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Preface

Content of the paper is divided into two parts. But it is in the reversed order
for the organization.

Part I. On a manifold, we apply the analysis in Part II below to define an
intersection called supportive intersection for singular cycles. It has a topological
descend to the cup-product. The result is motivated by a problem in cohomology
theory. The tool is the notion of currents. A current which is a functional was
first introduced by de Rham in 1955. Ever since then, currents played a central
role in geometry. However, the part about the support has not been in focus.
For instance, the cup-product has been extensively studied in the past. Yet,
there is no adequate control on the support of cohomological classes. So, we
would like to introduce the supportive intersection that will catch this property.
The purpose of this paper is to build the foundation for exploring further. In
the end, we’ll give an application in this direction.

Part II. This is the technical foundation for the geometry above, but it may
have an independent interest. It consists of a functional analysis on a very
specific type of convergence of currents. In terms of classical analysis, it is an
extension of mollifiers. Classically, mollifier is mostly applied as a smoother for
a distribution which is usually viewed as a current of degree 0. We extend the
mollifier to currents where the degrees are positive.
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I Part I: Main result

Abstract

Let X be a differential manifold. Let D ′(X) be the space of currents, and
S(X) the Abelian group freely generated by regular cells, each of which is a pair
of a polyhedron Π and a differential embedding of a neighborhood of Π to X.
In this paper, we define a variant that is a bilinear map

S(X)× S(X) → D ′(X)
(c1, c2) → [c1 ∧ c2]

called the supportive intersection such that
1) the support of [c1 ∧ c2] is contained in the intersection of the supports
of c1 and c2;

2) if c1, c2 are closed, [c1 ∧ c2] is also closed and its cohomology class
is the cup-product of the cohomology classes of c1, c2.

Then we show a connection between the supportive intersection and the
Hodge’s problem.

I.1 Introduction to the supportive intersection

In transcendental geometry, support as a closed set is attached to other more
notable invariants such as forms, chains and various abstract classes. Although
itself has no independent interest, support has always served as a foundation
for other structures to be built on. We found that it could play a role in
the global structure. In this paper we start exploring it in the ring of the
singular cohomology theory, and show an application. The paper is organized
in a reversed order. We first go straight to its verification and consequence in
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Part I, and leave the foundational analysis in Part II. Let X be a differential
manifold. We would like to construct a variant that is a bilinear map

S(X)× S(X) → D ′(X)
(c1, c2) → [c1 ∧ c2]

(I.1)

such that

Condition I.1. (supportivity) the support of [c1 ∧ c2] is contained in the in-
tersection of the supports of c1 and c2;

Condition I.2. (cohomologicality) if c1, c2 are closed, [c1 ∧ c2] is also closed
and its cohomology class is the cup-product of the cohomology classes of c1, c2.

The idea goes back to de Rham’s work on currents. De Rham started this
direction where he constructed, for an arbitrary current T , the regularization
RϵT for a real number ϵ > 0 such that the regularization weakly converges to
T as ϵ → 0. From that, de Rham obtained an interpretation of the geometric
intersection number. Based on this intersection number, he worked out his
famous theory in topology. However, the properties of the regularization is far
beyond the topology where he finally landed in. For instance, the supportive
property we are interested in is one of them. In particular, it satisfies that

1) (homotopy) there exists another linear operator Aϵ satisfying the homo-
topy formula

RϵT − T = bAϵT +AϵbT (I.2)

where b is the boundary operator on currents,
2) (supportivity) the support of RϵT is contained in any given neighborhood

of the support of T provided ϵ is sufficiently small;

As the general theory moves on, de Rham’s old method slowly becomes an
echo of reminiscence that only serves as a reminder. For instance, in Thom
isomorphism, any closed manifold M is cohomologous to a smooth form whose
support is in any tubular neighborhood of M . This clearly follows from the
supportivity, condition 2) above. In general, the development of the property 1)
provided the axiomatic basis for homological algebra. But on the other hand,
the implication of the property 2) lags behind, and the subtlety in his analysis
is no longer in the mainstream.

In this paper, we are going to focus on the property 2). We work with chains
which are known to be a particular type of currents. Let c be a regular chain.
Denote the current of the integration over c by Tc.

First we generalize the notion of a mollifier in functional analysis.

Definition I.3. ( blow-up forms)
Let 𭟋ϵ for ϵ > 0 be a family of smooth forms of degree r in an Euclidean space

Rm. If there are an orthogonal decomposition Rm = Rr⊕Rm−r with coordinate
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u for the subspace Rr and a smooth form 𭟋1(u) on Rr with a compact support
such that

𭟋ϵ = π∗𭟋1(
u

ϵ
) (I.3)

where π : Rm → Rr is the orthogonal projection, then 𭟋ϵ is called a blow-up
form from 𭟋1(u) along Rr at Rm−r.

Definition I.4. (de Rham’s convergence) Let 𭟋ϵ be a blow-up form and c a
regular cell in Rm. The weak convergence of

Tc ∧𭟋ϵ (I.4)

to a current as ϵ→ 0 is called de Rham’s convergence.

Remark In [2], G. de Rham proved the convergence for a special case with
a topological assumption. It is conceivable that if the supportive intersection is
defined to be the limit of de Rham’s convergence of the current Tc1 ∧ Rϵ(Tc2),
the conditions I.1 and I.2 simply follow from de Rham’s properties 1) and 2).
The precise statement is our main theorem in the following.

Theorem I.5. (Main theorem 1) Let X be a differential manifold. For

(c1, c2) ∈ S(X)× S(X)

with dim(c1) + dim(c2) ≥ dim(X), the current

[c1 ∧ c2] (I.5)

satisfying Condition I.1 and Condition I.2 exists if de Rham’s convergence holds.
We call [c1 ∧ c2] a supportive intersection.

Remark. The theorem provides us with an intersection beyond the topol-
ogy. For instance, a supportive intersection does not require the objects to be
closed. So the supportive intersection is not topological.

We organize the rest of chapter as follows. In Section 2, we prove that the
de Rham’s regularization Rϵc for any regular cell c is a blow-up form. In section
3, applying the de Rham’s convergence in Part II, we’ll directly verify that for
(c1, c2) ∈ S(X)× S(X) indeed satisfies Conditions I.1 and I.2.
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I.2 The blow-up form of de Rham’s Regularization

The technique is a particular regularization of currents. In the literature, there
are many different types of regularization such as de Rham’s, Heat kernel, De-
mailly’s psh regularization, etc. But we’ll use the original regularization con-
structed by de Rham due to its full control on the support. We’ll state it below.

Theorem I.6. (G. de Rham) Let ϵ be a small positive number. Let E (X) be
the space of smooth forms on X. Then there exist linear operators,

Rϵ : D ′(X) → E (X)
Aϵ : D ′(X) → D ′(X)

(I.6)

such that for T ∈ D ′(X)
(1) a homotopy formula

RϵT − T = bAϵT +AϵbT, (I.7)

holds where b is the boundary operator,
(2) supp(RϵT ), supp(AϵT ) are contained in any given neighborhood of

supp(T ) provided ϵ is sufficiently small,
(3) If a smooth differential form ϕ has the bounded semi-norm ||•||q,K where

q is a whole number and K is a compact set and ϵ is bounded above, then
RϵTϕ, AϵTϕ are also bounded in the same semi-norm,

(4)
lim
ϵ→0

RϵT = T, lim
ϵ→0

AϵT = 0

in the weak topology of D ′(X). Furthermore, the convergence is uniform
on the set of forms with the bounded semi-norms || • ||q,K .

The operator Rϵ is called regulator. The collection of the data used in the
regularization is called de Rham data. In particular, it consists of countably
many ordered, covering open sets U1, · · · where the local regularization occur
independently in each Ui. The global regularization Rϵ is just the iteration of
the local regularization.

This paper needs the properties (1) and (2) only. In addition, de Rham
showed that the kernel of the operator Rϵ is a differential form, i.e. a differential
form ϱϵ on X ×X such that for any ϕ ∈ D(X) and T ∈ D ′(X) with a compact
support

Rϵ(T )[ϕ] = (T ⊗ Tϕ)[ϱϵ]

where the tensor product T ⊗Tϕ is a current on X×X with a compact support.
In the following, we prove a local property of this smooth kernel.
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Proposition I.7.
At each point of X, there is a neighborhood U ≃ Rm, such that the smooth

kernel ϱϵ of de Rham’s regulator Rϵ with sufficiently small ϵ is restricted to a
blow-up form on Rm × Rm at the diagonal ∆.

Proof. We need to analyze the local structure of the rgulator. So, we start with
the reviewing of the de Rham’s construction in its local charts. Let Rm be the
Euclidean space of dimension m with a linear structure. Let y1, · · · , ym be its
coordinates under a basis. They will be collectively denoted by the bold letter
y. Same bold fonts for various Euclidean spaces will be used throughout this
paper. Let f(y) ∈ D(Rm) be a function ( i.e. a mollifier) supported in the unit
ball such that ∫

y∈Rm

f(y)dµy = 1, (I.8)

where dµy is the volume form

dy1 ∧ · · · ∧ dym.

Let

ϑϵ(y) =
1

ϵm
f(

y

ϵ
)dµy, ϵ > 0 (I.9)

be the m-form on Rm. Then the de Rham’s regulator on Rm is the operator
that sends each current T on Rm to the form

±T [ϑϵ
(
x− y

)
|y] (I.10)

where the sign ± is determined by the dimension of T and m, the current T is
evaluated at the double form but in the variable y. The operator depends on
the coordinates of Rm. We denote this regulator by Rϵ. The form

±ϑϵ
(
x− y

)
(I.11)

on Rm×Rm is denoted by θϵ(x−y) where x,y are the variables for the first and
second factors in Rm × Rm. Notice that θϵ(x − y) is the smooth kernel of Rϵ

(with respect to the degree of c). * The extension to the global X is through a
countable iteration of the localRϵ. The extension requires countably many local
charts Ui ≃ Rm in de Rham data that covers X. The covering is locally finite.
By the continuity, we may only consider the point q not on the boundaries of
Ui. Such an extension at the point q can be described as follows. Since the
de Rham’s covering is locally finite, there are finitely many ordered open sets,
U1, U2, · · · , Un that contain q. It suffices to consider the regularization in these
open sets. We denote the regulator on each Ui by Ri

ϵ and its smooth kernel
by θiϵ(xi − yi). By the partition of unity, we may only consider the current T

*We should note that this kernel is supported in a neighborhood of the diagonal. The
assertion is the base of de Rham’s construction. For instance, the evaluation (I.11) is based
on that.
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compactly supported in the overlap ∩
i
Ui. Then the global Rϵ sends the T to a

smooth form
Rn
ϵ ◦ Rn−1

ϵ ◦ · · · ◦ R1
ϵ(T ). (I.12)

Above is the description of de Rham’s construction around the point q. The
following is our work to show that the kernel of (I.12) is a blow-up form. First
we’ll express the kernel. In each local regulator

Ri
ϵ : D ′(Rm) → E (Rm)

we denote the Rm in the domain space by Rmyi
with the variable yi, and the Rm

in the target space by Rmxi
with variable xi. We identify Rmyi

= Rmxi−1
and denote

it by Rmi,(i−1) (which is diffeomorphic to Rm). Then each product Rmxi
×Rmyi

for
i = n, · · · , 1 is embedded in

Rmxn
× Rmn,n−1 × Rmn−1,n−2 × · · · × Rm2,1 × Rmy1

as the zero-section of the trivial bundle. So, we pull back each θiϵ(xi − yi) to
the the product

Rmxn
× Rmn,n−1 × Rmn−1,n−2 × · · · × Rm2,1 × Rmy1

and denote the pullbacks with the same notation θiϵ(xi − yi). Then according
to (I.12), the local expression of the global kernel ϱϵ(xn,y1) is the fibre integral

∫
(yn,··· ,y2)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θnϵ (xn − yn) ∧ θn−1
ϵ (xn−1 − yn−1)

∧ · · · ∧ θ2ϵ (x2 − y2) ∧ θ1ϵ (x1 − y1), (I.13)

where θiϵ(xi − yi) is the smooth kernel of Ri. So the global kernel ϱϵ(xn,y1) is
an m-form on the product

Rmxn
× Rmy1

= Rm × Rm

where xn,y1 are the coordinates for the first and second factor of the kernel. In
(I.13), we define the new coordinates:

wi = xi − yi (I.14)

where i = 1, · · · , n− 1, also

xn − y1 −
(
w1 + · · ·+wn−1

)
= xn − yn. (I.15)

Then (I.13) is equal to∫
(wn−1,··· ,w1)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θnϵ

(
xn − y1 −

(
w1 + · · ·+wn−1

))
∧ θn−1

ϵ (wn−1) ∧ · · · ∧ θ1ϵ (w1), (I.16)
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Divide each variable by ϵ, we obtain that ϱϵ(xn,y1) is equal to

∫
(wn−1,··· ,w1)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θn1

(
xn − y1

ϵ
−
(
w1 + · · ·+wn−1

))
∧ θn−1

1 (wn−1) ∧ · · · ∧ θ11(w1). (I.17)

So, if we denote the m form on Rm,∫
(wn−1,··· ,w1)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θn1

(
z

ϵ
−
(
w1 + · · ·+wn−1

))
∧ θn−1

1 (wn−1) ∧ · · · ∧ θ11(w1) (I.18)

by Fϵ(z) for the variable z of Rm, then

ϱϵ(xn,y1) = κ∗Fϵ (I.19)

where κ is the map: (xn,y1) → xn−y1. Since all forms θj1(z), j = n, · · · , 1 have
compact supports, so ϱϵ(xn,y1) is a blow-up form from a compactly supported
form F1. We complete the proof.

The following proposition proves the first part of Main theorem I.5.

Proposition I.8. Let X be a differential manifold of dimension m. For chains
c1, c2 in S(X) with dim(c1) + dim(c2) ≥ m, the exterior product

Tc1 ∧Rϵc2 (I.20)

converges weakly to a current as ϵ→ 0.

Proof. The convergence is local. Thus we assume the following calculation oc-
curs in a neighborhood diffeomorphic to Rm. It suffices to assume c2 : Πp → Rm
is a regular cell and it lies in an open neighborhood U . We subdivide c1 to a
sum of smaller regular cells so that there are finitely many regular cells σj that
cover the supp(Rϵc2) for sufficient small ϵ and supp(σj) ⊂ U . Then

Tc1 ∧Rϵc2 =
∑
j

Tσj ∧Rϵc2.

So, it suffices to prove the proposition for c1 whose support lies in U . For a test
form ϕ, the evaluation (

Tc1 ∧Rϵc2
)
[ϕ]

is equal to the integral in X ×X as∫
(x,y)∈c1×c2

ϱϵ(x,y) ∧ P ∗(ϕ)(x) (I.21)
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where P : X×X → X(1st copy) is the projection, ϱϵ(x,y) is the kernel of Rϵ. By
Proposition I.7, ϱϵ(x,y) is a blow-up form in the Euclidean space U ×U ≃ R2m

at the diagonal ∆U . Thus (I.21) is the evaluation of the current

Tc1×c2 ∧ ϱϵ(x,y) (I.22)

at a particular form P ∗(ϕ). Since dim(c1×c2) ≥ m = deg(ϱϵ(x,y)), by Theorem
II.2 (below), the limit

lim
ϵ→0

∫
(x,y)∈c1×c2

ϱϵ(x,y) ∧ P ∗(ϕ)(x) (I.23)

exists, and bounded by ||ϕ||∞ . Hence

lim
ϵ→0

Tc1 ∧Rϵc2

is a current. The proof is completed.

I.3 The supportive intersection

Definition I.9. Let X be a differential manifold. Let c1, c2 be two chains in
S(X). We define

[c1 ∧ c2]

to be the weak limit
lim
ϵ→0

(
Tc1 ∧Rϵc2

)
.

It gives a rise to a well-defined bilinear map

S(X)× S(X) → D ′(X).

We call the map the supportive intersection.

The following properties (1) and (2) complete the proof for the second part
of Main theorem I.5.

Property I.10.
Let X a differential manifold of dimension m. For chains c1, c2 in S(X),

the supportive intersection [c1 ∧ c2] satisfies:

(1) (Supportivity)

supp([c1 ∧ c2]) ⊂ supp(c1) ∩ supp(c2). (I.24)
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(2) (Cohomologicity) if c1, c2 are closed, [c1 ∧ c2] is closed and

⟨[c1 ∧ c2]⟩ = ⟨c1⟩⌣ ⟨c2⟩ (I.25)

where ⟨•⟩ denotes the cohomology class of a singular cycle.

(3) (Leibniz rule) If deg(c1) = p, then the differential map of chains follows
Leibniz rule,

d[c1 ∧ c2] = [dc1 ∧ c2] + (−1)p[c1 ∧ dc2], (I.26)

where the differential map d is the operator (−1)p+1b for the boundary
operator b acting on chains of the codimension p.

Proof. (1) Suppose
a /∈ supp(c1) ∩ supp(c2).

Then a must be either outside of supp(c1) or outside of supp(c2). Let’s assume
first it is not in supp(c2). Since the support of a currents is closed, we choose
a small neighborhood Ua of a in X, but disjoint from supp(c2). Let ϕ be a
C∞-form of X with a compact support in Ua. According to the part (2) of
Theorem I.6, when ϵ is small enough Rϵ(c2) is zero in Ua. Hence

[c1 ∧ c2][ϕ] = 0. (I.27)

Hence a /∈ supp([c1 ∧ c2]). If a ̸∈ supp(c1), Ua can be chosen disjoint with
supp(c1). Then since ϕ ∈ D(Ua) is a C

∞-form of X with a compact support in
Ua disjoint with supp(c1), the restriction of ϕ to c1 is zero. Hence

[c1 ∧ c2][ϕ] = 0.

Then a /∈ supp([c1 ∧ c2]). Thus

a /∈ supp(c1) ∩ supp(c2)

will always imply
a /∈ supp([c1 ∧ c2]).

This completes the proof.

(2) By the homotopy formula (I.7) in Theorem I.6, Rϵc2 is closed. Next let
ϕ be a test form. By the definition

b[c1 ∧ c2][ϕ]

= lim
ϵ→0

∫
c1

Rϵc2 ∧ dϕ

( since c1 is closed)

= ± lim
ϵ→0

∫
c1

dRϵc2 ∧ ϕ = 0.

(I.28)
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So [c1 ∧ c2] is closed. For the closed test form ϕ, the supportive intersection
number,

deg

(〈
[c1 ∧ c2]

〉
⌣ ⟨ϕ⟩

)
(I.29)

is a well-defined real number that is equal to

lim
ϵ→0

c1[Rϵ(c2) ∧ ϕ]. (I.30)

By the de Rham theorem
c1[Rϵ(c2) ∧ ϕ]

is the topological intersection number

deg(⟨c1⟩⌣ ⟨Rϵc2⟩⌣ ⟨ϕ⟩). (I.31)

By the homotopy formula (I.7) again, ⟨Rϵc2⟩ = ⟨c2⟩. Thus

lim
ϵ→0

c1[Rϵ(c2) ∧ ϕ] = deg(⟨c1⟩⌣ ⟨c2⟩⌣ ⟨ϕ⟩). (I.32)

Formulas (I.29) and (I.32) imply

⟨[c1 ∧ c2]⟩ = ⟨c1⟩⌣ ⟨c2⟩ (I.33)

(3) Let ϕ be a test form. Let

deg(c1) = p, deg(c2) = q.

Then

b[c1 ∧ c2][ϕ]

= lim
ϵ→0

∫
c1

Rϵc2 ∧ dϕ

( Leibniz Rule for C∞ forms )

= lim
ϵ→0

∫
c1

(−1)qd(Rϵc2 ∧ ϕ) + (−1)q+1dRϵc2 ∧ ϕ

= lim
ϵ→0

(−1)q
∫
bc1

Rϵc2 ∧ ϕ+ lim
ϵ→0

(−1)q+1

∫
c1

dRϵc2 ∧ ϕ

(By Formula (I.7), d and Rϵ commute)

= lim
ϵ→0

(−1)q
∫
bc1

Rϵc2 ∧ ϕ+ lim
ϵ→0

(−1)q+1

∫
c1

Rϵdc2 ∧ ϕ

= (−1)q[bc1 ∧ c2][ϕ] + (−1)q+1[c1 ∧ dc2][ϕ]

Hence

b[c1 ∧ c2] = (−1)q[bc1 ∧ c2] + (−1)q+1[c1 ∧ dc2]. (I.34)

After change the sign, we found (I.34) is (I.26).
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I.4 Application

The motivation of the supportive intersection lies in the Hodge’s problem ([6]):
describe the topological cycles contained in algebraic sets. Let X be a complex
projective manifold. Denote the cohomology group of degree i with rational
coefficients by Hi(X;Q). Grothendieck in [4] converted Hodge’s homology to
sheaf cohomology by introducing an “arithmetic” filtration

NnHi(X;Q) ⊂ · · · ⊂ NpHi(X;Q) ⊂ · · · ⊂ N0Hi(X;Q)
∥

Hi(X;Q),
(I.35)

formed by the subgroups,

NpHi(X) := ∪
cod(V )≥p

ker

(
Hi(X;Q) → Hi(X − V ;Q)

)
(I.36)

where V are algebraic sets and ker stands for the kernel of the restriction map.
Today this filtration is named as the coniveau filtration, where the number p is
called the coniveau and i− 2p is called the level. Grothendieck’s re-formulation
arose from his vision in the homological algebra ([5]). It successively extends
Hodge’s problem to that over other types of fields. However, we found there is
more in Hodge’s transcendental vision.

Corollary I.11. Let X be a complex projective manifold of dimension n. Let
u ∈ H2(X;Q) be a hyperplane section class. Let p, q, k be non-negative integers
satisfying

p+ q + k = n, h = q − p, q ≥ p.

Then the image of the map

Lhk : NpH2p+k(X) → H2q+k(X)
α → α · uh. (I.37)

lies in the subgroup NqH2q+k(X) and the map is injective.

Proof. Let σ be a regular cycle representing a class in NpH2p+k(X). Then σ
is contained in an algebraic set V of codimension p. Let W be a generic plane
section of codimension h. Then the intersection V ∩W is proper, i.e. it has
complex codimension q. By the supportivity of the supportive intersection

supp([σ ∧W ]) ⊂ supp(V ) ∩ supp(W ) = supp(V •W ) (I.38)

where V •W is the algebo-geometric intersection in Serre’s formula, and support
of it is |V •W | (=support of the integration current).

Hence the cohomological class of [σ ∧W ] lies in

ker

(
H2q+k(X;Q) → H2q+k(X − supp(V •W );Q)

)
⊂ NqH2q+k(X). (I.39)
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On the other hand the map is injective by the hard Lefschetz theorem. We
complete the proof.

Remark: The surjectivity for k = 0 is the Lefschetz standard conjecture.
The measure-theoretical analysis in [7] reveals that map Lhk to NqH2q+k(X;Q)
is, indeed, surjective. Therefore there is a structural duality

NpH2p+k(X) ≃ NqH2q+k(X)

arising from the support of currents.

II Part II: The foundation

Abstract

This chapter establishes the foundation in local analysis for Chapter 1, i.e.
we prove the de Rham’s convergence. In terms of technique, we extend the
convergence of mollifiers.

II.1 Introduction to currents of subdivision

On a differential manifold, let c be a singular chain whose current of the integra-
tion is denoted by Tc. The current Tc∧ωϵ is called the current of subdivision. It
has has been explored by G. de Rham in the case dim(c) = deg(ωϵ). His study
focused on topology which led to his theory in cohomology. The simplest case
is in the Euclidean space where the codimension of c is zero. It coincides with
mollifiers. Let x = (x1, · · · , xn) be the coordinates of Rn with the volume form
dx1 ∧ · · · ∧ dxn denoted by dµ. Let ωϵ for ϵ > 0 be the differential n-form,

1

ϵn
f(

x

ϵ
)dµ (II.1)

where f(x) is a function of a mollifier, i.e. a smooth bump function around the
origin such that ∫

Rn

f(x)dµ = 1.

Let c be an n-dimensional polyhedron in Rn that contains the origin as its
interior point. Then the current Tc ∧ ωϵ, as ϵ → 0, converges weakly to the
δ function at the origin (see chapter 3, [3]). In this chapter we would like to
show that if the form ωϵ does not have the top-degree and does not meet the de
Rham’s topological requirement, the convergence in the sense of measures still
holds. This measure theoretical convergence suggests a direction other than de
Rham’s more topological approach. � To state the convergence as a theorem,
we first extends the mollifier to differential forms of lower degrees.

�See [2] for G. de Rham’s more topological approach.
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Definition II.1. ( blow-up forms)
Let 𭟋ϵ for ϵ > 0 be a family of smooth forms of degree r in an Euclidean space

Rn. If there are an orthogonal decomposition Rn = Rr⊕Rn−r with coordinate u
for the subspace Rr and a smooth form 𭟋1(u) of degree r on Rr with a compact
support such that

𭟋ϵ = π∗𭟋1(
u

ϵ
) (II.2)

or abbreviated as
𭟋ϵ = 𭟋1(

u

ϵ
)

where π : Rn → Rr is the orthogonal projection, then 𭟋ϵ is called a blow-up
form along Rr at Rn−r.

Theorem II.2. (Main theorem 2) Let c be a p dimensional regular cell in Rn.
Let ωϵ be a blow-up form of degree r ≤ p in Rn. Then the current

Tc ∧ ωϵ (II.3)

converges weakly to a current as ϵ→ 0.

In the following, we give the technical detail of the proof. It consists of
one lemma in set-theoretic limit and an estimate in functional analysis. The
appendix includes another lemma which is mainly for the estimate in analysis.

II.2 proof

In the following, for an Euclidean space Rl with a coordinate z, we’ll abuse
the notation to denote the volume form of a subspace with the concordant
orientation and the volume density in Lebesgue integrals by the same expression
dµz. The argument starts with a definition and a lemma about points and sets.

Definition II.3. Let W ⊂ Rp be a subset in an Euclidean space with the origin
o. A point a ∈ Rp is said to be a stable point of W if the line segment

{o+ t(−→oa), 0 < t ≤ 1}

either lies in W completely or in W c completely, where −→oa ∈ ToRp = Rp is the
vector from o to a, and W c is the complement Rp\W . We denote the collection
of stable points of W by W o

s .

Recall a regular cell c is a couple: a) oriented polyhedron Πp ⊂ Rp, b) a
diffeomorphic embedding c of a neighborhood of Π to Rn. Let Rr,Rp−r,Rn−p
be subspaces of Rn with coordinates u, v1 and v2 respectively such that

Rn = Rr ⊕ Rp−r ⊕ Rn−p. (II.4)
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Let
η : Rn → Rp = Rr ⊕ Rp−r

be the orthogonal projection to its subspace Rp. Let D 1
ϵ
for a positive ϵ be the

linear transformation of Rn defined by the map

(u,v1,v2) → (
u

ϵ
,v1,v2). (II.5)

In the context, we denote its restriction to subspaces also by D 1
ϵ
. All measures

in the following are the Lebesgue measures on Euclidean spaces.

Lemma II.4. Denote W := η(C). There exists a subset Wfu ⊂W of measure
0 such that the set-theoretic limit (defined in §4, [1])

lim
ϵ→0

D 1
ϵ

(
W\Wfu

)
(II.6)

exists �.

Proof. We denote
L := Rp−r

The point o ∈ L should be viewed as the origin of the affine subspace Rr ⊕ o
where o ∈ Rp−r is a point, and partial scalar multiplication D 1

ϵ
acts on it as

the scalar multiplication. Let

W o =W ∩
(
Rr ⊕ {o}

)
.

Let Ro be the ray
{o+ t(−→oa) : a ∈W o, t > 0}

that starts at the origin in the affine plane. Let

W o
fu ⊂W o

denote the subset

{a ∈W o : Ro does not contain a stable point of W
o}.

We divide W to three disjoint parts.
1) Wfu = ∪

o∈L
W o
fu, called the set of fully unstable points,

2) Ws = ∪
o∈L

W o
s , called the set of stable points,

�For a family of sets Sϵ, the existence of the set-theoretic limit means⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Sϵ2 =
⋃

ϵ1≤1

⋂
ϵ2≤ϵ1

Sϵ2
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3) Wpu is W\(Wfu ∪Ws), called the set of partially unstable points.

Next we blow-up each part by the scalar multiplication D 1
ϵ
with ϵ→ 0.

For the fully unstable pointsWfu, we would like to show they are necessarily
on the “boundary” which gives the measure 0. The following is the detail. The
boundary of the polyhedron Πp is defined by multiple hyperplanes. Hence the
boundary of C is also defined by multiple hyperplanes Hj . On the other hand
in the its target space, we let

ν : Rr\{0} ⊕ Rp−r → Pr−1 × Rp−r
(u,v1) → ([u],v1)

(II.7)

be the map that is the product of the projectivization map and the identity
map (where Pr−1 can be regarded as the real projectivization of T0Rr, the set
of directions). Fix a point o ∈ L. Let a ∈ W o

fu other than o. Since a is a fully
unstable point, there are two sequences of points pn,qn on the ray Ro such
that

lim
n→∞

pn = o = lim
n→∞

qn

and
pn ̸∈W o,qn ∈W o.

Thus the directions −−→opn and −−→oqn, which are all parallel to the tangent vector
−→oa must lie on at least one nontrivial plane η∗(Hj). Since a subplane properly
contained in an Euclidean space has a measure 0, for each fixed o, P(W o

fu\{o})
has measure 0 in the manifold

P(Rr\{0})× {o} ≃ Pr−1

where o is fixed. Since
Rr\{0} → Pr−1

is a bundle’s projection, the inverse W o
fu also has measure 0. To go further, we

take the union over L to obtain ν(Wfu\L) = ∪
o∈L

P(W o
fu\{o}) has measure 0 in

the manifold
Pr−1 × Rp−r.

Due to the fibre bundle structure of the projectivization, we conclude Wfu in
Rp has measure 0. Notice that D 1

ϵ
is a linear transformation, D 1

ϵ
(Wfu) which

is equal to Wfu also has measure 0. Therefore the limit is of 0. §

For stable points Ws, we consider the set Bϵ = D 1
ϵ
(Ws). We would like to

show Bϵ as ϵ→ 0 is a decreasing set. So it converges to a measurable set. The
following is the detail. Let Ro be the ray starting at o ∈ L and through a stable
point a ∈ W o

s of W o for an o ∈ L. Since a is stable, the dilation by the scalar
multiplication D 1

ϵ
yields

D 1
ϵ
(Ro ∩Ws) ⊂ D 1

ϵ′
(Ro ∩Ws), for ϵ′ < ϵ < 1.

§But the set Wfu is not on the boundary of W .
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Now taking the union over all the rays through stables points, we obtain

D 1
ϵ
(Ws) ⊂ D 1

ϵ′
(Ws), for ϵ′ < ϵ.

Therefore Bϵ is a decreasing family of measurable sets. Let

B0 := ∪ϵ∈(0,1]

(
D 1

ϵ
(Ws)

)
. (II.8)

Then set-theoretically the decreasing family yields

lim
ϵ→0

Bϵ = B0

and B0 is measurable.

For partially unstable point Wpu, we consider the set Aϵ = D 1
ϵ
(Wpu). We

would like to show Aϵ as the set multiplied by
1

ϵ
will be pushed to ∞ as ϵ→ 0.

So it is empty. Here is the detail. If
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2 is non-empty, there is a point

x ∈
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2

i.e. x ∈
⋃

ϵ2≤ϵ1
Aϵ2 for any ϵ1 < 1. So, there is a sequence of numbers ϵn such

that lim
n→∞

ϵn = 0 and Dϵn(x) lies in Wpu. Suppose that N is a number in the

sequence such that DϵN (x) ∈Wpu. By the definition of Wpu, there is a smaller
ϵN ′ ̸= 0 such that DϵN′ (x) is a stable point, i.e. DϵN′ (x) ∈WS . Then all points
Dϵn(x) are stable whenever ϵn < ϵN ′ . But this contradicts the assertion above:
there is a sequence of partially unstable points ϵnx with ϵn → 0. Thus

lim
ϵ→0

supAϵ =
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2 = ∅. (II.9)

Therefore
lim
ϵ→0

infAϵ ⊂ lim
ϵ→0

supAϵ

is also empty. Hence lim
ϵ→0

Aϵ exists and is equal to an empty set.

Combining the results for Wfu, Ws and Wpu, we complete the proof.

Proof of Theorem II.2. We continue with all notations in Lemma II.4. Let
ϕ be a test form of degree p− r in Rn. It amounts to show the convergence of
the integral ∫

c

ωϵ ∧ ϕ (II.10)
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as ϵ → 0. Let Rr be the subspace with coordinates u such that the blow-up
form is written as

ωϵ =
1

ϵr
g(

u

ϵ
)dµu (II.11)

where g(u) is a C∞ function of Rr. Notice that the form ωϵ ∧ ϕ is the sum of
simple forms in the coordinates of Rn that can be explicitly expressed. So, we’ll
focus on the integral of a single simple form.

We work with the simple form written as

1

ϵr
g(

u

ϵ
)ψ(u,v1,v2)dµu ∧ dµv1

(II.12)

where the volume forms dµu, dµv1
determine two coordinate’s planes

Rr,Rp−r

with coordinates u,v1 respectively, and ψ is a C∞ function on

Rn = Rr ⊕ Rp−r ⊕ Rn−p

that is the coefficient of the simple form ψdµv1
in the test form ϕ. Then the

integral of (II.10) over C := c(Π) is∫
D 1

ϵ
(C)

g(u)ψ(ϵu,v1,v2)dµu ∧ dµv1
(II.13)

where u is the new variable obtained from the old u divided by ϵ. Let K1 be
the support of g(u), and K2,K3 be the bounded sets of Rp−r,Rn−p such that
C is contained in Rr ⊕ K2 ⊕ K3. Then ψ(ϵu,v1,v2) uniformly converges to
ψ(0,v1,v2) in the bounded K1 ⊕K2 ⊕K3. So, for any positive δ, we can find
sufficiently small ϵ such that

|ψ(ϵu,v1,v2)− ψ(0,v1,v2)| ≤ δ. (II.14)

Let cϵ be the composition

Πp
c−→ Rn

D 1
ϵ−−→ Rn. (II.15)

Notice
D 1

ϵ
(C) ∩ (K1 ⊕K2 ⊕K3)

is a bounded set. Thus all coefficients of the form c∗ϵ
(
g(u)dµu ∧ dµv1

)
are

bounded uniformly for all sufficiently small ϵ. Hence

|
∫
D 1

ϵ
(C)

g(u)ψ(ϵu,v1,v2)dµu ∧ dµv1 −
∫
D 1

ϵ
(C)

g(u)ψ(0,v1,v2)dµu ∧ dµv1 |

≤ δM

(II.16)
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where M is a constant. For the integral∫
D 1

ϵ
(C)

g(u)ψ(0,v1,v2)dµu ∧ dµv1
(II.17)

we make a change of variable from u to
u

ϵ
to find (II.17) is equal to

1

ϵr

∫
C

g(
u

ϵ
)ψ(0,v1,v2)dµu ∧ dµv1

(II.18)

Now we apply Lemma A.1, there is a compactly supported integrable function
ξ̃ϵ(u,v1) on Rp such that

1

ϵr

∫
C

g(
u

ϵ
)ψ(0,v1,v2)dµu ∧ dµv1 =

1

ϵr

∫
W

g(
u

ϵ
)ξ̃ψ(u,v1)dµudµv1 (II.19)

where W is the measurable set defined as in Lemma II.4, and the right hand
side is a Lebesgue integral with the density measure dµudµv1

, and ξ̃ψ(u,v1) in
the integrand is a compactly supported L1 function on Rp. Furthermore, since
ψ(0,v1,v2) is a pullback function from Rp−r ⊕ Rn−p, then ξ̃ψ(u,v1) is also a
pullback of function ξψ(v1) from Rp−r. So, in the following, we express the

pullback function ξ̃ψ(u,v1) as ξψ(v1). Now changing the variables from
u

ϵ
back

to u, we have

right hand side of(II.19) =
∫
Rp
χ
D 1

ϵ
(W )

(u,v
1
)g(u)ξ

ψ
(v

1
)dµ

u
dµ

v1

=
∫
Rp
χ
D 1

ϵ
(W\Wfu)

(u,v
1
)g(u)ξ

ψ
(v

1
)dµ

u
dµ

v1

(II.20)

where χ
•
denotes the characteristic function of the set •. Next for the Lebesgue

integrals, we’ll omit the notations for variables for the dominant convergence
theorem. We’ll see that the integrand in (II.20) satisfies

|χ
D 1

ϵ
(W\Wfu)

gξ
ψ
| ≤ |gξ

ψ
|

and |gξ
ψ
| is an L1 function on Rp. The set-theoretic convergence in Lemma II.4

implies the χ
D 1

ϵ
(W\Wfu)

gξ
ψ
point-wisely converges to the function

χ
B0
gξ
ψ
.

By the dominant convergence theorem

lim
ϵ→0

∫
Rp

χ
D 1

ϵ
(W\Wfu)

gξ
ψ
dµ

u
dµ

v1
=

∫
Rp

χ
B0
gξ
ψ
dµ

u
dµ

v1

=

∫
B0

gξ
ψ
dµ

u
dµ

v1

(II.21)
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Finally, combining (II.16) and (II.21), we obtain that

lim
ϵ→0

∫
C

1

ϵr
g(

u

ϵ
)ψ(u,v1,v2)dµu ∧ dµv1

=

∫
B0

g(u)ξψ(v1)dµudµv1

(Note the left hand side is an integral of a differential form but the right is a
Lebegue integral). We conclude

Tc ∧ ωϵ

converges to a functional as ϵ → 0. For the continuity of the functional, we
see that if ϕ varies in a bounded set of forms to any orders, then in particular
ϕ varies in the bounded set to the order of 0. Hence the formula (II.17) (as a
number) is bounded. Then∫

B0

g(u)ξψ(u,v1)dµudµv1

as a number is bounded. So, the evaluation

lim
ϵ→0

(Tc ∧ ωϵ)[ϕ]

is also bounded. Hence the functional

ϕ→ lim
ϵ→0

(Tc ∧ ωϵ)[ϕ]

defines a current. The proof is completed.
□

Appendix A Orthogonal projection of a cell

The integration of forms (II.10) is impossible in the traditional geometric analy-
sis since the manifold’s structure does not exist at the ϵ = 0 (as that at ∞). Our
idea is to convert it to a Lebesgue integral (see the right hand side of (II.19))
for the measure still exists there. The following lemma provides the basis to
this conversion.

Lemma A.1. Let p ≤ n be two whole numbers. Let Rp,Rn−p be subspaces of
Rn such that Rn = Rp ⊕ Rn−p. Let π : Rn → Rp be the orthogonal projection.
Let c be a p-dimensional regular cell in Rn, ψ a smooth function on Rn. Then
there is a compactly supported L1 function ξψ on Rp such that

π(Tc ∧ ψ) = ξψ (A.1)

where π(currents) denotes the pushforward on compactly supported currents,
and ξψ represents a current of degree 0.
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Proof. Let µ be the Lebesgue measure on Rp, ϕ a test function. Let C =
c(Πp). We should note that since Tc is a current with a compact support, the
pushforward π(Tc∧ψ) is a well-defined 0-current. Hence it is both a distribution
and a 0-current. So it can be evaluated in two different ways, and the evaluation
of the distribution π(Tc ∧ ψ) at ϕ is equal to the current’s evaluation at forms,

π(Tc ∧ ψ)[ϕdµ] (A.2)

which has the integral estimate∣∣∣∣π(Tc ∧ ψ)[ϕdµ]∣∣∣∣ ≤ ∣∣∣∣∫
C

ψ ∧ π∗(ϕ) ∧ π∗(dµ)

∣∣∣∣
≤M ||ϕ||∞

(A.3)

whereM is a constant independent of the test function and || • ||∞ = esssup| • |.
Thus, π(Tc ∧ψ) as a distribution has order 0. Therefore it is a signed measure.
Let A ⊂ Rp be a set of measure 0. Let π = π|C . So, π is a differential map
between two manifolds of the same dimension p. Let

π−1(A) = E1 ∪ E2

where E1 is a set of critical points of π, and E2 = π−1(A)\E1. By the same
estimate (A.3), we have∣∣∣∣π(Tc ∧ ψ)[A]∣∣∣∣ ≤M ′|

∫
E1+E2

dµ| (A.4)

where M ′ is a constant, the integral is of the differential form dµ. Since E1

consists of critical points, the Jacobian of π is 0. Thus
∫
E1
dµ = 0. We let

E2 = ∪∞
i=1E

i
2 such that

π|Ei
2
: Ei2 → π(Ei2) (A.5)

is diffeomorphic. Then each π(Ei2) is contained in A. Thus µ(π(Ei2)) = 0. Then

|
∫
Ei

2

dµ| ≤ |
∫
π(Ei

2)

Jdµ| ≤ kiµ(π(E
i
2)) = 0

where J is the Jacobian of the map π|Ei
and ki is the upper bound of |J |. Hence∣∣∣∣π(Tc ∧ ψ)[A]∣∣∣∣ ≤ ∞∑
i=1

|
∫
Ei

2

dµ| = 0.

Thus the signed measure π(Tc ∧ψ) is absolutely continuous with respect to the
Lebesgue measure of Rp. The Radon-Nikodym theorem ([1]) implies that the
density function between the signed measure and the positive measure,

ξψ =
π(Tc ∧ ψ)

µ
(A.6)

is an L1 function. The numerator π(Tc ∧ ψ) in the formula (A.6) indicates ξψ
has the bounded support π(C). We complete the proof.



REFERENCES 22

Example A.2. If π|C : C → Rn is proper, then ξ1 = deg(π)χπ(C).
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