairs with a minimum gap between them is less than or
equal to 2𝑐. That is to say also that there exists Goldbach partition primes within
the interval (𝑎, 𝑏).
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Obtaining a quadratic inequality for solving the prime
gap problem using the Andrica conjecture

The Andrica conjecture requires that
√𝑝𝑖+1 − √𝑝𝑖 < 1 (39)

When we substitute (38) into (3) be obtain the quadratic inequality (39) below.

2(√√𝑝𝑖𝑝𝑖+1 + 1
4) > √𝑝𝑖+1 + √𝑝𝑖 (40)

The gaps of inequality (13) are shorter that those of inequality (39) though com-
parable to those proposed in Crammer’s conjecture. To achieve better results we
will substitute the inequality

√𝑝𝑖+1 − √𝑝𝑖 <
√

11 −
√

7 (41)

into (3) to obtain the quadratic inequality

2(√√𝑝𝑖𝑝𝑖+1 + (
√

11 −
√

7
2 )2) ≥ √𝑝𝑖+1 + √𝑝𝑖 (42)

Thus the solution of

2(√
√

113𝑥 + (
√

11 −
√

7
2 )2) ≥ √𝑥 +

√
113

is

99.1871054116999 ≤ 𝑥 ≤ 127.713037038732
The prime number after 113 is 127.

The solution of

2(√
√

23𝑥 + (
√

11 −
√

7
2 )2) ≥ √𝑥 +

√
23

is 17.0152788649411 ≤ 𝑥 ≤ 29.8848635854904
The prime number after 23 is 29. The solution of

2(√
√

1129𝑥 + (
√

11 −
√

7
2 )2) ≥ √𝑥 +

√
1129
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is

1084.36657476504 ≤ 𝑥 ≤ 1174.53356768539
The prime number after 1129 is 1151. The disadvantage of formulation (41) above
is that it cannot account for observed cases in which 𝑔𝑖 < 𝑝𝑖.

An exact prime gap relationship accounting for the var-
ious conjectures on prime gaps

Equation (8) can be written as

√𝑝𝑖+1 + √𝑝𝑖 = 2 4√𝑝𝑖𝑝𝑖+1(√(
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1) = 𝑔𝑖√𝑝𝑖+1 − √𝑝𝑖
(43)

Now the gap between consecutive primes is given by:

𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) (44)

Therefore

√𝑝𝑖+1 + √𝑝𝑖 = 2 4√𝑝𝑖𝑝𝑖+1(√(
√𝑝𝑖+1 − √𝑝𝑖

2 4
√𝑝𝑖𝑝𝑖+1

)2 + 1) = √𝑝1 ± (2𝑘𝑖 − 1)√𝑝𝑖+1 − √𝑝𝑖
(45)

From article reference [1] and (49)

2√(𝑚2 − 𝑠𝑔) = √𝑝𝑖 ± (2𝑘𝑖 − 1) (46)

This means that

𝑠𝑔 = 𝑚2 − √𝑝𝑖 ± (2𝑘 − 1)
2 (47)

For twin primes
𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) = 2 (48)

Applying Bertrand’s postulate on maximum gaps it is noted that

𝑔𝑖 = √𝑝𝑖 + (2𝑘𝑖 − 1) < 𝑝𝑖 (49)

This also means that

2𝑘𝑖 < 𝑝2
𝑖 − 𝑝𝑖 + 1 = 𝑝𝑖(𝑝𝑖 − 1) + 1 (50)
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Another observation is that

𝑝𝑖+1 = 𝑝𝑖 + √𝑝𝑖 ± (2𝑘𝑖 − 1) (51)

Thus 5 = 3 + √3 + 1
29 = 23 + √23 + 13
3 = 2 +

√
2 − 1

By Andrica conjecture

𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) < √2𝑝𝑖 − 1 (52)
This means that either

2𝑘 < (√2𝑝𝑖 − 1)2 − 𝑝𝑖 + 1 (53)
or

2𝑘 > (√2𝑝𝑖 − 1)2 − 𝑝𝑖 + 1 (54)

The Riemann hypothesis dimension of the prime gap
problem

From equation (49) we established that

𝑔2
𝑖 = 𝑝𝑖 ± (2𝑘𝑖 − 1) (55)

The Riemann Zeta function can therefore be written in rhe form:

𝜁(𝑠) = ln(−√𝑔2
𝑖 )

ln𝑔2
𝑖

= ln(−1) + ln𝑔𝑖
2 ln𝑔𝑖

= 1
2 + 𝑖 𝜋

2 ln𝑔𝑖
(56)

Thus the proving or disproving of the Riemann hypothesis will in a sense con-
tribute to our understanding better the prime gap problem.

In the paper reference [2] it was shown that the Riemann zeta funcrion can also
be written in the form

𝜁(𝑠) = ln(− 𝑛√𝑔𝑛
𝑖 )

ln𝑔𝑛
𝑖

= ln(−1) + ln𝑔𝑖
𝑛 ln𝑔𝑖

= 1
𝑛 + 𝑖 𝜋

𝑛 ln𝑔𝑖
(57)

Again

𝜁(𝑠) = ln(− 𝑛√𝑔 1
𝑚
𝑖 )

ln𝑔𝑛
𝑖

= ln(−1) + ln𝑔𝑖
𝑛 ln𝑔𝑖

= 1
𝑛2𝑚 + 𝑖 𝜋

𝑛 ln𝑔𝑖
(58)
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In the above form nontrivial zeroes can be outside the critical line and therefore
the Riemann hypothesis was disproved as was shown in paper reference [2] An
example result that was shown to contradict Riemann hypothesis is

𝜁(−1000 − 𝑖1000𝜋
ln2 ) = 0

Relative size of a gap

For the purpose of this research we introduce the concept of relative size of a
prime gap.

Definition: Relative size of a prime gap The relative size of a prime gap is
defined as the ratio of the gap between consecutive primes to the squareroot of
the smallest prime making the gap, that is:

𝑟𝑖 = 𝑔𝑖√𝑝𝑖
= √𝑝𝑖 ± (2𝑘𝑖 − 1)√𝑝𝑖

= √1 ± 2𝑘𝑖 − 1
𝑝𝑖

∧ 2𝑘𝑖 − 1 < 𝑝𝑖 (59)

A gap is of a large relative size if 𝑟𝑖 > 1 otherwise its relative size is small. A
prime number has a large relative gap if

𝑟𝑖 = 𝑔𝑖√𝑝𝑖
= √𝑝𝑖 + (2𝑘𝑖 − 1)√𝑝𝑖

= √1 + 2𝑘𝑖 − 1
𝑝𝑖

∧ 2𝑘𝑖 − 1 < 𝑝𝑖 (60)

It has a small relative gap if

𝑟𝑖 = 𝑔𝑖√𝑝𝑖
= √𝑝𝑖 − (2𝑘𝑖 − 1)√𝑝𝑖

= √1 − 2𝑘𝑖 − 1
𝑝𝑖

∧ 2𝑘𝑖 − 1 < 𝑝𝑖 (61)

A large prime gap may have a snall relative prime gap. On the other hand a small
prime gap may have a small prime gap. For example

5 = 3+√3 + 1 = 5. Now the prime gap is small that is 2. However 𝑟 = √1 + 1
3 =

√5
3 > 1. The gap is small but it has a large relative prime gap.

On the other hand 97 = 89 +
√

89 − 25. The gap is 8 but the relative gap is
√1 − 25

89 = √64
89 . The relative prime gap. For the prime 113 the prime gap is√144

113
In general as prime numbers become big it reaches a point where the square of
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the prime gap ;𝑔𝑖, becomes less than the prime, 𝑝𝑖, meaning the relative prime
gap ratio becomes small.

Safely speaking

𝑟𝑖 = 𝑔𝑖√𝑝𝑖
> 3(ln𝑝𝑖)2

√𝑝𝑖
(62)

By the above inequality at most primes greater 4, 400,000 have a small relative
prime gap ratio and are therefore subject to the inequality

𝑔𝑖 < √𝑝𝑖. The relative prime gap can also be determined by the inequality by
solution of equation (13)

+

𝑟𝑖 >
( 4
√𝑝𝑖(1.05 2

𝑝𝑖 ) + √( 4
√𝑝𝑖(1.05 1

𝑝𝑖 )2 − √𝑝𝑖)4 − 𝑝𝑖√𝑝𝑖
(63)

The relative gap ratio inequality suddenly falls to zero for primes greater than
1024. It does not properly accurately predict properly the relative gap ratio of
the very big primes. Inequality (67) succeeds in primes confirming Opperman’s
conjecture for primes bigger than 4, 400, 000. Now the limits of 𝑟 are

2√𝑝𝑖
≤ 𝑟𝑖 ≤ 4√

7
∧ 𝑝𝑖 > 2 (64)

This means effectual means

2 ≤ 𝑔𝑖 ≤ 4√𝑝𝑖
7 (65)

Note here the gap between 7 and 11 is special case. When it substituted into
𝑔𝑖 = √𝑝𝑖 + 2𝑘𝑖 − 1 is is the the only prime number in whicb 2𝑘𝑖 − 1 > 𝑝𝑖.

Take note that 11 = 7 + √7 + 9. This means 2𝑘4 − 1 = 9. Therefore 𝑟𝑖 of the gap
between 7 and 11 forms the outermost limit of the interval of 𝑟𝑖. This effectvely
means that the prime gap lies in the intervals This means that in the most general
sense

1 ≥ 𝑔𝑖 ≤ 4√𝑝𝑖
7 (66)

This effectvely means that

𝑔𝑖 ≤ 1.51185789203691√𝑝𝑖 (67)

By the above inequality the gap between 113 and the next prime number is less
than 16. The gap given in inequality (72) is shorter than that suggested by Baker,
Haman and Pintz. Opperman’s conjecture still needs a proof because the above
result does not touch it. The gap inequality above means that both Legendre and
Andrica conjectures are true.
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A note on relative size of a prime gap For gaps of large relative size

1√𝑝𝑖
≤ 2𝑘𝑖 − 1√𝑝𝑖

≤ 9
7

Therefore

For gaps of large relative size

2 ≤ 2𝑘𝑖 ≤ 9√ 𝑝𝑖√
7

For gaps with small relative size

𝑝𝑖 − (2𝑘𝑖 − 1) ≥ 4
Therefore

𝑝𝑖 ≥ 2𝑘𝑖 + 3

Extension of the relative prime gap ratio to the binary
Goldbach conjecture

We can define the relative gap ratio for Goldbach partition as the ratio of the gaps
of Goldbach parition primes to the Goldbach partition composite even number.
That is to say

𝑟 = 𝑔𝑖
2𝑚 = 2√𝑚2 − 𝑠𝑔

2𝑚 = √1 − 𝑠𝑔
𝑚2 ≤ √1 − 3(2𝑚 − 3)

𝑚2 ∧ 0 ≥ 𝑟 < 1 (68)

Thus the Goldbach partition relative prime gap ratio is dependent on the ratio𝑠𝑔
𝑚2 . The larger it is the smaller the relative prime gap ratio. One composite even
number can generate several prime gap ratios. Semiprime even numbers have
one of their relative prime gap ratios equal to 0. Now take note on how semiprime
even numbers are generated:

𝑝2 + 𝑝1 + 𝑔2,1 = 2𝑝2 (69)

again
𝑝2 + 𝑝1 − 𝑔2,1 = 2𝑝1 (70)

If we set 2𝑚 = 𝑝2 +𝑝1 Then it is true that for every composite even number there
exists some gap 𝑔2,1 ≥ 0 such

2𝑚 + 𝑔2,1 = 2𝑝2 (71)
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2𝑚 − 𝑔2,1 = 2𝑝1 (72)
in which case 2𝑚 = 𝑝1 + 𝑝2. The inequality (66) can be adopted to establish an
inequality for the number of Goldbach partitions counting function given by:

𝑅(2𝑚) >
√

7𝑚
8√𝑚 =

√
7𝑚
8 (73)

Thus the number of Goldbach partitions of 128 is 𝑅(128) >
√

7×64
8 = 2.646.

𝑅(32) > 1.323.
Again it should be noted using equation (51), the Goldbach partition semiprime,
𝑠𝑔 is given by:

𝑠𝑔 = 𝑝2
1 + 𝑝1√𝑝1 + 2𝑘 − 1 ∧ √𝑝1 + 2𝑘 − 1 = 2𝑛 (74)

where k is an integer. This means that

𝑠𝑔 = 𝑝2
1 + 2𝑛𝑝1 = 𝑝2

1 + (𝑝2 − 𝑝1)𝑝1 = 𝑝2
1 + 𝑝1𝑔1,2 (75)

Therefore

2𝑚 = 𝑝1 + 𝑝2
1 + 𝑝1𝑔1,2

𝑝1
∧ 𝑝2

1 + 𝑝1𝑔1,2 ≤ (2𝑚 − 𝑝1)2 (76)

Or

2𝑚 = 𝑝1+𝑝2
1 + 2𝑝1(√𝑚2 − 𝑝1𝑝2)

𝑝1
= 2𝑝1+2√𝑚2 − 𝑝1𝑝2∧3(2𝑚−𝑝1) ≤ 𝑝1𝑝2 ≤ 𝑚2

(77)
Equation (80) also implies that:

(𝑚 − 𝑝1)2 + 𝑝1𝑝2 = 𝑚2 (78)

This means that
2𝑚 = 2√(𝑚 − 𝑝1)2 + 𝑝1𝑝2 = 𝑝1 + 𝑝2 (79)

To generate Goldbach partition primes solve the equation

2𝑚 = 2√(𝑚 − 𝑝1)2 + 𝑝1𝑥 (80)
with 𝑝1 as the variable. If (𝑝1, 𝑥) = (𝑝1, 𝑝2) then (𝑝1, 𝑝2) are Goldbach partition
pairs of 2m.

Example 1 Use the formula (80) to do a Goldbach partition of 20.
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Solution 102 − (10 − 3)2 = 3𝑥
This is to say 𝑥 = 17. Therefore 10 = 3 + 17
102 − (10 − 5)2 = 5𝑥
𝑥 = 15 (not a prime number).
102 − (10 − 7)2 = 7𝑥
𝑥 = 13. Therefore 20 = 7 + 13.
The important applications of equation (78) need to be emphasize. The equation
can be used to generate primes of a given gap

Example 2 Use formula (80) to generate 8 prime pairs with gap of 24.

Solution Start by solving the equation

12 = √(12 − 29)2 − 29𝑥
The solution is (29,𝑥) = (29,−5). Again solve the equation

12 = √(12 − 31)2 − 31𝑥
The solution is (31,𝑥) = (31,−7).
Again solve the equation

12 = √(12 − 37)2 − 37𝑥
The solution is (37,𝑥) = (37,−13).
Again solve the equation

12 = √(12 − 41)2 − 41𝑥
The solution is (41,𝑥) = (41,−17).
Again solve the equation

12 = √(12 − 43)2 − 43𝑥
The solution is (43,𝑥) = (43,−19).
Again solve the equation

12 = √(12 − 47)2 − 47𝑥
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The solution is (47,𝑥) = (47,−23). Again solve the equation

12 = √(12 − 53)2 − 53𝑥
The solution is (53,𝑥) = (53,−29). Again solve the equation

12 = √(12 − 61)2 − 61𝑥
The solution is (61,𝑥) = (61,−37). Again it should be noted that

𝑝1 = √(𝑚 − 𝑝1)2 + 𝑝1𝑝2 + √𝑚2 − 𝑝1𝑝2 (81)

and
𝑝2 = √(𝑚 − 𝑝1)2 + 𝑝1𝑝2 − √𝑚2 − 𝑝1𝑝2 (82)

Proof of Oppermann’s conjecture

The equations (60) and (61) can be modified to

𝑟𝑖√𝑝𝑖
= 𝑔𝑖

𝑝𝑖
= √ 1

𝑝𝑖
± 2𝑘𝑖 − 1

𝑝2
𝑖

(83)

A generally accepted quotient in number theory is

lim
𝑖→∞

𝑔𝑖
𝑝𝑖

= 0 (84)

Oppermann’s conjecture implies that when 𝑖 > 30 then

𝑔𝑖 = 𝑝𝑖√ 1
𝑝𝑖

− 2𝑘𝑖 − 1
𝑝2

𝑖
= √𝑝𝑖 − (2𝑘𝑖 − 1) ≥ 2 (85)

This the above inequality lies within the limits of accepted number theory and
effectually means that for prime number greater than 113.

𝑔𝑖 = √𝑝𝑖 − (2𝑘𝑖 − 1) ≥ 2 (86)

Thus Oppermann’s conjecture is true.
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A quadratic formula for generating twin prime pairs

Equation (85) can help in coming up with a formula for generating twin primes
given by

1 = √(1 − 𝑥)2 − 𝑥𝑝𝑖 (87)
Thus the solution of

1 = √(1 − 𝑥)2 − 59𝑥
is (𝑥1 = 0,𝑥2 = 61) meaning that the prime pair is (59, 61) and so forth. The
solution for

1 = √(1 − 𝑥)2 − 101𝑥
is (𝑥1 = 0,𝑥2 = 103) Meaning that the prime pair is (101, 103).

A quadratic equation generating prime pairs with the same gap

If general, if 2𝑛 the gap between to primes, prime pairs having the same gap can
be generated by the equation:

𝑛 = √(𝑛 − 𝑥)2 − 𝑥𝑝𝑖 (88)
That is

𝑥2 − 𝑥(2𝑛 + 𝑝𝑖) + 𝑛(𝑛 − 1) = 0 (89)
Thus:

𝑥 = 2𝑛 + 𝑝𝑖 ± √(2𝑛 + 𝑝𝑖)2 − 4𝑛(𝑛 − 1)
2 (90)

Thus by the above formula if we select 2𝑛 = 4 ∧ 𝑝𝑖 = 3 we obtain a solution of
(𝑥1 = 0,𝑥2 = 7).
If we select 2𝑛 = 4 ∧ 𝑝𝑖 = 5 we obtain a solution of (𝑥1 = 0,𝑥2 = 9).
If we select 2𝑛 = 4 ∧ 𝑝𝑖 = 7 we obtain a solution of (𝑥1 = 0,𝑥2 = 11) If we select
2𝑛 = 4 ∧ 𝑝𝑖 = 13 we obtain a solution of (𝑥1 = 0,𝑥2 = 17) and so on. Thus prime
pairs of gap of 4 can be generated using 2𝑛 = 4 and so on.
It should be noted from reference [2] that

𝑥 − 𝑛 = 𝑚 (91)
so that

2𝑚 = 𝑝𝑖 + 2𝑛 + 𝑝𝑖 + √(2𝑛 + 𝑝𝑖)2 − 4𝑛(𝑛 − 1)
2 (92)

or

2𝑚 = 𝑝𝑖 + 2(𝑚 − 𝑥) + 𝑝𝑖 + √(2(𝑚 − 𝑥) + 𝑝𝑖)2 − 4(𝑚 − 𝑥)(𝑚 − 𝑥 − 1)
2 (93)
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A function for counting the number of twinprime pairs

For the nonzero solution of quadratic equation (93) x is either a composite odd
number or a prime number. Whenever the nonezero solution of (93) is a prime
number 𝑥 = 𝑝𝑖+1 = 𝑝𝑖+2. In the above twin prime quadratic equation the number
of primes up to x > 0 is given by

𝜋(𝑥) = 𝑖 (94)

Therefore the number of twin primes above is given by:

𝑁(𝑥) ≈ 𝜋(𝜋(𝑥)) = 𝜋(𝑖) (95)

Thus 𝜋(𝜋(100)) = 9. The actual number of twin prime pairs upto 100 is 8.
𝜋(𝜋(200)) = 14. The actual number of twin prime pairs upto 200 is 15.
𝜋(𝜋(400)) = 21. The actual number of twin prime pairs up to 400 is 21.
𝜋(𝜋(1000)) = 39. The actual number of twin prime pairs up to 1,000 is 35.
𝜋(𝜋(10000)) = 201. The actual number of twin primes up to 10, 000 is 205.

A remark on identity 8

The identity (8) can be converted to a quadratic inequality of the form

√𝑝𝑖+1+√𝑝𝑖 = 2(𝑝𝑖𝑝𝑖+1)1
4 √1 + (√𝑝𝑖+1 − √𝑝𝑖)2

4(𝑝𝑖𝑝𝑖+1)1
2

≤ 2(𝑝𝑖𝑝𝑖+1)1
4 √1 + (

√
11 −

√
7)2

4(77)1
2

(96)
this would mean for the inequality
√

113 + √𝑥 ≤ 2 4√113𝑥√1 + (
√

11−
√

7
2

√
77 )2 then

96.9813582401626 ≤ 𝑥 ≤ 131.664478944285. This means that there is at least
one prime number in each of the intervals [97, 113] and [113, 131].

Conclusion

The gap between consecutive primes is given by

𝑔𝑖 = √𝑝𝑖 ± (2𝑘𝑖 − 1) ≥ 1 (97)
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The gap between two consecutive primes is given by the inequality:

𝑔𝑖 ≤ 1.51185789203691√𝑝𝑖 (98)

The Oppermann’s conjecture implies that for 𝑝𝑖 > 113 then

𝑔𝑖 = 𝑝𝑖√ 1
𝑝𝑖

− 2𝑘𝑖 − 1
𝑝2

𝑖
= √𝑝𝑖 − (2𝑘𝑖 − 1) ≥ 2 (99)

The number of Goldbach partitions of a composite even number is given by:

𝑅(2𝑚) >
√

7𝑚
8√𝑚 =

√
7𝑚
8 (100)

The Riemann zeta funcrion can also be written in the form

𝜁(𝑠) = ln(− 𝑛√𝑔𝑛
𝑖 )

ln𝑔𝑛
𝑖

= ln(−1) + ln𝑔𝑖
𝑛 ln𝑔𝑖

= 1
𝑛 + 𝑖 𝜋

𝑛 ln𝑔𝑖
(101)

Again

𝜁(𝑠) = ln(− 𝑛√𝑔 1
𝑚
𝑖 )

ln𝑔𝑛
𝑖

= 𝑛𝑚 ln(−1) + ln𝑔𝑖
𝑛2𝑚 ln𝑔𝑖

= 1
𝑛2𝑚 + 𝑖 𝜋

𝑛 ln𝑔𝑖
(102)

In the above form nontrivial zeroes can be outside the critical strip.

The Legendre, Andrica, Crammer and Opperman’s postulate are true. The Binary
Goldbach conjecture is true. The above gap equation accounts for many of the
conjectures on prime gaps. The Riemann hypothesis is false.
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