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0.1 Proofs.

We first show that e, π are transcendental numbers over Q; suppose that z /∈ Q
and p(x) is the minimal polynomial over Z such tht p(z) = 0. Then, by means
of the algebraic completeness of C, we can write

p(x) = a(x− z)(x− α2) . . . (x− αn)

and an easy argument shows that p is minimal for all αj . Indeed, suppose that
there exists a q of degree less than n for α2, then Eulidean division gives that

p = sq + r

with the degree of r strictly less than the degree of q. Therefore, r(α2) = 0
and therefore r = 0 by minimality of q for α2. Hence, p = sq wich contradicts
the minimality of p regarding z in case s is of nontrivial degree. Hence, the
conclusion; π is defined as the first nontrivial zero of sin(x) and all zero’s are
given by mπ where m ∈ Z. Therefore p(x)| sin(x) and therefore p(x) = (x −
π)(x − k2π)ldots(x − knπ). Therefore, the existence of π should entail a series
of integer numbers 1, k2, . . . kn. There is no logical ground for this; hence p(x)
does not exist and π is trancendental. A similar comment applies to ln(x) − 1
and the minimal polynomial q(x) for e. This should contain comlex conjugated
pairs a, a of numbers with a nontrivial imaginary part; there is again no reason
for this to be so and hence e must be transcendental.

We prove the extended Fermat theorem which asserts that for n > 2 it holds
that xn + yn = zn has no solutions in Q. Proof: xn + yn = zn is equivalent to
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supposing that x < y. The Taylor expansion of

(1 + q)
1
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nkk!
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implies that

z

y
= 1 +
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Therefore, demanding a = z
y = p

q with p, q ∈ N0 and gcd(p, q) = 1 to be rational
implies that

pnk(n− 1)(2n− 1) . . . ((k − 1)n− 1)

qnknkk!

must contain at most a finite fixed number of prime factors of limied power
in the denominator uniformly over k. This can only be when the nominator
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(n−1)(2n−1) . . . ((k−1)n−1) almost cancels the denominator k! up to a finite
power of a finite number of prime factors for any k. It is cleary so that n cannot
be an odd integer 2m + 1 since otherwise the nominator would be of the kind
(k−1)!mk−1 so that a factor of 1

q(2m+1)kk(2m+1)k
survives which cannot be put on

one denominator by choice of p. For the case n = 2m with m > 1, one obtains
gaps in the denominator between 1 . . . 2(m−1), 2m, 4m−2, ... so that each time
have a gap with m−1 odd numbers implying we have (k−1)(m−1) odd “gap”
numbers. So, we have to prove that there exists an infinite number of k such
that p2mk is not a product of numbers of the form l2m− 1 or equivalently that
there exists an infinite number of primes which are not as such. They simply
are of the form p1 . . . ps + 1 where pj is the j’th prime number. Therefore, only
m = 1 or equivalently n = 2 is allowed for. QED
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