Geometric functions and surface functions

Date : January 13, 2025

Author: Ahcene Ait Saadi

Email: ait_saaadi@yahoo.fr

Abstract:

In this paper, I introduce a new concept (new Frame), which allows me to have functions that have another definition. That is to say, in this frame: a function is an application that associates with each element of the starting set E, zero or several images of the arrival set F.

I study in this frame, the derivability of functions, therefore the equation of a tangent to a curve. The integral calculation, I leave it to the young checkers who, surely, will develop this new and original mathematical tool, this in the interest of science and knowledge.

Keywords:

Cartesian frame, derivation, limite of function, l'hospital method

) **Analytical frame in the plan**

1.1-Definition:

the analytical frame in the plan, consisting of a horizontal axis (x'ox), of origin (O), called the abscissa axis and a point (O') which is the origin of the ordinates and does not belong to this axis. The distance OO' , is equal to a real value $~\mathcal{X}~$ $(\lambda \succ 0)$

Note1.2 : the abscissa of point (A) is OA, has as its image point (B) of the ordinate (O'B)

The abscissa of point (C) is (OC) , has as its image point (D) of the ordinate (O'D)

Sense of the Analytical frame :

-concerning the abscissa, the same process as the Cartesian reference frame.

- concerning the ordinates, the method is as follows:

* If the image is located after the origin O', its ordinate is positive.

Example: $O'B \succ 0$

* If the image is located before the origin O', its ordinate is negative.

Example 1.3: $O'D \prec 0$

Coordinates of the points: $O; A; B; C; D$

 $O(0, -\lambda)$; $A(0A, -O'A)$; $B(OA, O'B)$; $C(-OC, -O'C)$; $D(-OC, -O'D)$

2.1: Relationship between the Cartesian frame (O', X, Y) and the analytical frame :

The coordinates of the point M in the analytical frame: $M(x, y)$

In this case $x \prec 0$; $y \succ 0$

The coordinates of the point M in the Cartesian coordinate system: $M(X,Y)$

$$
X = \frac{-xy}{\sqrt{\lambda^2 + x^2}} \; ; \; Y = \frac{\lambda y}{\sqrt{\lambda^2 + x^2}}
$$

3.1-Equation of the line in the analytical frame :

 $Y = aX + b$, is the equation of the line in the Cartesian frame.

Substituting Y and X by their values, we obtain:

$$
\frac{\lambda y}{\sqrt{\lambda^2 + x^2}} = \frac{-axy}{\sqrt{\lambda^2 + x^2}} + b \implies y = \frac{b\sqrt{\lambda^2 + x^2}}{\lambda + ax}
$$

equation of the line in the analytical

frame.

3.2: Curve of the function $x \rightarrow \cos x$ in the analytical frame, $x \in [0; 2\pi]$

3.3: Curve of the function $x \rightarrow \sin x$ in the analytical frame, $x \in [0; 2\pi]$

There is a rotation.

3.4: Curve of the function $x \rightarrow x$ in the analytical frame

3.5: Curve of the function $f(x) = 1$ in the analytical frame

it's a semi-circle of radius 1

3.8: Curve of the function: $\int_{0}^{x} x^2 dx$

 $x \rightarrow \frac{1}{2}$ *x* \rightarrow

4.1:Surface functions : these are surface curves

4.3: $x \rightarrow cpx$

→

5-1: Equation of the circle of center (a,b) and radius $\sqrt{a^2 + b^2}$ in the Cartesian frame.

$$
y = \frac{2(\lambda b - ax)}{\sqrt{\lambda^2 + x^2}}
$$

In the analytic frame:

5- 2: equation of the line in the analytical frame :

$$
y = \frac{b\sqrt{\lambda^2 + x^2}}{\lambda + ax}
$$

6.1:Applications: relationship in a triangle

$$
If x=0, \quad IA = \frac{b\sqrt{\lambda^2}}{\lambda} = b
$$

$$
\text{If } x = \infty \text{, } y = IB = \frac{b}{a}
$$

$$
If x = OD, y = \frac{bID}{\lambda + aOD} = IH
$$

Which gives the relation:
$$
\frac{OI}{IA} + \frac{OD}{IB} = \frac{ID}{IH}
$$

6.2: Generalization for any triangle

 12

6.3 -relations on the circle and on the ellipse

let be an ellipse of axes p and q.

let be $\,^{\mathcal{C}}\,$ the angle that the major axis p, makes with AB

$$
\beta
$$
 The angle that makes \overrightarrow{a} with \overrightarrow{b} and $\overrightarrow{a+b} = \overrightarrow{h}$ and $m^2 = \frac{p^2}{q^2}$

$$
\frac{\overline{AH}}{\overline{h}} = \frac{\overline{a}\overline{AC}(\cos^2\alpha + m^2\sin^2\alpha) + \overline{b}\overline{AB}(\sin^2\alpha + m^2\cos^2\alpha)}{(\overline{a}^2 - 2\overline{a}\overline{b}\cos\beta)(\cos^2\alpha + m^2\sin^2\alpha) - b(1 - m^2)\sin^2\alpha + \overline{b}^2(\sin^2\alpha + m^2\cos^2\alpha)}
$$

$$
\Rightarrow \frac{\overline{AH}}{\overline{h}} = \frac{\overline{a}\ \overline{AC} + m^2 \overline{b}\ \overline{AB}}{a^2 + m^2 b^2 - 2\overline{a}\ \overline{b}\ \cos\beta}
$$

If
$$
m^2 = 1
$$
 it is the circle $\Rightarrow a^2 + m^2b^2 - 2\vec{a}\vec{b}\cos\beta = \vec{h}$

7.1 Pseudo derivatives in the analytic frame

Let be an orthonormal frame $(IX. IY)$ and the analytical frame x'ox.

$$
Y = \frac{\lambda y}{\sqrt{1 + x^2}} \; ; \qquad X = \frac{-xy}{\sqrt{1 + x^2}} \; ; \qquad y = IM = f(x) \text{ in the analytic frame}
$$

$$
Y' = \frac{(1+x^2)f'(x) - xf(x)}{(1+x^2)\sqrt{1+x^2}} \quad ; \quad X' = -\frac{x(1+x^2)f'(x) + f'(x)}{(1+x^2)\sqrt{1+x^2}}
$$

 $\frac{1}{i} = f_p(x)$ $\frac{Y'}{Y} = f_n'(x)$ *X* $=f_p(x)$ who is the pseudo derivative

for any function of the form:
\n
$$
\frac{xf(x)}{\sqrt{1+x^2}} - \frac{x_0 f(x_0)}{\sqrt{1+x_0^2}}
$$
\n
$$
\lim_{x \to x_0} \frac{f(x)}{\sqrt{1+x^2}} \cdot \frac{f(x_0)}{\sqrt{1+x_0^2}} = f_p'(x_0)
$$
\n
$$
f_p'(x) = -\frac{(1+x^2)f'(x) - xf(x)}{x(1+x^2)f'(x) + f(x)}
$$

Note 7.2: these pseudo derivatives represent the method of the hospital, with regard to the limits.

Example when $x \rightarrow e$

$$
\lim \frac{x^2 \sqrt{\ln x} - e^2}{x \sqrt{\ln x} - e} = \frac{2}{3} ; \qquad \lim \frac{x - e}{x \sqrt{\ln x} - e} = \frac{5e}{3}
$$

) **Trigonometric Frame**

8.1: in this frame the variable is an angle. We preserve all the properties of the analytical frame.

a is the image of (O); b is image of ($\lambda/6$)

8.2: Curve of function $x \rightarrow \sin x$

the color of the curve is blue

