
Macroscopic Structures Emerging from the Interactions of Simple Replicators

Perry W. Swanborough

Abstract

A macroscopic view of Langton (1984) and Byl (1989) self-replicating loops has facilitated their

representation by oriented states of single cells. In this work, the single-cell representation of the

loop replicator is adapted to facilitate a wide variety of interactions identifiable by observation of the

dynamics of arbitrary spatial distributions of many replicator copies. Dynamic loops of periods

greater than the four-step rotation cycle of the orientated state were observed, and examples with

periods of 20 and 12 are shown. The paper includes some discussion of irreversibility in both

computation and biology, with recognition of the problem of deriving concrete conclusions about

abiogenesis and pre-LUCA biology from speculative preliminary abstraction.

Keywords: abiogenesis, artificial life, cellular automata, entropy, information, irreversibility, loop

replicator

Introduction

There have been several efforts to deduce features of the Last Universal Common Ancestor (LUCA) of

current life from the observed universal features of extant life. Though conclusions across LUCA

studies differ, a comparison of eight studies [3] revealed a consensus that the LUCA incorporated a

genome which facilitated amino acid and nucleotide metabolisms supporting protein synthesis,

indicating a high complexity baseline. The unavoidable recognition of complexity of LUCA indicates

much developmental distance between abiogenesis events and LUCA [2] so it is rational to assume

that features of pre-LUCA life were different from the features of LUCA. Therefore, investigation of

possibilities for pre-LUCA life requires facing the challenge of avoiding features of extant life as much

as possible while not excluding the potential for developmental pathways toward the features of

contemporary extant life via LUCA.

The historical transitions from pre-biotic conditions to ancestral replicators/metabolism/cells to

subsequent lifeforms are of ongoing interest to the research community, and study of simple abstract

replicating structures may be of use in recognizing any universal principles. Among many

computational exercises inspired by life, Christopher Langton constructed a self-replicating cellular

automata (CA) structure (a self-replicating loop) which replicates in 151 cell state transition steps [7].

The detailed loops can be described more simply as orientated states of single cells to provide a

macroscopic view of replication dynamics over many cycles of replication within an extended spatial

range [7][8]. Before introducing the single-cell replicator abstraction, replication of the detailed loop

is summarized:

Langton’s self-replicating loop

An instance of Langton’s loop [7] replicates into quiescent (state 0) space in the direction pointed at

by its construction arm. When a descendant loop is completed, replication of the parent is redirected

90 degrees counterclockwise enabling a subsequent replication in the new direction, subject to

available quiescent space. If and when replication of a loop is blocked by the presence of an already-

established structure, erasure of the internal instruction tape initiates, and on completion of

information erasure only a static skeleton of the previously-active loop persists. Figure 1 shows a

colony of loops developed from an initial loop in isolation.

Figure 1. The result of 595 iterations from one isolated Langton replicator [7] at Time = 0. Cell colours to states

correspondences: black = 0 (quiescent), red = 1, deep blue = 2, pink = 3, green = 4, yellow = 5, bright blue = 6,

white = 7. The 595 iterations correspond to four replications of the ancestral structure (third from the left in

the horizontal row of seven), with replications of most of the outer boundary structures ongoing. The Figure

was produced using Processing [9].

In Figure 1, the initial replicator loop is the third from the left in the horizontal row of seven. At the

595th iteration shown, partial erasure of the internal information tape has occurred and continues to

completion with subsequent iterations. Note that the initial replicator’s first descendant is to its

immediate right (East), and at the 595th iteration erasure of this descendant’s information tape is

already complete - it completed only two replications before information erasure was triggered by

blockage of replication to its left (West) by its own parent.

Replication of Byl’s simplification of Langton’s loop

Given the intent of investigating how compact a non-trivially replicating structure could be, John Byl

derived a simplification of Langton’s replicator [1]. A colony of instances of Byl’s replicator develops

from a single isolated ancestor similarly, with the exception that no information erasure occurs in

loops spatially blocked from an otherwise possible replication (Figure 2). The internal information

tape (the 2x2 arrangement of cell states 1, 3, 3, 4) of spatially blocked loops cycles unproductively

and indefinitely.

Figure 2. The result of 105 iterations from one isolated Byl replicator at Time = 0. Cell colours to states

correspondences: black = 0 (quiescent), red = 1, blue = 2, pink = 3, green = 4, yellow = 5. The 105 iterations

correspond to four replications of the ancestral structure, with replications of most of the boundary structures

ongoing. The Figure was produced using Processing [9].

Additional to describing the structure and replication of the loops summarized above, a macroscopic

view of loop replication, i.e. loops abstracted to orientated states of single cells, was implied by

Langton (Figure 10 in [7]) – but the macroscopic view was not discussed beyond the context of the

rigid colony development from a single initial replicator. Mange et al. also later reviewed the

macroscopic view of Langton’s replicator, specifically for their development of programmable digital

logic applications of self-replicating structures [8].

As a prospective tool for thinking about abiogenesis and protobiology, what can the study of simple

abstract replicating structures tell us? Loop replicators are brittle, i.e. not robust against variation and

accordingly, development from a single instance only generates the rigid colony form illustrated in

Figures 1 and 2. Accepting the constraints implicit in loop replicators as primitive units, how can a

variety of larger scale/higher order structures and functions develop from the interactions of

randomly-distributed multiple replicator copies? In this work, the macroscopic view of loop

replicators [7][8] is further developed to investigate a wider range of dynamics within a spatial

distribution of loop replicators, with the objective of identifying any emergence over larger scales of

space and time.

Methods

To investigate large-scale dynamics of arbitrary distributions of interacting replicators, the abstraction

of loop replicators as orientated states of single cells is revisited. These oriented single-cell

replicators inherit both the spatially-directed replication of Langton and Byl loops, and the rotating

direction of replication, but the abstraction enables facilitation of features expected of dynamic

biologically-relevant systems which are difficult or perhaps not possible at all to implement at the

level of detail of the original replicating loops. Figure 3 illustrates replication and rotation of a loop

replicator represented by the oriented cell state >.

>0 → ^>

Figure 3. Replication from Time t (left) to t+1. A replicator replicates into quiescent space (state 0) and rotates

counterclockwise for further replications into available quiescent space (see [7] and [8]).

Additional rules

In the development of colonies from one isolated ancestral replicating loop [1][7], replication was

organized to be permanently disabled when otherwise-possible replication is obstructed by an

already existing loop. An alternative dynamic implemented in this work is to allow continuing

rotation of prospective replication so that subsequent successful replication can occur into quiescent

space where available. Under this dynamic, replication ceases only when the replicator is surrounded

by neighbouring structures in all N, S, E and W directions. By substitution of oriented states for

replicator loops, and allowing this new feature, a colony developing from a single isolated ancestor is

shown at four state transitions in Figure 4.

Figure 4. A single replication of Langton or Byl loop replicators corresponds to just one time increment in the

system of corresponding single-cell, oriented state replicators. The figure shows a colony of replicators at four

state transitions from an isolated ancestor > (compare with Figures 1 and 2). White space corresponds to

quiescent cells (state 0).

An alternative to the persistence of a replicator skeleton [7] or a blocked replicator unproductively

rotating [1] after replication is disabled is implementation of decay, i.e. transition of a fully-blocked

replicator structure to the quiescent state 0, which can be thought of as death by overcrowding. In

Figure 4, three of the shown active states will revert to state 0 at the next iteration under this rule.

Note that under this rule there is no distinction between “dying” and “dead” loops recognized in [7]

and [8].

With a generalized random or arbitrary spatial distribution of many replicators, the potential

problem of more than one replicator pointing to a single quiescent cell for a prospective replication

presents. With replicators being identical, there is no criterion for favouring one replication into a

neighbouring quiescent cell over the replication of coexisting others prospectively able to replicate

into the quiescent space. The unbiased solution is to exclude any replication at all where there is

more than one otherwise-possible replication into a single quiescent cell. The solution is illustrated

with a case of two replicator instances in Figure 5 below.

Figure 5. At Time t, two replicator instances are pointing to one quiescent cell (state 0). Either instance in

isolation would replicate a copy into the quiescent cell (as in Figure 3), but with no possible unbiased criterion

for favouring replication by any particular instance, no replication at all occurs. Note that the normal counter-

clockwise rotation of all replicators is unaffected.

A further feature of biological systems not implicit in the development of loop replicator colonies is a

death mechanism restricting the indefinite expansion of the colonies. The prospective new

mechanism is that just as replication expands into quiescent space, quiescent space can intrude onto

neighbouring replicator states. The mechanism is additional to the death by overcrowding rule

already described above. While excluding immigration and emigration dynamics for simplicity, ideal

biological populations persist under an average balance of opposed death and reproductive forces.

Introducing the intrusion of quiescence effect comes with the problem of achieving quantitative

balance against replication growth. Each oriented replicator state replicates no more than once each

time increment, but because the quiescent state is not oriented, there can be no arbitrary bias in the

direction it expands. To achieve the quantitative balance required, four successive time increments

are permitted to allow up to four replications by each extant replicator state. The fourth time

increment incorporates both the intrusion of each quiescent state 0 onto all (up to four) immediate

neighbour replicator states and the usual replication/rotation dynamics of the surviving replicators. (I

concede that this is somewhat contrived.) A repeating four-step sequence of three consecutive

single-phase transitions of state replication and rotation interspersed with one two-phase transition

incorporating both quiescence intrusion and state replication/rotation drives the development of a

spatially-extended distribution of replicators over time.

The two-phase state transitions include rules which contradict rules in the single-phase state

transitions, as the intrusion of quiescence component of a two-phase state transition erases

replicator cells which would otherwise rotate and persist under the rules of a single-phase state

transition. Clearly, pooling of rules of both single-phase and two-phase state transitions into one

comprehensive state transition function corresponds to a global state transition function containing

contradictory state transition rules.

> 0 --> ^ 0

^ <

Time t Time t+1

Recognizing a single global state transition function as unviable leaves us with an alternative: if we

describe a set of state transition rules specific to a Time = t to t+1 state transition as a state transition

operator, a state transition function can be redefined as a comprehensive set of internally-consistent

state transition operators, each operator specific to a respective Time t to t+1 state transition. The

absence of rule contradictions within each of the state transition operators holds for all of the single-

and two-phase single step state transition operators applied in Figure 6.

Application of these rules

States ^, <, v, > and 0 were randomly allocated to a 720 x 720 cell array with equal probabilities,

determining the initial active state expectation density at 0.8. The array was implemented with

toroidal topology to exclude spatial edge complications. Dynamic behaviour within the grid was

observed as the state transition rules were applied.

Results

From the interaction of many replicator instances, this exercise revealed an expanded range of

dynamics in a CA environment equipped with the rules described in Methods.

A general four-step cycle over a spatially-extended range was observed as active states rotated

through the four orientations, but 12- and 20-step dynamic cycles developing from simple isolated

origins also occur. A 20-step cycle developing from just two spatially-separated, isolated replicators at

Time = 0 is illustrated in Figure 6 below.

0 0

0 0

0 0

0 0

0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 > 0 0 0 0 0 0 0 0 0 0 0 ^ > 0 0 0 ^ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 ^ 0 0 0 0 0 0 > 0 0 0 0 < 0 0 0

0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 < 0 0 0 0 0 0 V 0 0 0 < V 0 0 0

0 0

0 0

0 0

0 0

Time = 0 Time = 1 Time = 2

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 < ^ 0 0 0 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 < ^ > 0 0 < 0 0 0 0 0 < V < ^ > < V 0 0 0 0 0 0 > V 0 0 0 0 0 0 0

0 0 0 ^ > 0 0 < V 0 0 0 0 0 0 < ^ > < V > 0 0 0 0 0 0 V < ^ V > ^ 0 0 0

0 0 0 > 0 0 < V > 0 0 0 0 0 0 ^ > < V > ^ > 0 0 0 0 0 0 0 0 0 ^ < 0 0 0

0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 > 0 0 0 V > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

Time = 3 Time = 4 Time = 5

0 0

0 0

0 ^ 0 ^ 0 0 ^ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 ^ 0 0 ^ 0 0 0 0 0 0 < ^ < 0 ^ < 0 0 0

0 0 0 ^ > ^ 0 0 ^ 0 0 0 0 0 0 < ^ < 0 ^ < 0 0 0 0 0 < V < V ^ < V 0 0 0

0 0 0 > V < > ^ < 0 0 0 0 0 0 ^ > V ^ < V 0 0 0 0 0 0 < 0 > < 0 > 0 0 0

0 0 0 V 0 0 V < V 0 0 0 0 0 0 > V 0 > V > 0 0 0 0 0 0 ^ > V ^ > ^ > 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 V 0 V 0 0 0 0 0 0 > V 0 > V > 0 0 0

0 V 0 0 V 0 V 0 0 0

0 0

0 0

Time = 6 Time = 7 Time = 8

0 0

0 0

0 0

0 ^ 0 ^ 0 0 ^ 0 0 0

0 0 0 > 0 > 0 0 0 0 0 0 0 0 0 ^ > ^ 0 0 ^ 0 0 0 0 0 0 < ^ < 0 0 < 0 0 0

0 0 0 V 0 V ^ 0 ^ 0 0 0 0 0 0 > 0 > < 0 < 0 0 0 0 0 0 ^ > ^ V < V 0 0 0

0 0 0 0 0 0 < 0 < 0 0 0 0 0 0 V 0 0 V < V 0 0 0 0 0 0 > 0 0 > V > 0 0 0

0 V 0 0 V 0 V 0 0 0

0 0

0 0

0 0

Time = 9 Time = 10 Time = 11

0 0

0 0

0 0 0 ^ 0 ^ 0 0 ^ 0

0 0 0 < ^ < 0 0 < 0

0 0 < V < V 0 < V 0 0 0 0 0 0 > V 0 0 0 0 0 0 0 0 0 0 ^ > 0 0 0 ^ 0 0 0

0 0 0 < ^ < > V > 0 0 0 0 0 0 V < 0 0 > ^ 0 0 0 0 0 0 > V 0 0 ^ < 0 0 0

0 0 0 ^ > 0 ^ > ^ > 0 0 0 0 0 0 0 0 0 ^ < 0 0 0 0 0 0 V 0 0 0 < V 0 0 0

0 0 0 > 0 0 > V > 0

0 0 0 V 0 0 V 0 V 0

0 0

0 0

Time = 12 Time = 13 Time = 14

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 < ^ 0 0 ^ < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 < ^ > 0 ^ < 0 0 0 0 0 < V < ^ > < V 0 0 0 0 0 0 > V 0 < V 0 0 0 0

0 0 0 ^ > 0 0 < V 0 0 0 0 0 0 < ^ > < V > 0 0 0 0 0 0 V < ^ V > ^ 0 0 0

0 0 0 > V 0 < V > 0 0 0 0 0 0 ^ > < V > ^ > 0 0 0 0 0 0 ^ > 0 ^ < 0 0 0

0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 > V 0 0 V > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

Time = 15 Time = 16 Time = 17

Figure 6. A cycle of period 20 driven by a sequence of applied single- and two-phase state transition operators

(see text). Two-phase state transition operators are applied every fourth state transition from Time = 1 (i.e.

from Times 4 to 5, 8 to 9, 12 to 13, 16 to 17, and 20 to 21). Figure 7 below shows detail of a two-phase state

transition example.

Figure 7. The Time = 4 to 5 state transition shown in Figure 6 exemplifies a two-phase state transition operator.

The single time-step, two-phase state transitions incorporate a reduction of the population of replicators by the

intrusion of quiescence (left frame to middle frame), then a normal replication and rotation of the surviving

replicators (middle to right frame).

0 0

0 0

0 ^ 0 0 0 0 ^ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 ^ 0 0 0 0 0 0 < ^ 0 0 ^ < 0 0 0

0 0 0 ^ > 0 V > ^ 0 0 0 0 0 0 < ^ > > ^ < 0 0 0 0 0 < V < ^ ^ < V 0 0 0

0 0 0 > 0 < > 0 < 0 0 0 0 0 0 ^ 0 V ^ 0 V 0 0 0 0 0 0 < 0 > < 0 > 0 0 0

0 0 0 V < ^ 0 < V 0 0 0 0 0 0 > V < < V > 0 0 0 0 0 0 ^ > V V > ^ > 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 V 0 0 0 0 0 0 > V 0 0 V > 0 0 0

0 V 0 0 0 0 V 0 0 0

0 0

0 0

Time = 18 Time = 19 Time = 20

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 > 0 0 0 0 0 0 0 0

0 0 0 V 0 0 0 0 ^ 0 0 0

0 0 0 0 0 0 0 0 < 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Time = 21 (Time = 1)

0 0

0 0

0 0 0 ^ 0 0 0 0 ^ 0

0 0 0 < ^ 0 0 0 < 0

0 0 < V < ^ > < V 0 0 0 0 0 0 V < 0 0 0 0 0 0 0 0 0 0 > V 0 0 0 0 0 0 0

0 0 0 < ^ > < V > 0 0 0 0 0 0 0 ^ > < V 0 0 0 0 0 0 0 V < ^ V > ^ 0 0 0

0 0 0 ^ > < V > ^ > 0 0 0 0 0 0 0 0 0 > ^ 0 0 0 0 0 0 0 0 0 0 ^ < 0 0 0

0 0 0 > 0 0 0 V > 0

0 0 0 V 0 0 0 0 V 0

0 0

0 0

Time = 4 Time = 5, intrusion of quiescence … Time = 5, … then replication rules applied

An Appendix at the end of the paper details a cycle of twelve steps (Figure 8).

Discussion

A CA environment of structures and state transition operators, as exemplified in Figures 6 and 8,

constitutes a dynamic system in which these two categories mutually interact: each structure

corresponds to a set of CNESW neighbourhood states which match the rule-content of a

corresponding state transition operator. The operator so selected by the structure then modifies the

structure, and a cycle of operator selection and structure modification perpetuates. As products of

historical dynamic interactions, the structures can potentially serve as repositories of memory, but

while memory can accumulate it is also subject to deletion, with obvious limitations to study of

abiogenesis and protobiology from unavoidably-limited extant evidence. Memory deletion implies

irreversibility, as discussed below.

Irreversibility in biology

Logical degeneracy of the translational mapping of RNA codons to amino acids facilitated by

ribosomes (i.e. the genetic code) implies irreversibility of RNA-to-protein translation. Specifically, 61

codons correspond to 20 amino acids so prospective inverse translation is many-valued (only two

amino acids correspond to a unique codon each), though any prospective inverse translation in

principle would produce a codon sequence functionally equivalent to the specific sequence initially

generating the protein. Such a reverse translation would require a mechanism of arbitrary or

stochastic mapping of 18 of biology’s 20 amino acids to one particular corresponding codon each.

The Central Dogma of Molecular Biology is recognition that information encoded as polypeptide

amino acid sequences is not reverse-translated to nucleic acids, and we might assume that the

reason is degeneracy of the genetic code. However, the Central Dogma appears to hold for reasons

other than genetic code redundancy. The reason for the Central Dogma was recently argued to be a

fundamental impossibility of deriving linear RNA codon sequences from the spatially-complicated 3D

tertiary structures of corresponding polypeptides [5]. The denaturing of 3D polypeptides/proteins to

fully-intact readable 1D amino acid sequences is for all practical purposes thermodynamically

impossible.

Irreversibility of loop replicator dynamics

In each forward (Time = t to t+1) CA state transition, all instances of any one CNESW neighbourhood

state at Time t correspond to one C to C’ state transition at Time = t+1, i.e. there are no rule

contradictions within any of the forward-direction state transition operators. However, considering

corresponding state transitions in the reverse Time = t+1 to t direction, there are prospective state

transition operators where more than one C state at Time = t corresponds to a state C’ at Time = t+1

over multiple instances of one Time = t+1 CNESW neighbourhood, i.e. there are forward state

transition operators with multi-valued inverses. These forward state transition operators are logically

irreversible.

Examples: irreversibility of some single-phase state transition operators applying in Figure 6

By inspection of the forward-transition from Time = 7 to 8, the C = > state within the CNESW

neighbourhood >^vv^ at Time = 7 transitions to C’ = 0 in neighbourhood 0<>>< at Time = 8.

Simultaneously, the C = < state within the CNESW neighbourhood <^vv^ at Time = 7 transitions to C’

= 0 in neighbourhood 0<>>< at Time = 8. We can immediately see in the reverse transition Time = 8

to 7 that state C’ = 0 at Time = 8 in each of the instances of the CNESW neighbourhood 0<>><

transitions to state C = > in one of the instances and to C = < in the other. The multi (two)-valued

inverse state transition rule corresponds to irreversibility of the forward state transition from Time =

7 to 8.

Another example is apparent by inspection of the forward-transition from Time = 17 to 18. The C = <

state within the CNESW neighbourhood <v^^v at Time = 17 transitions to C’ = 0 in neighbourhood

0><<> at Time = 18. Simultaneously, the C = > state within the CNESW neighbourhood >v^^v at Time

= 17 transitions to C’ = 0 in neighbourhood 0><<> at Time = 18. We can immediately see in the

reverse transition Time = 18 to 17 that state C’ = 0 at Time = 18 in each of the instances of the

CNESW neighbourhood 0><<> transitions to state C = < in one of the instances and to C = > in the

other. Again, the two-valued inverse state transition rule corresponds to irreversibility of the forward

state transition from Time = 17 to 18.

Note that the irreversibility of these single-phase state transition operators is due to the reversion to

the quiescent state of active replicators fully-blocked by replicator neighbours at all N, S, E and W

directions, i.e. erasure of prior active states corresponds to irreversibility.

Irreversibility of two-phase state transition operators applying in Figure 6

Fourteen of the state transitions in the Figure 6 loop are reversible, but as shown above, the Time = 7

to 8, and 17 to 18 single-phase state transitions are irreversible. Additionally, all of the two-phase

state transitions are irreversible due to erasure of prior replicator states by intrusion of quiescence,

as detailed below:

Reverse-mappings of C’ = state 0 within neighbourhood 00000 at Time = t+1 onto any of C = ^, <, v,

or > at Time = t are equivalent under rule rotational symmetry, but any of these state-transition rule

rotations coexisting within one reverse state transition operator mutually contradict each other. Even

considered as one rule in recognition of rotational symmetry, it contradicts the rule of state C’ = 0

within neighbourhood 00000 mapping to state C = 0 applying in uniform quiescent space. We see

that irreversibility is an outcome of the intrusion of quiescence.

Irreversibility due to the intrusion of quiescence can also be seen in the Time = 4 to 5 two-phase

state transition shown in Figures 6 and 7, which includes CNESW → C’ transitions ^00<< → 0 and

>0<<^ → 0. By inspection of the corresponding reverse transitions, the prospective Time = 5 to 4

state transition rules are 000v0 → ^ and 000v0 → >. The contradicting C values of ^ and >

corresponding to a reverse state transition from C’ = 0 within instances of the CNESW

neighbourhood 000v0 at Time = 5 demonstrate irreversibility.

Note that irreversibility does not prevent the reappearance of past macro-states, i.e. loops as

exemplified in Figures 6 and 8 occur.

Irreversibility of physical (and computational) systems

Traditionally, information processing has been considered the function of organic nervous systems,

and our artificial computing hardware, but increasingly, all processes in biology are being considered

as manifestations of information processing [4]. Concepts of thermodynamics, irreversibility and

entropy discussed in the context of information processing may therefore be fruitful in extension to

discussions of biological processes.

The erasure of information corresponds to a cost of increased entropy, recognizable as the

dissipation of heat [6]. The increased entropy indicates the irreversibility of a dynamic step when

information implicit in prior causal states is lost. In more abstract terms, any forward dynamic step

for which the corresponding inverse is multi-valued is irreversible when a record of the singular

preceding cause is erased. It follows that if nothing is erased as computation proceeds then a

procedure is reversible in principle, but at a cost of perpetuating an associated memory of indefinite

size sufficient to hold details of all prior causal steps.

Entropy generated as CA computations proceed presumably corresponds to some portion of the heat

dissipated by the hardware running the CA software, but the total heat dissipated by computing

hardware includes entropy generation by electrical resistance and computational overhead not

directly attributable to the CA computations. Empirical quantification of entropy generated directly

by CA dynamics is not a trivial problem. Does it make sense to discern information-processing

entropy (dissipated heat) from the balance of total dissipated heat, given that the information

processing only occurs by all of the operations of the hardware with the associated total of entropy

generation? The question of separability of information-processing heat from other overhead heat

generation was articulated well and discussed in [10].

The problem of deriving the concrete from the abstract.

Whatever insights may be deduced from studying abstractions of biological phenomena, relation of

the abstract to the concrete is essential. Do the abstractions point to specific chemistries and

biophysical mechanisms? A comprehensive thermodynamic assessment of CA dynamics potentially

relevant to the concrete questions of abiogenesis and proto-biology may need to consider continuity

of the software-level CA logic with heat dissipation of hardware to potentially obtain insights more

comprehensive than from reasoning limited only to consideration of logical state transitions.

References

[1] J Byl, Self-reproduction in small cellular automata, Physica D 34 (1989) 295-299.

[2] A Cornish-Bowden and ML Cárdenas, Life before LUCA, Journal of Theoretical Biology 434

(2017) 68-74.

[3] AJ Crapitto, A Campbell, AJ Harris and AD Goldman, A consensus view of the proteome of the

last universal common ancestor, Ecology and Evolution DOI: 10.1002/ece3.8930 (2022) 13 pp.

[4] P Davies, The Demon in the Machine, Allen Lane, Penguin Random House, UK (2019).

[5] EV Koonin, Why the Central Dogma: on the nature of the great biological exclusion principle.

Biology Direct (2015; 10:52).

[6] R Landauer, Irreversibility and Heat Generation in the Computing Process, IBM Journal (July,

1961) 183-191.

[7] CG Langton, Self -reproduction in cellular automata, Physica D 10 (1984) 135-144.

[8] D Mange, A Stauffer, L Peparolo and G Tempesti, A Macroscopic View of Self-Replication,

Proceedings of the IEEE 92 (2004) 1-17.

[9] C Reas and B Fry, Processing, A Programming Handbook for Visual Designers and Artists

(second edition). MIT Press, Cambridge MA (2014).

[10] I Sárándi, Why do computers generate heat?,

https://physics.stackexchange.com/questions/137504/why-do-computers-generate-heat

(2014).

Appendix

Figure 8 below shows a cycle with a period of twelve state transitions.

0 0

0 0

0 0

0 ^ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 < 0 0 0 0

0 0 0 v 0 0 0 ^ 0 0 0 0 0 0 0 > 0 0 0 < 0 0 0 0 0 0 0 ^ > 0 < v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > 0 0 0 0 0 0 0 0

0 v 0 0 0 0 0 0 0 0

0 0

0 0

0 0

Time = 0 Time = 1 Time = 2

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 < 0 0 0 0 0 0 0 ^ 0 0 < v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ 0 0 < v 0 0 0 0 0 0 0 < ^ < v > 0 0 0 0 0 0 0 0 0 0 > ^ 0 0 0 0

0 0 0 < ^ 0 v > 0 0 0 0 0 0 < v < 0 > ^ > 0 0 0 0 0 0 > ^ 0 v < 0 0 0 0

0 0 0 ^ > 0 0 v 0 0 0 0 0 0 0 < ^ > v > 0 0 0 0 0 0 0 v < 0 0 0 0 0 0 0

0 0 0 > 0 0 0 0 0 0 0 0 0 0 0 ^ > 0 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0

0 0

Time = 3 Time = 4 Time = 5

Figure 8. A cycle of period 12 driven by an applied sequence of single- and two-phase state transition operators

(see text). Two-phase state transition operators are applied every fourth state transition, i.e. from Times 4 to 5,

8 to 9, and 12 to 13.

0 0

0 ^ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 ^ 0 ^ < 0 0 0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 ^ 0 ^ < 0 0 0 0 0 0 0 ^ < 0 < v 0 0 0 0

0 0 0 0 ^ 0 ^ < 0 0 0 0 0 0 0 ^ < 0 < v 0 0 0 0 0 0 0 < v < v > 0 0 0 0

0 0 0 ^ < 0 > v 0 0 0 0 0 0 0 < v 0 ^ > 0 0 0 0 0 0 < v > 0 < ^ > 0 0 0

0 0 0 > v 0 v 0 0 0 0 0 0 0 0 ^ > 0 > v 0 0 0 0 0 0 0 < ^ > ^ > 0 0 0 0

0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > v 0 v 0 0 0 0 0 0 0 0 ^ > 0 > v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > v 0 v 0 0 0 0 0

0 v 0 0 0 0 0 0 0 0

0 0

Time = 6 Time = 7 Time = 8

0 0

0 0

0 ^ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 ^ 0 ^ < 0 0 0 0

0 0 0 0 > 0 > ^ 0 0 0 0 0 0 0 0 ^ > ^ < 0 0 0 0 0 0 0 ^ < ^ < v 0 0 0 0

0 0 0 > 0 0 0 < 0 0 0 0 0 0 0 ^ > 0 < v 0 0 0 0 0 0 0 < ^ 0 v > 0 0 0 0

0 0 0 v < 0 < 0 0 0 0 0 0 0 0 > v < v 0 0 0 0 0 0 0 0 ^ > v > v 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 0 > v 0 v 0 0 0 0 0

0 v 0 0 0 0 0 0 0 0

0 0

0 0

Time = 9 Time = 10 Time = 11

0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ^ 0 ^ < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ^ < ^ < v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 < 0 < 0 > 0 0 0 0 0 0 0 0 0 0 0 ^ 0 0 0 0

0 0 < v < 0 > ^ > 0 0 0 0 0 0 > 0 0 0 < 0 0 0 0

0 0 0 < 0 > 0 > 0 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0

0 0 0 ^ > v > v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 > v 0 v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 v 0

0 0

Time = 12 Time = 13 (Time = 1)

