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Abstract 

A macroscopic view of Langton (1984) and Byl (1989) self-replicating loops has facilitated their 

representation by oriented states of single cells. In this work, the single-cell representation of the 

loop replicator is adapted to facilitate a wide variety of interactions identifiable by observation of the 

dynamics of arbitrary spatial distributions of many replicator copies. Dynamic loops of periods 

greater than the four-step rotation cycle of the orientated state were observed, and examples with 

periods of 20 and 12 are shown. The paper includes some discussion of irreversibility in both 

computation and biology, with recognition of the problem of deriving concrete conclusions about 

abiogenesis and pre-LUCA biology from speculative preliminary abstraction. 
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Introduction 

There have been several efforts to deduce features of the Last Universal Common Ancestor (LUCA) of 

current life from the observed universal features of extant life. Though conclusions across LUCA 

studies differ, a comparison of eight studies [3] revealed a consensus that the LUCA incorporated a 

genome which facilitated amino acid and nucleotide metabolisms supporting protein synthesis, 

indicating a high complexity baseline. The unavoidable recognition of complexity of LUCA indicates 

much developmental distance between abiogenesis events and LUCA [2] so it is rational to assume 

that features of pre-LUCA life were different from the features of LUCA. Therefore, investigation of 

possibilities for pre-LUCA life requires facing the challenge of avoiding features of extant life as much 

as possible while not excluding the potential for developmental pathways toward the features of 

contemporary extant life via LUCA. 

The historical transitions from pre-biotic conditions to ancestral replicators/metabolism/cells to 

subsequent lifeforms are of ongoing interest to the research community, and study of simple abstract 

replicating structures may be of use in recognizing any universal principles. Among many 

computational exercises inspired by life, Christopher Langton constructed a self-replicating cellular 

automata (CA) structure (a self-replicating loop) which replicates in 151 cell state transition steps [7]. 

The detailed loops can be described more simply as orientated states of single cells to provide a 

macroscopic view of replication dynamics over many cycles of replication within an extended spatial 

range [7][8]. Before introducing the single-cell replicator abstraction, replication of the detailed loop 

is summarized: 

 

Langton’s self-replicating loop 

An instance of Langton’s loop [7] replicates into quiescent (state 0) space in the direction pointed at 

by its construction arm. When a descendant loop is completed, replication of the parent is redirected 

90 degrees counterclockwise enabling a subsequent replication in the new direction, subject to 

available quiescent space. If and when replication of a loop is blocked by the presence of an already-

established structure, erasure of the internal instruction tape initiates, and on completion of 



information erasure only a static skeleton of the previously-active loop persists. Figure 1 shows a 

colony of loops developed from an initial loop in isolation. 

 

 

Figure 1. The result of 595 iterations from one isolated Langton replicator [7] at Time = 0. Cell colours to states 

correspondences: black = 0 (quiescent), red = 1, deep blue = 2, pink = 3, green = 4, yellow = 5, bright blue = 6, 

white = 7. The 595 iterations correspond to four replications of the ancestral structure (third from the left in 

the horizontal row of seven), with replications of most of the outer boundary structures ongoing. The Figure 

was produced using Processing [9]. 

 

In Figure 1, the initial replicator loop is the third from the left in the horizontal row of seven. At the 

595th iteration shown, partial erasure of the internal information tape has occurred and continues to 

completion with subsequent iterations. Note that the initial replicator’s first descendant is to its 

immediate right (East), and at the 595th iteration erasure of this descendant’s information tape is 

already complete - it completed only two replications before information erasure was triggered by 

blockage of replication to its left (West) by its own parent. 

 

Replication of Byl’s simplification of Langton’s loop 

Given the intent of investigating how compact a non-trivially replicating structure could be, John Byl 

derived a simplification of Langton’s replicator [1]. A colony of instances of Byl’s replicator develops 

from a single isolated ancestor similarly, with the exception that no information erasure occurs in 

loops spatially blocked from an otherwise possible replication (Figure 2). The internal information 

tape (the 2x2 arrangement of cell states 1, 3, 3, 4) of spatially blocked loops cycles unproductively 

and indefinitely. 

 



 

 

Figure 2. The result of 105 iterations from one isolated Byl replicator at Time = 0. Cell colours to states 

correspondences: black = 0 (quiescent), red = 1, blue = 2, pink = 3, green = 4, yellow = 5. The 105 iterations 

correspond to four replications of the ancestral structure, with replications of most of the boundary structures 

ongoing. The Figure was produced using Processing [9]. 

 

Additional to describing the structure and replication of the loops summarized above, a macroscopic 

view of loop replication, i.e. loops abstracted to orientated states of single cells, was implied by 

Langton (Figure 10 in [7]) – but the macroscopic view was not discussed beyond the context of the 

rigid colony development from a single initial replicator. Mange et al. also later reviewed the 

macroscopic view of Langton’s replicator, specifically for their development of programmable digital 

logic applications of self-replicating structures [8]. 

As a prospective tool for thinking about abiogenesis and protobiology, what can the study of simple 

abstract replicating structures tell us? Loop replicators are brittle, i.e. not robust against variation and 

accordingly, development from a single instance only generates the rigid colony form illustrated in 

Figures 1 and 2. Accepting the constraints implicit in loop replicators as primitive units, how can a 

variety of larger scale/higher order structures and functions develop from the interactions of 

randomly-distributed multiple replicator copies? In this work, the macroscopic view of loop 

replicators [7][8] is further developed to investigate a wider range of dynamics within a spatial 

distribution of loop replicators, with the objective of identifying any emergence over larger scales of 

space and time.  

 

 

 



Methods 

To investigate large-scale dynamics of arbitrary distributions of interacting replicators, the abstraction 

of loop replicators as orientated states of single cells is revisited. These oriented single-cell 

replicators inherit both the spatially-directed replication of Langton and Byl loops, and the rotating 

direction of replication, but the abstraction enables facilitation of features expected of dynamic 

biologically-relevant systems which are difficult or perhaps not possible at all to implement at the 

level of detail of the original replicating loops. Figure 3 illustrates replication and rotation of a loop 

replicator represented by the oriented cell state >. 

 

>0 → ^>    

Figure 3. Replication from Time t (left) to t+1. A replicator replicates into quiescent space (state 0) and rotates 

counterclockwise for further replications into available quiescent space (see [7] and [8]). 

 

Additional rules  

In the development of colonies from one isolated ancestral replicating loop [1][7], replication was 

organized to be permanently disabled when otherwise-possible replication is obstructed by an 

already existing loop. An alternative dynamic implemented in this work is to allow continuing 

rotation of prospective replication so that subsequent successful replication can occur into quiescent 

space where available. Under this dynamic, replication ceases only when the replicator is surrounded 

by neighbouring structures in all N, S, E and W directions. By substitution of oriented states for 

replicator loops, and allowing this new feature, a colony developing from a single isolated ancestor is 

shown at four state transitions in Figure 4. 

 

 

Figure 4. A single replication of Langton or Byl loop replicators corresponds to just one time increment in the 

system of corresponding single-cell, oriented state replicators. The figure shows a colony of replicators at four 

state transitions from an isolated ancestor > (compare with Figures 1 and 2). White space corresponds to 

quiescent cells (state 0).  

 

An alternative to the persistence of a replicator skeleton [7] or a blocked replicator unproductively 

rotating [1] after replication is disabled is implementation of decay, i.e. transition of a fully-blocked 

replicator structure to the quiescent state 0, which can be thought of as death by overcrowding. In 

Figure 4, three of the shown active states will revert to state 0 at the next iteration under this rule. 



Note that under this rule there is no distinction between “dying” and “dead” loops recognized in [7] 

and [8]. 

With a generalized random or arbitrary spatial distribution of many replicators, the potential 

problem of more than one replicator pointing to a single quiescent cell for a prospective replication 

presents. With replicators being identical, there is no criterion for favouring one replication into a 

neighbouring quiescent cell over the replication of coexisting others prospectively able to replicate 

into the quiescent space. The unbiased solution is to exclude any replication at all where there is 

more than one otherwise-possible replication into a single quiescent cell. The solution is illustrated 

with a case of two replicator instances in Figure 5 below.  

 

 

Figure 5. At Time t, two replicator instances are pointing to one quiescent cell (state 0). Either instance in 

isolation would replicate a copy into the quiescent cell (as in Figure 3), but with no possible unbiased criterion 

for favouring replication by any particular instance, no replication at all occurs. Note that the normal counter-

clockwise rotation of all replicators is unaffected. 

 

A further feature of biological systems not implicit in the development of loop replicator colonies is a 

death mechanism restricting the indefinite expansion of the colonies. The prospective new 

mechanism is that just as replication expands into quiescent space, quiescent space can intrude onto 

neighbouring replicator states. The mechanism is additional to the death by overcrowding rule 

already described above. While excluding immigration and emigration dynamics for simplicity, ideal 

biological populations persist under an average balance of opposed death and reproductive forces.  

Introducing the intrusion of quiescence effect comes with the problem of achieving quantitative 

balance against replication growth. Each oriented replicator state replicates no more than once each 

time increment, but because the quiescent state is not oriented, there can be no arbitrary bias in the 

direction it expands. To achieve the quantitative balance required, four successive time increments 

are permitted to allow up to four replications by each extant replicator state. The fourth time 

increment incorporates both the intrusion of each quiescent state 0 onto all (up to four) immediate 

neighbour replicator states and the usual replication/rotation dynamics of the surviving replicators. (I 

concede that this is somewhat contrived.) A repeating four-step sequence of three consecutive 

single-phase transitions of state replication and rotation interspersed with one two-phase transition 

incorporating both quiescence intrusion and state replication/rotation drives the development of a 

spatially-extended distribution of replicators over time.  

The two-phase state transitions include rules which contradict rules in the single-phase state 

transitions, as the intrusion of quiescence component of a two-phase state transition erases 

replicator cells which would otherwise rotate and persist under the rules of a single-phase state 

transition. Clearly, pooling of rules of both single-phase and two-phase state transitions into one 

comprehensive state transition function corresponds to a global state transition function containing 

contradictory state transition rules. 

> 0 --> ^ 0

^ <

Time t Time t+1



Recognizing a single global state transition function as unviable leaves us with an alternative: if we 

describe a set of state transition rules specific to a Time = t to t+1 state transition as a state transition 

operator, a state transition function can be redefined as a comprehensive set of internally-consistent 

state transition operators, each operator specific to a respective Time t to t+1 state transition. The 

absence of rule contradictions within each of the state transition operators holds for all of the single- 

and two-phase single step state transition operators applied in Figure 6. 

 

Application of these rules 

States ^, <, v, > and 0 were randomly allocated to a 720 x 720 cell array with equal probabilities, 

determining the initial active state expectation density at 0.8. The array was implemented with 

toroidal topology to exclude spatial edge complications. Dynamic behaviour within the grid was 

observed as the state transition rules were applied.  

 

Results 

From the interaction of many replicator instances, this exercise revealed an expanded range of 

dynamics in a CA environment equipped with the rules described in Methods.  

A general four-step cycle over a spatially-extended range was observed as active states rotated 

through the four orientations, but 12- and 20-step dynamic cycles developing from simple isolated 

origins also occur. A 20-step cycle developing from just two spatially-separated, isolated replicators at 

Time = 0 is illustrated in Figure 6 below. 
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Figure 6. A cycle of period 20 driven by a sequence of applied single- and two-phase state transition operators 

(see text). Two-phase state transition operators are applied every fourth state transition from Time = 1 (i.e. 

from Times 4 to 5, 8 to 9, 12 to 13, 16 to 17, and 20 to 21). Figure 7 below shows detail of a two-phase state 

transition example. 

 

 

 

 

Figure 7. The Time = 4 to 5 state transition shown in Figure 6 exemplifies a two-phase state transition operator. 

The single time-step, two-phase state transitions incorporate a reduction of the population of replicators by the 

intrusion of quiescence (left frame to middle frame), then a normal replication and rotation of the surviving 

replicators (middle to right frame).  

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 ^ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 < ^ 0 0 ^ < 0 0 0

0 0 0 ^ > 0 V > ^ 0 0 0 0 0 0 < ^ > > ^ < 0 0 0 0 0 < V < ^ ^ < V 0 0 0

0 0 0 > 0 < > 0 < 0 0 0 0 0 0 ^ 0 V ^ 0 V 0 0 0 0 0 0 < 0 > < 0 > 0 0 0

0 0 0 V < ^ 0 < V 0 0 0 0 0 0 > V < < V > 0 0 0 0 0 0 ^ > V V > ^ > 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 > V 0 0 V > 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 V 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 18 Time = 19 Time = 20

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 > 0 0 0 0 0 0 0 0

0 0 0 V 0 0 0 0 ^ 0 0 0

0 0 0 0 0 0 0 0 < 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Time = 21 (Time = 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 < ^ 0 0 0 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 < V < ^ > < V 0 0 0 0 0 0 V < 0 0 0 0 0 0 0 0 0 0 > V 0 0 0 0 0 0 0

0 0 0 < ^ > < V > 0 0 0 0 0 0 0 ^ > < V 0 0 0 0 0 0 0 V < ^ V > ^ 0 0 0

0 0 0 ^ > < V > ^ > 0 0 0 0 0 0 0 0 0 > ^ 0 0 0 0 0 0 0 0 0 0 ^ < 0 0 0

0 0 0 > 0 0 0 V > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 4 Time = 5, intrusion of quiescence … Time = 5, … then replication rules applied



An Appendix at the end of the paper details a cycle of twelve steps (Figure 8).  

 

Discussion 

A CA environment of structures and state transition operators, as exemplified in Figures 6 and 8, 

constitutes a dynamic system in which these two categories mutually interact: each structure 

corresponds to a set of CNESW neighbourhood states which match the rule-content of a 

corresponding state transition operator. The operator so selected by the structure then modifies the 

structure, and a cycle of operator selection and structure modification perpetuates. As products of 

historical dynamic interactions, the structures can potentially serve as repositories of memory, but 

while memory can accumulate it is also subject to deletion, with obvious limitations to study of 

abiogenesis and protobiology from unavoidably-limited extant evidence. Memory deletion implies 

irreversibility, as discussed below. 

 

Irreversibility in biology 

Logical degeneracy of the translational mapping of RNA codons to amino acids facilitated by 

ribosomes (i.e. the genetic code) implies irreversibility of RNA-to-protein translation. Specifically, 61 

codons correspond to 20 amino acids so prospective inverse translation is many-valued (only two 

amino acids correspond to a unique codon each), though any prospective inverse translation in 

principle would produce a codon sequence functionally equivalent to the specific sequence initially 

generating the protein. Such a reverse translation would require a mechanism of arbitrary or 

stochastic mapping of 18 of biology’s 20 amino acids to one particular corresponding codon each.  

The Central Dogma of Molecular Biology is recognition that information encoded as polypeptide 

amino acid sequences is not reverse-translated to nucleic acids, and we might assume that the 

reason is degeneracy of the genetic code. However, the Central Dogma appears to hold for reasons 

other than genetic code redundancy. The reason for the Central Dogma was recently argued to be a 

fundamental impossibility of deriving linear RNA codon sequences from the spatially-complicated 3D 

tertiary structures of corresponding polypeptides [5]. The denaturing of 3D polypeptides/proteins to 

fully-intact readable 1D amino acid sequences is for all practical purposes thermodynamically 

impossible. 

 

Irreversibility of loop replicator dynamics 

In each forward (Time = t to t+1) CA state transition, all instances of any one CNESW neighbourhood 

state at Time t correspond to one C to C’ state transition at Time = t+1, i.e. there are no rule 

contradictions within any of the forward-direction state transition operators. However, considering 

corresponding state transitions in the reverse Time = t+1 to t direction, there are prospective state 

transition operators where more than one C state at Time = t corresponds to a state C’ at Time = t+1 

over multiple instances of one Time = t+1 CNESW neighbourhood, i.e. there are forward state 

transition operators with multi-valued inverses. These forward state transition operators are logically 

irreversible.  

 

 



Examples: irreversibility of some single-phase state transition operators applying in Figure 6 

By inspection of the forward-transition from Time = 7 to 8, the C = > state within the CNESW 

neighbourhood >^vv^ at Time = 7 transitions to C’ = 0 in neighbourhood 0<>>< at Time = 8. 

Simultaneously, the C = < state within the CNESW neighbourhood <^vv^ at Time = 7 transitions to C’ 

= 0 in neighbourhood 0<>>< at Time = 8. We can immediately see in the reverse transition Time = 8 

to 7 that state C’ = 0 at Time = 8 in each of the instances of the CNESW neighbourhood 0<>>< 

transitions to state C = > in one of the instances and to C = < in the other. The multi (two)-valued 

inverse state transition rule corresponds to irreversibility of the forward state transition from Time = 

7 to 8. 

Another example is apparent by inspection of the forward-transition from Time = 17 to 18. The C = < 

state within the CNESW neighbourhood <v^^v at Time = 17 transitions to C’ = 0 in neighbourhood 

0><<> at Time = 18. Simultaneously, the C = > state within the CNESW neighbourhood >v^^v at Time 

= 17 transitions to C’ = 0 in neighbourhood 0><<> at Time = 18. We can immediately see in the 

reverse transition Time = 18 to 17 that state C’ = 0 at Time = 18 in each of the instances of the 

CNESW neighbourhood 0><<> transitions to state C = < in one of the instances and to C = > in the 

other. Again, the two-valued inverse state transition rule corresponds to irreversibility of the forward 

state transition from Time = 17 to 18. 

Note that the irreversibility of these single-phase state transition operators is due to the reversion to 

the quiescent state of active replicators fully-blocked by replicator neighbours at all N, S, E and W 

directions, i.e. erasure of prior active states corresponds to irreversibility. 

 

Irreversibility of two-phase state transition operators applying in Figure 6 

Fourteen of the state transitions in the Figure 6 loop are reversible, but as shown above, the Time = 7 

to 8, and 17 to 18 single-phase state transitions are irreversible. Additionally, all of the two-phase 

state transitions are irreversible due to erasure of prior replicator states by intrusion of quiescence, 

as detailed below:  

Reverse-mappings of C’ = state 0 within neighbourhood 00000 at Time = t+1 onto any of C = ^, <, v, 

or > at Time = t are equivalent under rule rotational symmetry, but any of these state-transition rule 

rotations coexisting within one reverse state transition operator mutually contradict each other. Even 

considered as one rule in recognition of rotational symmetry, it contradicts the rule of state C’ = 0 

within neighbourhood 00000 mapping to state C = 0 applying in uniform quiescent space. We see 

that irreversibility is an outcome of the intrusion of quiescence. 

Irreversibility due to the intrusion of quiescence can also be seen in the Time = 4 to 5 two-phase 

state transition shown in Figures 6 and 7, which includes CNESW → C’ transitions ^00<< → 0 and 

>0<<^ → 0. By inspection of the corresponding reverse transitions, the prospective Time = 5 to 4 

state transition rules are 000v0 → ^ and 000v0 → >. The contradicting C values of ^ and > 

corresponding to a reverse state transition from C’ = 0 within instances of the CNESW 

neighbourhood 000v0 at Time = 5 demonstrate irreversibility.  

Note that irreversibility does not prevent the reappearance of past macro-states, i.e. loops as 

exemplified in Figures 6 and 8 occur. 

 

 



Irreversibility of physical (and computational) systems 

Traditionally, information processing has been considered the function of organic nervous systems, 

and our artificial computing hardware, but increasingly, all processes in biology are being considered 

as manifestations of information processing [4]. Concepts of thermodynamics, irreversibility and 

entropy discussed in the context of information processing may therefore be fruitful in extension to 

discussions of biological processes. 

The erasure of information corresponds to a cost of increased entropy, recognizable as the 

dissipation of heat [6]. The increased entropy indicates the irreversibility of a dynamic step when 

information implicit in prior causal states is lost. In more abstract terms, any forward dynamic step 

for which the corresponding inverse is multi-valued is irreversible when a record of the singular 

preceding cause is erased. It follows that if nothing is erased as computation proceeds then a 

procedure is reversible in principle, but at a cost of perpetuating an associated memory of indefinite 

size sufficient to hold details of all prior causal steps. 

Entropy generated as CA computations proceed presumably corresponds to some portion of the heat 

dissipated by the hardware running the CA software, but the total heat dissipated by computing 

hardware includes entropy generation by electrical resistance and computational overhead not 

directly attributable to the CA computations. Empirical quantification of entropy generated directly 

by CA dynamics is not a trivial problem. Does it make sense to discern information-processing 

entropy (dissipated heat) from the balance of total dissipated heat, given that the information 

processing only occurs by all of the operations of the hardware with the associated total of entropy 

generation? The question of separability of information-processing heat from other overhead heat 

generation was articulated well and discussed in [10]. 

 

The problem of deriving the concrete from the abstract.  

Whatever insights may be deduced from studying abstractions of biological phenomena, relation of 

the abstract to the concrete is essential. Do the abstractions point to specific chemistries and 

biophysical mechanisms? A comprehensive thermodynamic assessment of CA dynamics potentially 

relevant to the concrete questions of abiogenesis and proto-biology may need to consider continuity 

of the software-level CA logic with heat dissipation of hardware to potentially obtain insights more 

comprehensive than from reasoning limited only to consideration of logical state transitions. 
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Appendix 

Figure 8 below shows a cycle with a period of twelve state transitions. 

 

 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 < 0 0 0 0

0 0 0 v 0 0 0 ^ 0 0 0 0 0 0 0 > 0 0 0 < 0 0 0 0 0 0 0 ^ > 0 < v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 0 Time = 1 Time = 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 < 0 0 0 0 0 0 0 ^ 0 0 < v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ 0 0 < v 0 0 0 0 0 0 0 < ^ < v > 0 0 0 0 0 0 0 0 0 0 > ^ 0 0 0 0

0 0 0 < ^ 0 v > 0 0 0 0 0 0 < v < 0 > ^ > 0 0 0 0 0 0 > ^ 0 v < 0 0 0 0

0 0 0 ^ > 0 0 v 0 0 0 0 0 0 0 < ^ > v > 0 0 0 0 0 0 0 v < 0 0 0 0 0 0 0

0 0 0 > 0 0 0 0 0 0 0 0 0 0 0 ^ > 0 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 3 Time = 4 Time = 5



 

 

 

 

Figure 8. A cycle of period 12 driven by an applied sequence of single- and two-phase state transition operators 

(see text). Two-phase state transition operators are applied every fourth state transition, i.e. from Times 4 to 5, 

8 to 9, and 12 to 13. 

 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 ^ 0 ^ < 0 0 0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 ^ 0 ^ < 0 0 0 0 0 0 0 ^ < 0 < v 0 0 0 0

0 0 0 0 ^ 0 ^ < 0 0 0 0 0 0 0 ^ < 0 < v 0 0 0 0 0 0 0 < v < v > 0 0 0 0

0 0 0 ^ < 0 > v 0 0 0 0 0 0 0 < v 0 ^ > 0 0 0 0 0 0 < v > 0 < ^ > 0 0 0

0 0 0 > v 0 v 0 0 0 0 0 0 0 0 ^ > 0 > v 0 0 0 0 0 0 0 < ^ > ^ > 0 0 0 0

0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > v 0 v 0 0 0 0 0 0 0 0 ^ > 0 > v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > v 0 v 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 6 Time = 7 Time = 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 ^ 0 ^ < 0 0 0 0

0 0 0 0 > 0 > ^ 0 0 0 0 0 0 0 0 ^ > ^ < 0 0 0 0 0 0 0 ^ < ^ < v 0 0 0 0

0 0 0 > 0 0 0 < 0 0 0 0 0 0 0 ^ > 0 < v 0 0 0 0 0 0 0 < ^ 0 v > 0 0 0 0

0 0 0 v < 0 < 0 0 0 0 0 0 0 0 > v < v 0 0 0 0 0 0 0 0 ^ > v > v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > v 0 v 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 9 Time = 10 Time = 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ^ 0 ^ < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ < ^ < v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 < 0 < 0 > 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0

0 0 < v < 0 > ^ > 0 0 0 0 0 0 > 0 0 0 < 0 0 0 0

0 0 0 < 0 > 0 > 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0

0 0 0 ^ > v > v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 > v 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Time = 12 Time = 13 (Time = 1)


