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Abstract

This article emphasizes the most fundamental rules to verify Goldbach's strong conjecture that an
even number is the sum of two primes. One rule states that for an even number E to split into two
primes there must be two equidistant prime numbers p and p' such that E/2 - p = p' - E/2. The strong
conjecture also applies to biprime numbers that are x2 – y2. Two prime numbers equidistant with
respect to an integer n have a specific property of Modulo when divided by the gap that separates
them from n. The paper further proposes methods to convert even and odd numbers into sums of
two and three prime numbers by the equation M ± 1 such that M is prime or multiple of primes
except 2 and 3 knowing that there are two types of prime numbers 6x - 1 and 6x + 1. The data also
show a strong correlation coefficient between close equidisant primes indicating they are likely to
happen  in  a  regular  fashion.  Finally,  the  paper  describes  new rules  that  explain  how a  prime
numbers  gives another  one and this  is  where the truth of Goldbach's  conjecture lies and show
congruence rules between the two additive primes. These rules allow to demonstrate how an even
ends up to be a sum of two primes and proves Goldbach's strong conjecture. This article can have
new applications in computing and sheds new lights on the Goldbach's strong and weak conjectures.

Key words : Goldbach. Strong Conjecture. Weak Conjecture. Primes. Addition. Equidistant primes.
Euclidean division. Remainders. Prime factor. Congruence modulo. Gap. Correlation coefficient.
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1. Introduction
There  are  two  conjectures  of  Christian  Goldbach  (1690-1764)  that  have  been  the  focus  of
mathematical research for a very long time, they are called the weak and the strong one (Goldbach,
1742).  The strong conjecture states that every even natural number greater  than 4 is  the sum of
two prime numbers whereas the weak one says that every odd integer greater than 8 is the sum of
three  primes. Today  websites  such  like  https://www.dcode.fr/conjecture-goldbach  or
https://wims.univ-cotedazur.fr propose to  put  Goldbach's  conjectures  into practice to  convert  an
even number into a sum of prime numbers.  In addition,  the Goldbach partition function is  the
function that associates to each even integer the number of ways it can be decomposed into a sum of
two primes.  Its graph looks like a comet and is therefore called Goldbach's comet  (Fliegel and
Robertson, 1989). Goldbach's weak conjecture has been verified for all integers up to 8,875.1030

(Helfgott and Platt, 2013).  But what exactly do these conjectures mean in the strict mathematical
sense? They postulate that by combining the prime numbers by adding them is enough to regenerate
any  even  or  odd  number.  In mathematics,  the fundamental  theorem  of  arithmetic,  also  called
the unique factorization theorem states that every integer greater than 1 can be represented uniquely
as a product of prime numbers and algorithms are today available to facotrize integers (Pollard,
1974). The difference between the Goldbach's conjectures and the unique factorization theorem is
that the conjectures suggest that a number might be converted to many different sums of prime
numbers while the latter says that there is only one product of prime numbers for an integer. Many
attemps have been underken since then to provide a proof for their truthfulness (Helfgott and Platt,
2013; Estermann et al, 1938; Markakis, 2013). 
These conjectures suggest that there are enough prime  numbers to generate the entire set  N of
integers  from  5  to  infinity.  However,  the prime  number  theorem  which describes  the
asymptotic distribution of prime numbers and allows us to calculate the density of prime numbers in
a  predefined  area  of  numbers  (Chaudhuri,  2017;  Liu,  2013),  rather  show  that  prime  numbers
become rarer as we tend to infinity so that these conjecture might not hold true to infinity. We still
cannot  predict  where and when a prime number appears  by a  unitary equation although many
mathematicians still believe those conjectures hold true (Guiasu, 2019; Markakis et al, 2013). There
have  been  many empirical  verifications  of  it,  up  to  astronomic  numbers,  but  it  has  remained
unproven since 1742 and that what is still believed today. Therefore, Goldbach’s conjecture remains
one of the best-known unsolved problems in mathematics.  Otherwise some think they might be
viewed  as  an  axiom  because  if  they  are  unrpoven  then  they  must  be  true
(https://www.irishtimes.com/news/science/goldbach-s-conjecture-if-it-s-unprovable-it-must-be-true-
1.4492890). Markakis et al (2013) presented a detailed study on the classification of even numbers
by the equation 6x + n (n= 0, n= 2 and n= 4) and a method for their conversion into sums of prime
numbers. Armed with three theorems Markakis et al (2013) lean in favor of the truth of Goldbach's
strong conjecture and discusses the distribution of prime numbers claiming that it is not random but
rather predetermined. Guiasu (2019) has shown that for every positive composite number n, strictly
larger than 3, there are two primes equidistant with respect to n. The paper contains a proof of this
prime symmetry property and, implicitly, of Goldbach’s conjecture for 2n as well. 
The present article aims to define new rules of calculation as well as a method to put into practice
the two Goldbach conjectures and discuss their mathematical meaning by resorting to deductive
reasoning (if A then B).  It focuses on the rules of calculation of addition between prime numbers.
Second, it proposes a simpler and elementary accessible method based on the equations M + 1 and
M + 5 (M is either prime or a multiple of primes except 2 and 3) to convert an even or odd number
into a sum of primes. It states specific rules based on the fact that there are two types of prime
numbers 6x + 1 and 6x - 1. This new method is not only programmable but can be exploited on a
large scale to verify Goldbach's conjectures. Finally, this article explains how a prime number leads
to another by explaning the gaps that separate them and show new congruence rules that determine
if two primes can add together to form an even. Globally, this paper provides a basic demonstration
of Goldbach's strong conjecture and draws the limits of its truthfulness.
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2. Results

In the first section of the article (2A), GSC will be assumed to be true and then the initial conditions
required for it to be verified by computational rules will be defined. In the second section, we'll also
look at the addition rules obeyed by GSC (2B). For the rest and until the end, we'll look at how to 
find prime numbers that satisfy this GSC for any even number. 

2A- Calculation rules for the strong and weak conjectures of Goldbach

1. If E = p1 + p2 and p2 > p1 → p1 < E/2 and p2 > E/2 → E/2 – p1 = p2 – E/2. E/2 is any integer   
≥ 4 and E any even ≥ 8 (this is true for this entire article). The prime numbers p1 and p2 are 
said to be equidistant relatively to E/2.  For the Goldbach's strong conjecture (GSC) to be 
true, there must exist at least two equidistant primes.

2. Two prime numbers  p1 and  p2 which are both < E/2 or  both  > E/2  will  not  verify the
Goldbach's conjecture E = p1 + p2.

3. If two prime numbers p and p' are equidistant with respect to any integer n then
2n = p + p'. Example, 37 and 29 are equidistant relatively to 33 and then 37 + 29 = 2 x 33
= 66. For any even number E  ≥ 8 its  half  E/2 is surrounded by two equidistant prime  
numbers including one before (p1) and one after (p2) such that p1 + p2 = 2 x E/2 = E. That 
starts with 8 = 5 + 3 with E/2 = 4. This article will discuss in details this rule that determines
if GSC is true.

4. The GSC therefore means that an even E is constructed with two prime numbers p and p'
that are located at the same distance of E/2. These two primes are said to be equidistant
relatively to E/2. It is under this condition that the GSC stating that an even E = p + p' is
verified correctly. For example 100 = 3 + 97 such that 50 - 3 = 97 – 50 or 18 = 5 + 13 then
9 - 5 = 13 – 9. Or  190 = 17 + 173 such that 95 – 17 = 173 – 95.

5. Suppose we have an even number that we want to convert to the sum of two prime numbers.
For example, let's take 1256 and divide it by 2 = 628. We will look for the prime numbers
that surround 628 and find those that are at the same distance from 628. We have the two
prime numbers 613 = 628 - 15 and 643 = 628 + 15. And so 613 + 643 = 1256.
Here is another example. The number randomly chosen 14896 the half of which is 7448. We
have two prime numbers 7349 and 7547 such that 7448 – 7349 = 99  and 7547 – 7448 = 99. 
Hence 7349 + 7547 = 14896. See table 1 below for more examples of calculation.

Table 1. For the Goldbach's strong conjecture (GSC) to be verified and if an even E = p1 + p2  then 
E/2 – p1 = p2 – E/2. The table shows examples of verification of this rule with chosen numbers. Primes p1 and p2 shown 
are equidistant because E/2 – p1 = p2 – E/2.

E p1 + p2 E/2 E/2 - p1 p2  -  E/2 

66 29 + 37 33 4 4

1780 557+1223 890 333 333

37674 18191+19483 18837 646 646

1173850 174989 + 998861 586925 411936 411936

2460650 880069 + 1580581 1230325 350256 350256

690116436 678955259 + 11161177  345058218 333897041 333897041

9077236708 331582187 +  8745654521 4538618354 4207036167 4207036167

1574407869450  699845716519  +
874562152931 

787203934725 87358218206 87358218206
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6. If  we already know its  prime factors we can frame any biprime number by two perfect
squares as follows: be a biprime number Nb= xy such x < y; we calculate (x + y)/2 = z and
then  y  –  z  =  t;  then  Nb =  z2 –  t2.  For  example  let's  take  the  biprime  number
13 289 = 97 x 137.  Let's  calculate  (97 + 137)/2 = 117 and then 137 – 117 = 20 then
13 289 = (117)2– (20)2 = (117 – 20) (117 + 20) = 97 x 137. 
There is a link between GSC and the remarkable identity x2 - y2 which is used to factor  
biprime integers.

7. Let E be an even number and let E = 2pq (p and q are any prime factors > 2).
E/2 = p x q such that q > p and therefore E/2 = x2 – y2. First let calculate (p + q)/2 = M and   
q – M = z → E/2 = M2 – z2 =  (M – z)(M + z) → E = 2 (M – z) (M + z). Hence p = M – z   
and q = M + z. Therefore, there always exist two equidistant prime numbers such that p + z  
= M  and  q – z = M to form E = 2pq or Nb = pq. Because p and q might be any prime 
number (except 2) then all prime numbers are equidistant relatively to an integer value M 
such that  p + z = M and  q – z = M. Given that M might be any integer then 2M might be 
any even which is therefore a sum of the two primes p and q. In fact  p + z = M and              
q – z = M → 2M =  (p + z) +  (q – z) = p + q. The GSC also applies for biprime numbers. 
This is a demonstration going from the multiplicative structure of  integers to the 
additive one. This means that prime numbers are equidistant in addition or 
multiplication when combined by two.

 Following the demonstration cited above we can substitute z by t and M by n kowing that   
E is any even = 2pq (q > p ; q > 2 ; p > 2)  and n = (p + q)/2. So we have                             
E/2 = pq = (n – t)(n + t) = n2 - t2. Using the principle of equivalence we can say  that the 
factorization of a biprime number implies that an even is the sum of two prime numbers 
because it implies the existence of two prime numbers equidistant to n. Therefore

            E/2 = pq = (n – t)(n + t) ↔ p = n – t and q = n + t ↔ 2n = p + q. This means that if all       
biprime numbers are written x2 - y2 it is because all even numbers > 4 are sums of two 
equidistant primes.  

 Let us note in passing that prime numbers can be written as sums of squares. If a prime 
number is then written as x2 + y2, it will not have a prime equidistant from a specific mean. 
for example 89 = 64 + 25 does not have a symmetric prime at position 64 – 25 = 39 = 3 x 
13. Here the mean value between 89 and 39 is 64. This applies even for contiguous primes 
example 101 = 102 + 12 will not have a twin with respect to 100 because 100 – 1 = 99 = 9 x 
11. Here 100 is the mean value between 99 and 101.

 E/2 = pq and because q > p and q = E/2 + t and p = E/2 – t → q – p =  (E/2 + t)  –  ( E/2 – t) 
→ q = p + 2t  → E/2 = p(p + 2t) → E/2 = p2 + 2tp → t = (E/2 – p2)/p. Or E/2 = q(q – 2t) → 
E/2 = q2 – 2tq → t = (q2 – E/2)/q → (E/2 – p2)/p = (q2 – E/2)/q.

8. As an important reminder, equidistant prime numbers introduced in this article are not to be 
confused with twin prime numbers. The difference between two twin prime numbers that = 
2 is visible because it separates two numbers that follow each other in the set of integers. 
But the symmetry between two equidistant prime numbers is only visible between them 
when they are prime factors of a biprime number in product or when they add up to form an 
even number.  

9. A prime number p has an infinity of equidistant primes numbers. There is no prime number 
that does not have an equidistant prime number (except 2) and therefore GSC is true. A 
counterexample cannot be found to contradict this fact.  
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10. This rule works with twin prime numbers because they are equidistant relative to the even 
number between them and their addition is in agreement with GSC. Twin prime numbers are
not the only ones to be equidistant. But all prime numbers are equidistant relatively to a 
mean whey they are in a sum or in a biprime product. Two given primes are equidistant to 
one single value.

11.  It is known that between E and 2E, there is always a prime number (Bertrand's postulate 
that for every n > 1 there is a prime p with n < p < 2n). Between 0 and E/2 on one hand, and 
E/2 and  E on the other hand, there would exist two equidistant primes satifsying the GSC 
and therefore Bertrand's postulate is not enough to prove GSC is true. 

12. Be E any even  ≥ 8 (note E/2 is thus any integer n  ≥ 4).  Because there are always two
integers such that (E/2 – x)  ∈  [0  – E/2] and  (E/2 + x)  [E/2 – E]  that are both primes∈
(noted p and p' respectively) then any even 2E = 2n = (E/2 – x) + (E/2 + x) = p + p'. Hence
GSC is true. A counterexample cannot be found to contradict this fact.    

13. P and P' are two equidistant prime numbers relatively to E/2 such that t = E/2 – P = P' – E/2. 
E/2 is any integer ≥ 4 and E any even ≥ 8 . Then, E/2 ≡ P ≡  P' modulo (t). Demonstration is 
below with r the remainder of the euclidean division.
P → E/2 ← P'.  E/2 – P = t and P' – E/2 = t
E/2 = at + r → P = E/2 – t = at + r – t →  P  =  t (a – 1) +  r 
E/2 = at + r → P' = E/2 + t = at + r + t → P' =  t (a + 1) +  r → E/2 ≡ P ≡  P' modulo (t).

Here are some examples below :
 666 = 2 x 32 x 37 and 89 + 577 = 666 (89 and 577 are primes)

666/2 = 333. 333 –  89 = 244. 577 – 333 = 244
333/244 =  1.3647540983606557377049180327868852459016393  (r = 89)
89/244 =   0.3647540983606557377049180327868852459016393 (r = 89)
577/244 = 2.3647540983606557377049180327868852459016393 (r = 89)

 1764 = 22 × 32 × 72 
613 + 1151 = 1764 (613 and 1151 are primes)
1764/2 = 882
882 – 613 = 269
1151 – 882 = 269
882/269   =  3.2788104089219330855018587360594795539033457 (r = 75)
613/269   =  2.2788104089219330855018587360594795539033457 (r = 75)
1151/269 =  4.2788104089219330855018587360594795539033457 (r = 75)

 If E/2 – P = t and P' – E/2 = t, Tables 2A-C show that t is either prime or composite for even
numbers.  Any  integer  is  surrounded  by  two  equidistant  primes  and  any  prime  has  a
equidistant prime relatively to an integer. Equidistant primes give the same remainder when
divided by t.

 Any integer increased or decreased gives either a composite or a prime number but both are
likely to happen because if not there would be no prime numbers or much lesser in the set of
integers. GSC means that for any integer N there is an integer t (t < N) such that N – t and
N + t are equidistant prime numbers the sum of which gives any even and therefore any
even is sum of two primes. However, these equidistant primes cannot be predicted with an
established equation which explain why this conjecture remains unsolved. We can however
prove it by following the calculation rules described here. Otherwise, search for a counter-
example to reject this rule.
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Tables 2: Remainders (r) of the euclidean divisions and the difference (t) between an even or an odd number and the
equidistant prime numbers that surround them. Euclidean divisions are calculated with X, Y and the number shown.
Note  t  has  specific  values  either  prime or  3n in  an  increasing order.  Equidistant  primes X and Y give  the  same
remainder. Equidistant primes are highlighted. Note that sum of the two equidistant primes  = 2 x the number shown (60
for 30; 58 for 29; 100 for 50; 98 for 49; 96 for 48, and 94 for 47).

Table 2A- Numbers 30 and 29.

X r (30 : X) r (Y : 30) Y t X r (29 : X) r (Y : 29) Y t

29 1 1 31 1 28 1 1 30

28 2 2 32 27 2 2 31

27 3 3 33 26 3 3 32

26 4 4 34 25 4 4 33

25 5 5 35 24 5 5 34

24 6 6 36 23 6 6 35

23 7 7 37 7 22 7 7 36

22 8 8 38 21 8 8 37

21 9 9 39 20 9 9 38

20 10 10 40 19 10 10 39

19 11 11 41 11 18 11 11 40

18 12 12 42 17 12 12 41 2x 6

17 13 13 43 13 16 13 13 42

16 14 14 44 15 14 14 43

15 15 15 45 14 15 15 44

14 16 16 46 16 16 16 45

13 17 17 47 17 12 17 17 46

12 18 18 48 11 18 18 47 2 x 9

11 19 19 49  10 19 19 48

10 20 20 50 9 20 20 49

9 21 21 51 8 21 21 50

8 22 22 52 7 22 22 51

7 23 23 53 23 6 23 23 52

6 24 24 54 5 24 24 53 2 x 12

5 25 25 55 4 25 25 54

4 26 26 56 3 26 26 55

3 27 27 57  2 27 27 56

2 28 28 58 1 28 28 57

1 29 29 59
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Table 2B- Numbers 50 and 49.
X r (50 : X) r (Y : 50) Y t X r (49 : X) r (Y : 49) Y t

49 1 1 51 48 1 1 50

48 2 2 52 47 2 2 51 2

47 3 3 53 3 46 3 3 52

46 4 4 54 45 4 4 53

45 5 5 55 44 5 5 54

44 6 6 56 43 6 6 55

43 7 7 57 42 7 7 56

42 8 8 58 41 8 8 57

41 9 9 59 9 = 3 x 3 40 9 9 58

40 10 10 60 39 10 10 59

39 11 11 61 11 38 11 11 60

38 12 12 62 37 12 12 61 2 x 6

37 13 13 63 36 13 13 62

36 14 14 64 35 14 14 63

35 15 15 65 34 15 15 64

34 16 16 66 33 16 16 65

33 17 17 67 32 17 17 66

32 18 18 68 31 18 18 67 2 x 9

31 19 19 69 30 19 19 68

30 20 20 70 29 20 20 69

29 21 21 71 21 = 3 x 7 28 21 21 70

28 22 22 72 27 22 22 71

27 23 23 73 26 23 23 72

26 24 24 74 25 24 24 73

25 25 25 75 24 25 25 74

24 26 26 76 23 26 26 75

23 27 27 77 22 27 27 76

22 28 28 78 21 28 28 77

21 29 29 79 20 29 29 78

20 30 30 80 19 30 30 79 2 x 15

19 31 31 81 18 31 31 80

18 32 32 82 17 32 32 81

17 33 33 83 33 =  3 x 11 16 33 33 82

16 34 34 84 15 34 34 83

15 35 35 85 14 35 35 84

14 36 36 86 13 36 36 85

13 37 37 87 12 37 37 86

12 38 38 88 11 38 38 87

11 39 39 89 39 =  3 x 13 10 39 39 88

10 40 40 90 9 40 40 89

9 41 41 91 8 41 41 90

8 42 42 92 7 42 42 91

7 43 43 93 6 43 43 92

6 44 44 94 5 44 44 93

5 45 45 95 4 45 45 94

4 46 46 96 3 46 46 95

3 47 47 97 47 2 47 47 96

2 48 48 98 1 48 48 97

1 49 49 99
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Table 2C- Numbers 48 and 47.
X r (48 : X) R (Y : 48) Y t X r (47 : X) R (Y : 47) Y t

47 1 1 49 46 1 1 48

46 2 2 50 45 2 2 49

45 3 3 51 44 3 3 50

44 4 4 52 43 4 4 51

43 5 5 53 5 42 5 5 52

42 6 6 54 41 6 6 53 2 x 3

41 7 7 55 40 7 7 54

40 8 8 56 39 8 8 55

39 9 9 57 38 9 9 56

38 10 10 58 37 10 10 57

37 11 11 59 11 36 11 11 58

36 12 12 60 35 12 12 59

35 13 13 61 34 13 13 60

34 14 14 62 33 14 14 61

33 15 15 63 32 15 15 62

32 16 16 64 31 16 16 63

31 17 17 65 30 17 17 64

30 18 18 66 29 18 18 65

29 19 19 67 19 28 19 19 66

28 20 20 68 27 20 20 67

27 21 21 69 26 21 21 68

26 22 22 70 25 22 22 69

25 23 23 71 24 23 23 70

24 24 24 72 23 24 24 71 2 x 12

23 25 25 73 23 22 25 25 72

22 26 26 74 21 26 26 73

21 27 27 75 20 27 27 74

20 28 28 76 19 28 28 75

19 29 29 77 18 29 29 76

18 30 30 78 17 30 30 77

17 31 31 79 31 16 31 31 78

16 32 32 80 15 32 32 79

15 33 33 81 14 33 33 80

14 34 34 82 13 34 34 81

13 35 35 83 35 12 35 35 82

12 36 36 84 11 36 36 83 2 x 18

11 37 37 85 10 37 37 84

10 38 38 86 9 38 38 85

9 39 39 87 8 39 39 86

8 40 40 88 7 40 40 87

7 41 41 89 41 6 41 41 88

6 42 42 90 5 42 42 89 2 x 21 

5 43 43 91 4 43 43 90

4 44 44 92 3 44 44 91

3 45 45 93 2 45 45 92

2 46 46 94 1 46 46 93

1 47 47 95   
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 What do the weak and strong Goldbachs conjectures signify? They signifiy that whenever 
there is an even or an odd number, there will be a prime number (prime number theorem 
allows to count prime numbers before an integer). Let N be any integer, then N ±  t such that
t < N and t is any non-zero integer would give any other number, prime or not. But there 
might always be a value t such that N – t and N + t are equidistant primes (Table 3). 

 Since 2N = (N - t) + (N + t) with t < N and since N ± t produces prime numbers equidistant 
or not (Table 3), then an even can be the sum of two primes.Therefore, prime numbers do 
happen equidistanty at all levels of divisibility of integers. An infinitely larger number will 
produce by the N ±  t equation  an infinite number of prime numbers, equidistant or not. We 
understand why the equations of Fermat 2x + 1 (x = 2n and n is an integer > 0 ) and that of 
Mersenne 2n – 1( n must be prime for the Mersenne's number to be prime and so the 
equation is rather  2p – 1) were able to produce very long prime numbers. For instance, one 
of the Mersenne's numbers has 24 862 048 digits. Altough both formula are not always 
giving prime numbers, they show that a very long number tending to +∞ and whatever the 
number of its prime factors can become prime when increased or decreased by one unit. 
This is why the simpler equations N ± t were used here to produce prime numbers some of 
which are equidistant with respect to the value obtained, by just adding or removing two 
units in series.

Table 3. Formation of prime numbers and couples of equidistant numbers by the equation N ± t such that N and t are 
integers and t < N. Two numbers N are chosen, N = 20 and N= 37 while t is the sequence of evens or odd numbers < N. 
The equidistant prime numbers are highlighted. All other individual prime numbers are underlined. Note that the sum of
the two equidistant primes = 2N (or 40 for 20 and 74 for 37).  

20 37

-3 17 +3 23 -2 35 +2 39

-5 15 +5 25 -4 33 +4 41

-7 13 +7 27 -6 31 +6 43

-9 11 +9 29 -8 29 +8 45

-11 9 +11 31 -10 27 +10 47

-13 7 +13 33 -12 25 +12 49

-17 3 +17 37 -14 23 +14 51

-19 1 +19 39 -16 21 +16 53

-18 19 +18 55

-20 17 +20 57

-22 15 +22 59

-24 13 +24 61

-26 11 +26 63

-28 9 +28 65

-30 7 +30 67

-32 5 +32 69

-34 3 +34 71

-36 1 +36 73
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14. Because all primes numbers are equidistant from each other relatively to any integer then
any even can be sum of two primes.  Thus we can deduce that GSC is true because there
exists between 1 and E/2 a prime number p, and another prime number p' between E/2 and E
such that E/2 –  p = p' – E/2.  

 Therefore,  Goldbach's  conjectures  are  related  to  distribution  of  prime  numbers  around
integers, and if these conjecture are true, this means that prime numbers are not randomly
distributed because they would implie that there is at least two prime numbers that fulfill the
rules stated above. 

 Goldbach's conjectures implies that if we take a very large integer N and divide it by all
primers p < N so as to obtain N/2, N/3, we would have prime numbers before and after each
fraction.  Goldbach  restricted  himself  to  the  two  fractions  of  1/2  and  1/3.  The  strong
conjecture is based on their distribution around N/2, the weak conjecture around N/3. In
other  words,  prime numbers are  present  at  all  levels of  divisibility of  a natural  integer,
especially the fraction 1/2 and 1/3. We can round the decimal or irrational numbers obtained
with these fractions to one unit, this will be recovered in the choice of prime numbers and
their addition. Here is a simple example, 100/2 = 50, 111/3 = 37. We have therefore to take
50 as the first lever to distribute 100 as a sum of two prime numbers and 33 to distribute 111
as a sum of three prime numbers. Then 100 = 41 + 59 and 101 = 37 + 31 + 43.

 Here we touch on the theorem of unique factorization which teaches us that prime numbers
are the factors of any integer and are consequently its divisors and this is how they can by
themselves reconstitute any integer by adding together by 2 (≥ 4) or by 3 (≥ 8) and by much
more. There is a relationship between divisibility and addition. As shown above with the
x2 – y2 equation, biprime numbers are formed of two equidistant primes.

15. A similar rule applies to the weak conjecture which states that if the odd number O does not
have a prime number > its third 1/3, or if all prime numbers < O are also less than its 1/3,
then the weak conjecture is inapplicable. In the conjecture O = p1 + p2 + p3, the three prime
numbers p1, p2 and p3 cancel each other out to form the number O.

16. For an odd number O = p1 + p2 + p3 the sum of p1/O + p2/O + p3/O = 1. We also have (O - p1)
+ (O - p2) + (O - p3) = 2O. Taking (1/3 x O) – p1, (1/3 x O) – p2 and (1/3 x O) – p3 and if we
have p3 > p2 > p1 then (1/3 x O) – p3 = (1/3 x O) –  p1) + (1/3 x O) – p2) in absolute value.
This means that for two prime numbers p1 and p2 there is only one prime number that will
add to them to form O. Since it is unusual to find three primes that are close to one-third of
an odd number unless there are twin primes around or in a prime-dense region, the weak
conjecture holds true only if at least 1 of the three primes > 1/3 x O.

17. If the gap between two consecutive primes is > E/2 (half of an even number) or 1/3 of an
odd number which are at the end of the gap, these numbers cannot be formed by the weak
nor by strong Goldbach conjectures. However, to date the largest published gaps (wikipedia)
do separate giant primes and therefore they remain very negligible compared to E/2 or 1/3 of
the even and odd numbers placed at the ends of the gap.
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2B. Calculation rules to verify the strong and the weak conjectures of Goldbach 

2B1. Primes numbers and their multiples (except those of 2 and 3) are all 6x ± 1

 If we separate the even numbers and multiples of 3 from the rest of the natural numbers, we 
realize that the prime numbers and their multiples all line up in two separate lines that we 
call here the “P/M lines” (Table 4). 

Table 4. Arranging the natural numbers in 6 categories shows that the prime numbers (P) and multiples of prime 
numbers (M) are 6x ±  1 or 3x ± 2. They form two lines called the P/M lines (P is prime and M is multiple of primes). 
Multiples of 2 (even numbers) and 3 are excluded from the P/M lines. There is a difference of 6 units between two 
consecutive P or M and this is also true for a P and M that follow each other. The data are shown for up to 100 but this 
is true to infinity.

6x + 1 
or 
3x – 2
(P/M line)

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Evens 2n 2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98

Odds 3n 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99

Evens 2n 4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

6x – 1 
or 
3x + 2
(P/M line)

5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101

 Evens 2 x 3n 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102

 We already know that prime numbers are all 6x ± 1 except 2 and 3. Those from the top P/M 
starting with 7 are 6x + 1 whereas those on the one below starting with 5 are 6x – 1 (Table 
4). All multiples of prime numbers are also 6x ± 1 except those of 2 and 3 (unpublished data 
not shown). These rules can help to transform an even number into the sum of two prime 
numbers.

If GSC is true then any even number denoted E is :
E = p + p' = (6x ± 1) + ( 6x' ± 1). This signifies that E is 6x; 6x – 2; or 6x + 2.

 If we take any odd number ≠ 3n and reduce or increase it by 6 units in a sequential manner,
at some point we have a prime number. It is therefore possible to transform an even number
denoted by E into the sum of two prime numbers p and p' such that p < E/2 and p' > E/2 and
p # p'. 

 Unlike factorization where a number has unique prime factors, GSC might hold true with
many combinations of prime numbers.  
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2B2 – An elementary Method for Converting an even number into an addition of two prime 
numbers 

 In this paper we pose the GSC as follows Even = p + p' and p#p'.
 First we set any even number E = Odd1 + Odd2  such that both Odd1  and Odd2 are  not 3n.

Odd1 and Odd2 are either primes or mutliples of prime numbers other than 2 and 3.  Then
E = ↓Odd1↓ + ↑Odd2↑ which amounts to decreasing Odd1 by 6 and increasing Odd2 by 6 by
scanning the P/M lines of table 4 from top to bottom or vice versa at a rate of 6. At some
point or another, we might have two prime numbers that will add up.

 Because prime numbers are also 3x ± 2, Odd1 and Odd2 should not be multiples of 3 and if
they are, they will have to be modified at the begining of the conversion. This article gives
detailed examples of calculation. Not only must rules be stated, but it must also be shown
how to verify them by calculation. We will start gradually with examples of calculation and
step by step the method will become clearer.

 
Examples : 

 378 = 189 + 189 because 189 is 3n, we will reduce it by 2 and increase the other by 2 so       
378 = 187 + 191. We can now apply the method of addition and subtraction of 6. 
378 = 187 + 191 → 378 = (187 – 6) + (191 + 6) → 378 = 181 + 197 (both primes). Or,
378 = 1 + 377 = 7 + 371 = 13 + 365 → 378 = 19 + 359 (both primes).

 1000 = 500 + 500. First we have to put ourselves on a P/M line and therefore we have to put
1000 in the form of a sum of two odd numbers which are not multiples of 3.
1000 = 497 + 503 but 497 is not prime.
1000 = (497 – 6) + (503 + 6) → 1000 = 491 + 509. Both 491 and 509 are primes.
1000 = 1 + 999  We cannot pose this equality because 999 is a multiple of 3, so we drop 1 
and start with 5.
1000 = 5 + 995 = 11 + 989 → 1000 = 17 + 983.

 Let's take an even number that is one unit more than Fermat's number known as the 6th 
Fermat number 4294967297, which is composed of 10 digits.
4294967298 = 1 + 4294967297 (note 1 is not prime) → 4294967298 = 7 + 4294967291.
Let us take an even number which is one unit more than the 37th Mersenne number M(37) 
137438953471, which is composed of 12 digits.
137438953472 = 1 +  137438953471 = 7 +  137438953465 = 13 +  137438953459 = 19 +  
137438953453 =  25 + 137438953447 → 137438953472 = 31 +  137438953441.

2B3. Rules of the conversion of evens in sum of primes by GSC
As shown by table 4, odd numbers are either 3n, multiples of prime numbers, or primes. 
Prime numbers are odd numbers which have one unit more or less to be 3n therefore they are either
3x – 1 or 3x + 1. The 3x – 1 are also 3x + 2 and 3x + 1 are 3x – 2. These are the cases of all odd
numbers which are not multiple of 3. On the other hand, 3x – 2 are  6x + 1 and 3x + 2 are 6x – 1.
For example 19 is 3x – 2 because it needs 2 units to be 3n (21), 19 is therefore 6x + 1. While 17 is
3x + 2 and needs only one unit to be 3x and is 6x – 1. This interplay between multiples of 3 and the
6x ± 1 equations is important for putting Goldbach's conjecture into practice.
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→ The first rule. There are two types of prime numbers: those that are 6x + 1 and those 6x – 1. Note
that  6x  –  1  equation  will  be  used  as  6x  +  5  because  the  two  are  the  same  given  that
6x – 1 =  6x – 6 + 5 = 6(x – 1) + 5 = 6X + 5 (x ou X both are any non-zero integer).  If we start with
1 and add 6 consecutively,  we will  have 6x + 1 prime numbers.  If  we start  with 5 and add 6
consecutively, we will have primes which are 6x – 1. If we start with a 6x – 1 prime we will have
6x – 1 primes, and 6x + 1 primes lead to 6x + 1 ones. For example:
92 = 1 + 91 = 7 + 85 = 13 + 79 (all 6x + 1 primes).
92 = 5 + 87 would not work because 87 is 3n. (see the second rule below).
96 = 1 + 95 = 7 + 89
96 = 5 + 91 = 11 + 85 = 17 + 79 (all 6x – 1 primes).

→The second rule. A 3n number will never lead to primes by the addition of 6. It only leads to 3n
because 3n ± 6 is always 3n.
92 = 5 + 87 = 11 + 81 = 17 + 75 = 23 + 69 = 29 + 63 = 35 + 57....= 89 + 3.

When we have a multiple of 3 we will first add or remove one or two units from it so that we can
obtain prime numbers by successive additions or subtractions of 6.

→ The third rule.  « An even number ≥ 6 is either 6x, 6x + 2 or 6x + 4 ». An even number that is 6x
will be in the form of a sum = (6x + 1) + (6x – 1) or (6x – 1) + (6x + 1). An even number that is 6x
+ 2 makes a sum of 6x + 1 and 6x + 1 prime numbers. Finally, an even 6x + 4 is a sum of two
6x – 1 primers which make 6x – 2. Indeed 6x – 2 is the same as 6x + 4 because 6x – 2 = 6x – 6 + 4
= 6(x – 1) + 4 = 6X + 4 so 6x + 4 given that X or x are any non-zero integer.
Examples.

 36 is 6x and 36 = 7 + 29 with 7 a 6x + 1 prime and 29 a 6x – 1 prime the sum of which make
6x.

 38 is 6x + 2 and 38 = 7 + 31 with 7 a 6x + 1 prime and 31 a 6x + 1 prime the sum of which
make 6x  + 2.

 40 is 6x + 4 or 6x - 2 and 40 = 11 + 29 with 11 a 6x – 1 and 29 a 6x – 1 the sum of which
make 6x – 2 or 6x + 4.

 Care must be taken when applying these rules. For example, 6x – 1 is also 6x + 5 and
6x –  2 is also 6x + 4. For example, 11 + 89 = 100. We know that 11 is 6x –  1; 89 is 6x – 1
but 100 is 6x + 4. In fact, 100 is 6x – 2, which is the same as 6x + 4. Let's take another
example: the number 124 = 23 + 101 with 23 being 6x – 1 and 101 being 6x – 1. In fact 124
will be 6x – 2. But 124 is also 6x + 4. In other words, 23 is 6x – 1 and therefore 6x + 5 and
101 is 6x  – 1 or vice versa and therefore 124 is 6x + 4 or  6x  –  2. In fact, you have to put
the prime primes that sum to 6x ± y (y < 6) and add the y's. The rule of 6x ± 1 sums always
applies when we apply Goldbach's strong conjecture.

2B4. Perform the conversion from an even to addition of prime numbers in a table

We will apply GSC to some even numbers using Tables 5 in accordance with the three rules stated
above. 

 The even number to be converted must be set at the very beginning as M + 1 or M + 5 such
that M is a multiple of prime numbers except 2 and 3 (M might be prime). M is therefore the
leftt-hand term of the addition and 1 or 5 are the right-hand terms. 

 The method is to transfer 6 by 6 from the left-hand side of the addition (M) to the right-hand
side (1 or 5). According to Table 4, M – 6n and 1 + 6n or 5 + 6n either give a prime number
or another M' number that is < M and that is a multiple of prime numbers. There is then a
chance that two prime numbers will appear to the right and left of the addition.
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 As soon as two prime numbers meet and sum, we mark them as an exact verification of
GSC. Each sum of two prime numbers will be designated by the letter S followed by a
number which indicates the order of its appearance. 

 Here the number itself is converted directly in sum of two primes (not by searching for
equidistant primes as above but by finding out additive primes). 

 

14



Tables 5 : Conversion of evens in sum of primes by the three rules stated. The sums are denoted S followed by a
number. Note a same sum can appear twice for a same number and in this case it is denoted the same way. The number
136 is posed as M + 5 (131 + 5 or 5 + 131), 218 as M + 1 (217 + 1 or 1 + 217) and 282 as M + 5 (277 + 5 or 5 + 277).
The number 2042 in separate tables is posed M + 1 (2041 + 1 or 1 + 2041).
Table 5-1. Numbers 136, 218 and 282.

Sum 136 Sum 218 Sum 282

S1 5 131 1 217 S1 5 277

11 125 S1 7 211 S2 11 271

17 119 13 205 17 265

S2 23 113 S2 19 199 23 259

S3 29 107 25 193 29 253

35 101 31 187 35 247

41 95 S3 37 181 S3 41 241

S4 47 89 43 175 47 235

S5 53 83 49 169 S4 53 229

59 77 55 163 S5 59 223

65 71 S4 61 157 65 217

71 65 S5 67 151 71 211

77 59 73 145 77 205

S5 83 53 S6 79 139 S6 83 199

S4 89 47 85 133 S7 89 193

95 41 91 127 95 187

101 35 97 121 S8 101 181

S3 107 29 103 115 107 175

S2 113 23 109 109 113 169

119 17 115 103 119 163

125 11 121 97 125 157

S1 131 5 127 91 S9 131 151

133 85 137 145

S6 139 79 143 139

145 73 149 133

S5 151 67 155 127

S4 157 61 161 121

163 55 167 115

169 49 S10 173 109

175 43 S11 179 103

S3 181 37 185 97

187 31  191 91

193 25 197 85

S2 199 19 203 79

205 13 209 73

S1 211 7 215 67

217 1 221 61

227 55

233 49

S12 239 43

245 37

S13 251 31

257 25

S14  263 19

S15 269 13

275 7

281 1
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Table 5-2-1. Number 2042.
2042 2042 2042 2042

1 2041 127 1915 247 1795 367 1675

7 2035 133 1909 253 1789 S11 373 1669

S1 13 2029 139 1903 259 1783 S12 379 1663

19 2023 145 1897 265 1777 385 1657

25 2017 151 1891 271 1771 391 1651

S2 31 2011 157 1885 277 1765 397 1645

37 2005 S5 163 1879 S9 283 1759 403 1639

S3 43 1999 169 1873 289 1753 409 1633

49 1993 175 1867 295 1747 415 1627

55 1987 S6 181 1861 301 1741 S13 421 1621

61 1981 187 1855 307 1735 427 1615

67 1975 193 1849 313 1729 433 1609

73 1969 199 1843 319 1723 S14 439 1603

79 1963 205 1837 325 1717 445 1597

85 1957 S7 211 1831 331 1711 451 1591

91 1951 217 1825 337 1705 457 1585

97 1945 223 1819 343 1699 S15 463 1579

103 1939 229 1813 S10 349 1693 469 1573

S4 109 1933 235 1807 355 1687 475 1567

115 1927 S8 241 1801 361 1681

121 1921
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Table 5-2-2. Number 2042.
2042 2042 2042 2042

481 1561 595 1447 709 1333 823 1219

487 1555 601 1441 715 1327 S25 829 1213

493 1549 607 1435 721 1321 835 1207

S16 499 1543 S18 613 1429 727 1315 841 1201

505 1537 S19 619 1423 733 1309 847 1195

511 1531 625 1417 S22 739 1303 853 1189

517 1525 631 1411 745 1297 859 1183

523 1519 637 1405 S23 751 1291 865 1177

529 1513 S20 643 1399 757 1285 871 1171

535 1507 649 1393 763 1279 877 1165

541 1501 655 1387 769 1273 883 1159

547 1495 S21 661 1381 775 1267 889 1153

553 1489 667 1375 781 1261 895 1147

559 1483 673 1369 787 1255 901 1141

565 1477 679 1363 793 1249 907 1135

S17 571 1471 685 1357 799 1243 913 1129

577 1465 691 1351 805 1237 S26 919 1123

583 1459 697 1345 S24 811 1231 925 1117

589 1453 703 1339 817 1225 931 1111

17



Table 5-2-3. Number 2042.
2042 2042 2042 2042

937 1105 S27 1051 991 1165 877 1279 763

943 1099 1057 985 1171 871 1285 757

949 1093 1063 979 1177 865 S23 1291 751

955 1087 1069 973 1183 859 1297 745

961 1081 1075 967 1189 853 S22 1303 739

967 1075 1081 961 1195 847 1309 733

973 1069 1087 955 1201 841 1315 727

979 1063 1093 949 1207 835 1321 721

985 1057 1099 943 S25 1213 829 1327 715

S27  991 1051 1105 937 1219 823 1333 709

997 1045 1111 931 1225 817 1339 703

1003 1039 1117 925 S24 1231 811 1345 697

S28 1009 1033 S26 1123 919 1237 805 1351 691

1015 1027 1129 913 1243 799 1357 685

S29 1021 1021 1135 907 1249 793 1363 679

1027 1015 1141 901 1255 787 1369 673

S28 1033 1009 1147 895 1261 781 1375 667

1039 1003 1153 889 1267 775 S21 1381 661

1045 997 1159 883 1273 769 1387 655
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Table 5-2-4. Number 2042.
2042 2042 2042 2042 2042

1393 649 1507 535 S13 1621 421 1735 307 1849 193

S20 1399 643 1513 529 1627 415 1741 301 1855 187

1405 637 1519 523 1633 409 1747 295 S6 1861 181

1411 631 1525 517 1639 403 1753 289 1867 175

1417 625 1531 511 1645 397 S9 1759 283 1873 169

S19 1423 619 1537 505 1651 391 1765 277 S5 1879 163

S18 1429 613 S16 1543 499 1657 385 1771 271 1885 157

1435 607 1549 493 S12 1663 379 1777 265 1891 151

1441 601 1555 487 S11 1669 373 1783 259 1897 145

1447 595 1561 481 1675 367 1789 253 1903 139

1453 589 1567 475 1681 361 1795 247 1909 133

1459 583 1573 469 1687 355 S8 1801 241 1915 127

1465 577 S15 1579 463 S10 1693 349 1807 235 1921 121

S17 1471 571 1585 457 1699 343 1813 229 1927 115

1477 565 1591 451 1705 337 1819 223 S4 1933 109

1483 559 1597 445 1711 331 1825 217 1939 103

1489 553 S14 1603 439 1717 325 S7 1831 211 1945 97

1595 547 1609 433 1723 319 1837 205 1951 91

1501 541 1615 427 1729  313 1843 199 1957 85

Table 5-2-5. Number 2042.
1042

1963 79

1969 73

1975 67

1981 61

1987 55

1993 49

S3 1999 43

2005 37

S2  2011 31

2017 25

2023 19

S1 2029 13

2035 7

2041 1

 The tables 5 show that when we start with the equation E = M + 1, we have a center of
symmetry beyond which we fall back on the same series of addition operations as is the case
with the number 2042 (Table 5-2-1 to 5-2-5) after the sum S29 = 2042 = 1021 + 1021. 

 The two terms of the sums always have the same unit digits and therefore for a given prime
number we only have one kind of prime numbers with a precise unit digit which is suitable
for constructing the sum. If you look at the unit digits of the prime numbers participating in
the sums you will see that they are periodically the same.

19



 We see that with this method, we can verify the SGC on any length of the P/M lines and thus
list many sums corresponding to the tested even. This article proposes this method for the
first time.

2B5. The so-called weak Goldbach conjecture or Odd = p + p'+ p'' (p, p', p'' are prime numbers)

 Suppose a non-prime odd number O = p x q then O = (p - 1)q + q. Since p and q are primes
then p - 1 is even which we denote by E and therefore O = E + q. In other words, a  non-
prime odd number can be the sum of an even and a prime number. 

 If the odd number is prime we denote it by p' > 5. We know that if we have any prime
number p' > p then p' - p = 2n and so p' = 2n + p. Therefore an odd number whether prime or
not is the sum of an even number and a prime number. 

 Whether it is weak or strong Goldbach, it is verified with several sums, we can therefore
apply the formula O = E + p starting with any prime number p removed from O and not only
with p being a prime factor of O (in case it is composite) or p being the prime number
preceding O (in case it is prime). Afterwards, it remains to convert E into the sum of two
prime numbers.

 We deduce that if GSC is true then an O = E + p3 = p1 + p2 + p3  such that E = p1 + p2  and
with p1, p2, and p3 being prime numbers. Therefore the weak conjecture depends on the truth
of the strong conjecture. We will then set any odd number as Odd = E + p3 and then convert
E to the sum of p1 and p2. Thus Odd = p1 + p2 + p3 with p1#p2#p3.

 Odd = p + p ' + p'' = Even + p'' with E = ↓Odd1↓ + ↑Odd2↑. We apply the method described
above based on the M + 1 and M + 5  equations with the even thus chosen to convert it into
the sum of two prime numbers.

For example: 
131 = 100 + 31 = 5 + 95 + 31 =  11 + 89 + 31 → 131 =  11 + 89 + 31
131 = 90 + 41 = 1 + 89 + 41 = 7 + 83 + 41  → 131 =  7 + 83 + 41
18 971 523 157 = 53+ 18 971 523 104 = 1 + 53 + 18 971 523 103  = 7 +  53 + 18 971 523 097 →
18 971 523 157 =  7 + 53 + 18 971 523 097.
 Table 6 shows additional examples and how to apply the method by three steps.

Table 6: Conversion of an odd number into a sum of 3 prime numbers. The method involves three steps: first put the
odd number in the form of E + p3 then convert E into p1 + p2. As a third step, O = p1 + p2 + p3. The weak Goldbach'
conjecture is therefore here deduced from the strong one. In the table, all letters p indicate prime numbers. E is any even
> 4 and O any odd number >8.

Odd number (O) O = E + p3 (E = 2n) E = p1 + p2 O = p1 + p2 + p3

Step Remove a prime number
from O such that E can be

divided into two prime
numbers.

Convert E into a sum of two
prime numbers using M + 1
and M + 5 equations method

Final verification of weak
Goldbach's conjecture

2053 1362 + 691 1362 = 293 + 1069 293 + 1069 + 691 

20995 10988 +  10007 10988 = 4909 +  6079 4909 + 6079 + 10007 

3506641 173310 + 3333331  173310 = 61559 + 111751 61559 + 111751 + 3333331 

1025894774731 92589477472 +
100000000003  

92589477472 =
147895132739  +
777999641989  

147895132739  +
777999641989   +
100000000003  
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2C. Expalining the gap between prime numbers and the truth of the strong Goldbach's conjecture

There are three types of even numbers 6x, 6x + 2 and 6x – 2.
There are three tyes of odd numbers : 3n, multiple of pirme numbers except 3 and 2 (M) and prime 
numbers (P).
There are two types of primes numbers 6x + 1 and 6x – 1.
We can therefore understand the gaps between primes numbers and and anticipate them or calculate 
the probability of their co-occurrence when it comes to equidistant prime numbers.
Here are examples of  representative cases.

1. If we have an even E = 6x, we must progress by regular intervals of 6x - 1 or 6x + 1 to find 
either a P or a M. We progress in the same way either from E/2 to 0 or E/2 to E. The process 
is symmetrical.

2. If we have an even 6x – 2, we add one unit and then advance by 6x therefore we span 6x + 1
intervals to get to the P/M line (see Table 4).

3. If we have  an even E = 6x + 2, we must subtract 1 to get to the P/M line (see Table 4) and 
then advance by intervals of 6x and therefore we advance by 6x - 1. We will then have P or 
M and we do the same either from E/2 to 0 or from E/2 to E.

Examples:
 The number E = 60 (E/2 = 30) is an even 6x. And therefore 30 will be away from prime 

numbers by 6x + 1 or 6x – 1 gaps. Therefore we add values of 6x ± 1 to 30 to get  new 
primes. Here is the case when we add 6x + 1 primes: 30 + 7 = 37; 30 + 13 = 43; 30 + 19 = 
49; 30 + 31 = 61. Or adding 6x – 1 primes : 30 + 5 = 35; 30 + 11 = 41; 30 + 17 = 47; 30 + 
23 = 53.
On the other hand, we must do the same to go down : 30 – 7 = 23; 30 – 13 = 17; 30 – 17 = 
13; 30 – 23 = 7. Or 30 – 5 = 25; 30 – 11 = 19; 30 – 17 = 13; and 30 – 23 = 7.

π(30)
3 5 7 11 13 17 19 23 29

  
 The number E = 80 and E/2 = 40 is 6x – 2 (or 6x + 4). Therefore we add 1 and get to the   

6x – 1 number 41 then we add 6 to go up to 47. 40 + 7 = 47; 40 + 13 = 53; 40 + 19 = 59; 40 
+ 25 =  65; 40 + 31 = 71; 40 + 37 = 77.  Or reduce the number by 4 and we get 36 then 
advance by 6x – 1 or 6x + 1 intervals.  Then we have 40 – 4 = 36 + 5 = 41 + 6 = 47 + 6 = 53 
+ 6 = 59 + 6 = 65 + 6 = 71 + 6 = 77. Or 40 – 4 + 7 = 43 + 6 = 49 + 6 = 55 + 6 = 61 + 6 = 67 
+ 6 = 73. We go down the same: 40 – 4 = 36 – 5 = 31 – 6 = 25 – 6 = 19 – 6 = 13 – 6 = 7. Or 
40 – 4 = 36 – 7 = 29 – 6 = 23 – 6 = 17 – 6 = 11 – 6 = 5. 

π(40)
3 5 7 11 13 17 19 23 29

31 37

 The number E = 100 and E/2 = 50 is 6x + 2. We reduce it by one and then go up or down by
6x intervals. Then 50  – 1 = 49 + 6 = 55 + 6 = 61 + 6 = 67 + 6 = 73 + 6 = 79 + 6 = 85 + 6 =
91 + 6 = 97. Or 50 – 1 = 49 – 6 = 43 – 6 = 37 – 6 = 31 – 6 = 25 – 6 = 19 – 6 = 13 – 6 = 7.
We can also substract 2 to get 6x and add 5 or 7 and then advance by 6x intervals. 50 – 2 = 
48 + 5 = 53 + 6 = 59 and so on or 50 – 2 = 48 + 7 = 55 + 6 = 61 + 6 = 67 and so on. We  
do the same to go down.
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π(50)
3 5 7 11 13 17 19 23 29

31 37 41 43 47

Here are some other examples number E = 120, E/2 = 60; E = 140, E/ 2 = 70; and E = 180, E/2 = 90
to show that there are always more prime numbers between [0 – E/2] than [E/2 – E] because there 
are always more primes close to 0 (2; 3; 5; 7; 11;...) (2 is excluded here).

 We see that there is a limiting prime number (LPN) for every even number from which we
cannot obtain it even if the LPN > E/2 (highlighted). For example, we cannot obtain 60 with
prime numbers P < 31, nor 70 with P < 41 nor 90 with P < 47. Limiting prime numbers are
highlighted also in the case of E = 60, E/2 = 30; E = 80 and E/ 2 = 40; and E = 100, E/2 =
50.  The LPN is close to E/2 but > E/2. The LPN for the above numbers 30; 40; and 50 are
also highlighted.

π(60)
3 5 7 11 13 17 19 23 29
31 37 41 43 47 53  559

π(70)
3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67

π(90)
3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89

 Using the rules stated in this article, let us explain the gaps between prime numbers (from 40
to 97 as examples). First let us mark them (bold)

40 41 42 43 44 48 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 96 94 95 96 97
In the first place, we must separate the prime numbers 6x – 1 and 6x + 1 and identify their 
sequences. We have on one hand 41 (6x – 1) → 47 → 53 → 59 → 65 (M) → 71 → 77 (M) → 83 →
89. On the other hand, we have 43 (6x + 1) →  49 (M) → 55 (M)→ 61 → 67 → 73 → 79 → 85 (M)
→ 91(M) → 97. So there are gaps of 6n between prime numbers P of the same writing in equation 
6x ± 1. However, there are other gaps like between 41 and 43; 67 and 71; and 89 and 97.
40 41 42 43 44 48 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 96 94 95 96 97

 The number P 41 is two units from 43. How to explain this? In fact 41 is 6x – 1 and 43 is    
6x + 1 and therefore (6x + 1) – (6x – 1) = 2 (here we assume that x is any integer > 0). This 
is also the case of 59 (6x – 1) and 61 (6x + 1) and of all the twin prime numbers.
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 Between 67 and 71 we have four units. In fact 67 is 6x – 1 or 6x + 5 and 71 is 6x + 1 and 
thus (6x + 5) – (6x + 1) = 4. We have to make [(6x + 1) – (6x – 1)] but [(6x + 5) – (6x + 1)] 
when calculating the gaps to avoid negative values (to stand in the N set of integers).

 Let us explain the difference between 97 – 89 = 8. Because 97 is 6x + 1 and 89 = 6x – 1, 
they do not progress by 6 intervals. The last prime number 6x + 1 before 97 is 79 and         
97 – 79 = 18. And because 89 – 79 = 10 therefore the gap between 79 and 97 is 18 – 10 = 8.

 Let us take this sequence of prime numbers and explain the gap between 181 and 191.
157 163 167 173
179 181 191 193 197 199 211 223 227 229

 Again 191 is 6x – 1 (and thus 6x + 5) and 181 is 6x + 1. An so 191 is preceded by numbers 
191 – 6 = 185 – 6 = 179 while 181 – 6 = 175 – 6 = 169 – 6 = 163. The last prime number 
before 191 is 179 and 191 – 179 = 12. But 181 (6x + 1) – 179 ( 6x – 1) = 2. Therefore the 
gap between 181 and 191 = 12 – 2 = 10.

 By those rules combined we explain any gap occurring between primes. First 6x – 1 and    
6x + 1 progress in two different overlaping series ; either a prime number P or a multiple of 
primes (M) occupies a position corresponding to 6x – 1 or 6x + 1. The gap between primes 
is 6n between the 6x – 1 primes on the one hand, and between 6x + 1 primes on the other 
hand. But the gap is 2, 4, 8, 10 or 2n between prime numbers 6x –  1 and 6x + 1 and it 
depends on how many times a number M occupies the 6x ± 1 positions of the lines P/M (see
table 4).

 Be an Even = E and E/2. We have four possibilities
1. M → E/2 ← M. Two numbers M occupy the equidistant positions.
2. M → E/2 ← P. There is only one prime without an equidistant one because there is instead a

M number.
3. P → E/2 ← M. There is only one prime without an equidistant one because there is instead a

M number. 
4. P → E/2 ← P. There are two-equidistant primes. 

Let us assume that these 4 possibilities are equiprobable because we cannot anticipate or predict 
where a prime number P ou M will appear. In this case, there is a 25% chance or a probability of 
0.25 that Goldbach's conjecture holds true. Hence it is true.Note that this should be assessed for 
every prime of π(n) or π(E/2) (n or E/2 any integer ≥ 4) to determine if its equidistant number at 
E/2 is P or M.  

 We also see that the prime numbers are formed symmetrically from E/2 to 0 and from E/2 to
E. On one side subtraction and on the other side addition. This also supports Goldbach's 
conjecture because without this symmetry there would be no equidistant prime numbers and 
the even number E cannot be converted into the sum of two prime numbers. Prime numbers 
are always formed in the same way even if we cannot translate it into an equation. This 
equation must give all equidistant primes numbers produced by any integer n ≥ 4. 

 We all know that π(E) (E any even ≥ 8) contains equidistant primes to E/2 but what we are 
missing is to directly deduce equidistant prime numbers from an integer by a formula or a 
theorem. Otherwise, pose an axiom that states that any integer n or E/2  ≥ 4 is surrounded 
by at least one couple of equidistant primes and assume it is true unless one counterexample
is found.

 Even if a gap comes after E/2, prime numbers > E/2 and close to E will combine with 
increasingly smaller prime numbers < E/2 and close to 0 and since the latter are more 
numerous, they will increase the chances that two equidistant prime numbers appear.
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2D- Examples of applying the rules described to convert an integer ≥ 4 into the sum of two prime
numbers

2D-1. Posing the mathematical problem of Goldbach's strong conjecture

Here we will consider Goldbach's strong conjecture as being for an even number ≥ 8. E = p + p' 
such that p' > p and p'#p. So E ≥ 8 and E/2 ≥ 4 recall that E/2 is any integer ≥ 4.  To prove the GSC, 
we need to predict at least one pair of two prime numbers equidistant at E/2. If we set p = E/2 - t 
and p' = E/2 + t, in other words, we have to predict the value of t. For a number E that tends to 
infinity, t can also tend to infinity.
There are well-known prime number postulates that have become theorems, but which 
unfortunately can't help to solve Goldbach's strong conjecture. For example, the prime number 
theorem : « The number of primes less than x tends asymptotically towards x/log x: n/ln(n)
We have improved the approximation by taking: π(n) ~ n /(ln(n) – 1) » gives just an approximation 
to the number of primes before a natural number, but in no way predicts the position of the 
equidistant primes. Similarly, Bertrand's postulate : « Between n and 2n, there is always a prime.
In other words, the gap between a prime number p and its successor is smaller than p » indicates the
presence of a prime number between n and 2n, but does not predict its position. Also, the theorem 
« Between n and 2n and n > 6, there is at least one prime in 4k - 1 and at least one in 4k + 1 - 
Proven by Erdös. Example between 7 and 14: 7 = 4x2 - 1; 11 = 4x3 - 1; 13 = 4x3 + 1 » doesn't 
predict the position of all equidistant primes either. 
We can't use the laws of probability calculation, because the positions of numbers are not events 
that happen in a dependent or independent way.  The formula nln(n), which approximates the nth 
prime number, is of no help, as variations of a few or several units will distort the calculation, since 
exact values of t are required. 
The GCS problem can be posed as follows: we have an even number E ≥ 8 (E/2 ≥ 4) and a prime 
number p, we have p + 2t = p' and we need p + t = E/2 and E/2 + t = p' so that E = p + p'.
We know that by adding 2n to a number P1, we'll get another prime number P2 at some point, and 
we know that there's always an even or odd natural number at equal distance between P1 and P2. 
For example, between 11 and 31, there's the number 22 at equal distance. Or 31 + 47 = 78 and 
therefore 39 in the middle between 31 et 47. But the real problem here is that we have a prime 
number p, and we have to add a certain value of 2n = 2t to it, so as to predict in advance that it is 
indeed E/2 that is at equal distance between p and p'. This article will show that the only safe 
approach is to analyze the remainders of Euclidean divisions of p and p'. 
This approach will be discussed in this article (see below). It can be used to predict whether adding
2t to p will produce an equidistant p' or not. It's all about analyzing successive Euclidean divisions.
Furthermore, this article will also define which values of t added to or substracted of E produce
prime numbers.
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2D2. The gap between equidistant primes has specific values depending on whether the even sum of
two prime numbers is a multiple of 3 or not

x, x∀ ∈N and x≥8, t t N and t < x such that x – t and x + t are primes → x, x  N and x ∃ ∈ ∀ ∈ ≥8,  
 2x = (x – t) + ( x + t) = p + p' (p and p' are primes). Goldbach's conjecture holds true.

 E is any even ≥ 8 and E = (P1 – t) + (P2 – t) and thus P1 and P2 are equidistant primes. In 
tables 7-9, t values are going to be determined for four numbers (E = 200, E = 400, E = 600 
and E = 2000). Therefore, equidistant primes before and after E/2 are located and then t 
calculated and shown in the tables. The data show that t has specific values depending on E 
if it is a multiple of 3 or not. 

x, x N and x∀ ∈ ≥8, t t N and t < x such that x – ∃ ∈ t and x + t are equidistant primes at x/2 → t is prime or composite. If
x/2 is even, t is odd. If x /2 is odd t is even 

First case: x/2 is even
1)- If x = 3n; t is either prime or composite the prime factors of which are in an ascending order but not 3n.
2)- If x ≠ 3n; t is odd 3n, prime or composite but 3n values are the most frequent.

Second case: x/2 is odd
3)- If x = 3n; t is even composite the prime factors of which are in an ascending order but not 3n.
4)- If x ≠ 3n; t is even 3n.

 
We see that t represents the gap that separates each of the two equidistant prime numbers from E/2 with E 
being  any even ≥ 8 and E/2 is any integer  ≥ 4. P → E/2 ← P'.  E/2 – P = t and P' – E/2 = t. Table 7 shows 
the values of t before and after two numbers chosen as examples 100 and 200. Note that both 100 and 200 
are ≠ 3n. Table 7 shows that t has values of 3n with both numbers. In Table 8 only the t-values are 
represented of two numbers that are not 3n (E = 200 and E/2 =100; E = 400 and E/2 = 200) and of a 
number that is 3n (E = 1200 and E/2 = 600). It is clear that the values of t are not identical. When the 
number is 3n such the case of 1200, t values are either prime or composite but not 3n. These data show 
that the gap between E/2 and equidistant primes has different values depending on the number E if it is 3n or
not. At the bottom of each column of Table 8, the gaps between equidistants prime numbers and E/ 2 are 
represented depending on their order of appearance and we see that there is a good linear correlation (R2 = 
0.97-0.99).  
Table 9 shows data consistent with those in Table 8. The t-values between equidistant primes and E/2 are
almost all the time 3n for a number that is not itself a multiple of 3 (E = 2000, E/2 = 1000) . Although the
gaps between equidistant primes and E/2 = 1000 in the case of E = 2000 show a good correlation of 0.97-
0.98, randomly chosen primes between 1009 and 1213 show a similar correlation (see graphics below table
9). But the larger the number (600, 2000) we notice a shift and a curve which winds (snake-like) but the
correlation coefficient remains almost the same.
The gaps between equidistant prime numbers of an even E and its half E/2 obey a same linear distribution
compared to that of natural prime numbers in an increasing order.  These data were confirmed with larger
numbers including two numbers that are not multiples of 3, 100000 and 10000 (see the supplementary data
on pages 51-54 below at the end of this article). The number 100000 has more than 500 equidistant primes
and the t-values separating them from E/2=50000 are all 3n (additional data, Table S1). The number 10000
has 145 equidistant  primes and the t-values separating them from E/2=5000 are all  3n (Table  S2).  The
number  3n 9000,  on the other  hand,  has  242 equidistant  primes  and the t-values  separating them from
E/2=4500 are either primes or composites ,  but  in no case 3n (additional data, Table S3). However the
associated equations cannot be used for integers because the linearity is not absolute.

Strong linear correlation coefficients means that equidistant primes appear after relatively close or fairly
regular  intervals,  whereas  if  this  were  not  the  case,  the  correlation  would  have  been  very  weak.  This
indicates that equidistant primes of an integer value are very likely to occur and argues in favor of the
authenticity of the strong Goldbach conjecture. This also indicates that primes do not appear randomly but
follow pre-established rules depending on whether the number is a multiple of 3 or not.  The larger the
number, the greater the number of equidistant primes so that the linear correlation increases to = 1 (this
is due to the very large number of t values, as opposed to a smaller number). This shows that GSC touches
on a fundamental rule that governs the appearance of primes after precise gaps. 
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Table 7 : The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 
equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. Arrow on the left and right  indicates t values of corresponding 
equidistant primes (for example in case of 100; t = 3 corresponds to 103 + 97 = 200; t = 27 for 127 + 73 = 200 and so on). Two 
examples are shown : E = 200 with E/2 = 100 ; and E = 400 with E/2 = 200. The arrow → alone means from one prime number to 
another.

100  → 200 ← 100 →  0  → 100 200  → 400 ← 200 → 0  → 200

101 1 97 3 211 11 197 3

103 3 95 5 223 23 195 5

107 7 93 7 227 27 193 7

109 9 89 11 229 29 189 11

113 13 87 13 233 33 187 13

127 27 83 17 239 39 183 17

131 31 81 19 241 41 181 19

137 37 77 23 251 51 177 23

139 39 71 29 257 57 171 29

149 49 69 31 263 63 169 31

151 51 63 37 269 69 163 37

157 57 59 41 271 71 159 41

163 63 57 43 277 77 157 43

167 67 53 47 281 81 153 47

173 73 47 53 283 83 147 53

179 79 41 59 293 93 141 59

181 81 39 61 307 107 139 61

191 91 33 67 311 111 133 67

193 93 29 71 313 113 129 71

197 97 27 73 317 117 127 73

199 99 21 79 331 131 121 79

17 83 337 137 117 83

11 89 347 147 111 89

3 97 349 149 103 97

353 153 99 101

359 159 97 103

367 167 93 107

373 173 91 109

379 179 87 113

383 183 73 127

389 189 69 131

397 197 63 137

61 139

51 149

49 151

43 157

37 163

33 167

27 173

21 179

19 181

9 191

7 193

3 197

1 199
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Table 8: The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 
equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. t-values for numbers that are not 3n (200 and 400) and a 3n 
number (600). t-values that are multiples of 3 are marked with an asterisk. Unmarked numbers are either prime or composite (bold) 
with prime factors > 3 in increasing order. Below each column the graphic showing correlation between t values and their order of 
appearance.

100±t → 200 200±t → 400 300±t → 600

97 197 293

93* 189* 287

81* 183* 277

63* 159* 271

57* 153* 269

39* 147* 263

27* 117* 257

3* 111* 247

93* 221

69* 203

63* 199

51* 187

33* 163

27* 161

                                             

149

143

133

121

119

109

101

89

73

67

49

37

31

17

7
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*Table 9: t-values for a number that is not 3n (E = 2000, E/2 = 1000).  The t-values are mostly multiple of 3 (3n marked with *) 
except in three cases (bold underlined). Below is the correlation between the t-values and their order of appearance. As a control, 
correlation between a same number of  Prime numbers from 1009 to 1213 is shown for comparison. The t values or gaps between 
equidistant primes and E/2 show similar linear corelation than natural prime numbers in their increasing order.

← 1000 →

9* 33* 63* 93* 117* 123* 171* 291* 381* 399*

429* 453* 459* 543* 567* 601 621* 627* 637 663*

669* 693* 723* 759* 777* 861* 933* 987* 993* 997

Underlined numbers 601 and 997 are primes while 637 = 72 x 13.

↓

Natural prime numbers from 1009 to 1213 (30 primes).
↓
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2D3. Linear correlation between the gaps separating equidistant primes and E/2 in all cases of
even numbers 

Below in Figure 1, four graphics which represent the four cases of E/2 numbers to take into account for the conversions
of evens E in sum of two primes. E/2 is either 3n even (Figure 1A) or non-3n even (1B). On the other hand, E/2 is either
3n odd or non-3n odd. In all these graphics, E = p + p' (p' > p and both primes) and t = E/2 – p = p' – E/2. The graphics 
show distribution of t-values relatively to their order of appearance. In all graphics, the t-values are strongly correlated 
for any of the four cases. Each dot represents a pair of equidistant primes. Equidistant primes appear regularly as any 
other prime number in the four cases of evens (Fig 1A-D) which shows that any even can split into sum of two primes.  
The evens differ by the density of equidistant primes and the more larger the number is, the higher their densities. In all 
cases, density of equidistant primes is always < π(E) ~ E/log(E), where π(E) is the prime-counting function (the number
of primes less than or equal to E) and log(E) is the natural logarithm of E (the prime number theorem). Another point is 
that equidistant primes are found between 0 and E/2 on one hand, and E/2 and E on the other hand while total count of 
primes might differ between 0-E/2 and E/2-E. For the strong conjecture of Goldbach to hold true, there must be at least 
one couple of equidistant primes p and p'  among π(E) such that t= E/2 – p = p' – E/2.  If one prime results from E/2 – t, 
then it is very likely tat E + t is prime and this probability is never zero therefore proving GSC.  
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Figure1. The four cases of evens to take into account for the conversion of evens in sums of two primes (p and p' such 
that p' > p). Each graphic shows the distribution of t-values with t = E/2 – p = p' – E/2. Linear correlation coefficients 
are shown. Each type of E/2 number is indicated on the top of each graphic.
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If E = P1 + P2 with P2 > P1 let pose u = P2 – P1. In table 10, u obtained with a 3n number (E = 84, E/2 = 42) is  
compared to that obtained with a non 3n number (E = 140, E/2 = 70).
The gap u = P2 – P1 is 3n or 6n when the even E is not 3n. By contrast, u is 2n when the number E is 3n. The GSC is 
linked to the formation of prime numbers from the integers which precede them. The data show that for the goldbach's 
conjecture to be true, there must be a value t such that for any integer n, n – t and n + t are primes and equidistant to n. 
The value of t will depend on whether the integer n is 3n or not.

Table 10. The gap between two equidistant primes noted u is not the same depending on E/2 of the even number E. If 
E/2 is 3n (42), u values are 2n in increasing order. If E/2 is non-3n (70), u values are 3n or 6n in increasing order. The u 
values obtained in both cases show a good linear correlation of 0.98; shown by graphics below (left, u values of E/2 = 
42; right, u values of E/2 = 70).

 u (E/2 = 42)  Factors ≠ 3n  u (E/2 = 70) Factors = 3n  

22 2 x 11 6  6 x 1  

38 2 x 19 18 6 x 3

58 2 x 29 54 6 x 9

62 2 x 31 66 6 x 11

74 2 x 37 78 6 x 13

114 6 x 19

126 6 x 21

                                                ↓                                                                                              ↓

The strong correlation observed with u values also indicates that equidistant primes appear after a regular interval of the
same order. And even if the number tends to infinity, there will always be a strong correlation between equidistant 
primes close to each other.
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2E. Two rules that explain the equidistance of prime numbers and which are at the origin of the
strong conjecture of Goldbach

The main question is to determine how an integer gives a prime number by increasing or decreasing
in a symmetrical way. For GSC to be proven, we have to demonstrate that there are two equidistant
primes around E/2 with E being an even. In this section,  two rules are given that explain how an
integer produces a prime number. Let E be any even number and let us calculate E ± T such that T is
an integer < E. We will apply the same rules as seen previously, if E is an even which is not 3n, then
T is odd 3n values. There is a rule for E – T and another for E + T and both of them are going to
give equidistant primes around E/2. This is different from what described above since we start now
with  the  even  E and then  fall  back on the  equidistant  primes  around E/2.  Another  method of
obtaining equidistant primes is also included here which consists of euclidean divisions of E by
prime factors q out of π(E) of which are > E/2.  Let us pose E = aq + r with a the quotient, q any
prime factor out of π(E) < E and r the remainder and this is the classic equation of the Euclidean
division.

Be E any even ≥ 8 and T any integer < E. For E – T if T = r + nq then E – T is not prime (n is any 
integer ≥ 0). For E + T if T = nq – r then E + T is not prime. Only if T ≠ r + nq in the first case and   
T ≠ nq – r in the second case can we have equidistant primes. Both T values are symmetrical.  These
two rules are required to understand the GSC.
Demonstration:

 E – T and T = r + nq. Knowing that E = aq + r →  E – T = aq + r – (r + nq) = (a + n) q →      
E – T not prime. For each T value, this must be true for all q out of π(E) < E.

 E + T and T = nq – r. Knowing that E = aq + r → E + T =  aq + r + (nq – r) = (a + n) q →    
E + T not prime. For one T value, this must be true for all q out of π(E) < E.

2E.1 First rule: In order to have prime numbers by subtracting T from an even number E : if
E = aq + r then E – T is prime if T ≠ r; or T ≠ r + q; or T ≠ r + nq (n is any integer and q all
primes < E).

E is any even ≥ 8. E = P1 + P2 with P2 > P1 and P1 and P2 are equidistant primes. The method is as follows. 
1)- Take T-values as odd 3n (for an even number that is not 3n). Calculate E – T.
2) - Determine π(E) the primes of which are named q and divide E –T by prime factors q < E/2 to apply the rule T ≠ r 
and T ≠ r + q or T ≠ r + nq (n is any integer > 0). Primes are numbers E – T with T satisfying the rule for each euclidean
division of E by q  out of  π(E)     < E/2. This leads to equidistant primes to E/2  that sum up to form E. Therefore, this 
rule allows us to find out equidistant primes around E/2.
3) Meanwhile, when we divide E by q out of  π(E) > E/2, the remainder = P1 and the divisor = q = P2. This time we 
have at once two equidistant primes if the remainder is prime. This is another method to find out equidistant primes 
around E/2. The data obtained with q < E/2 and q > E/2 are shown in tables 11A+B and 13A+B. In table 12, the 
specific case of q > E/2 is further discussed separately by puttig emphasis on other rules.

Example number E = 112 and E/2 = 56 which is not 3n and then T is mostly 3n (Table 11A). On the
first column of Table 11A, we have prime factors q of  π(E) < E and the second column the 
remainders r of euclidean division of E with each q. T values (odd 3n) are shown in the first line 
which have to be substracted from E = 112 (only T values are shown).
The colored columns indicate prime numbers while non-colored columns correspond to non-primes 
and have a color spot that indicate which remainder is concerned. Note equidistant primes are E – T
(Table 11A) and E + T (Table 11B) that are both primes. All equidistant primes are underlined and 
highlighted in bold in the first line. 
On the other hand, equidistant primes directly obtained by Euclidean divisions of E by q > E/2 are 
shown on the first two columns and they are also underlined and highlighted in bold.  
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 Here are some examples for q < E/2 (Table 11A).
112 – 21 is not prime because 112 : 13 (13 is q) has a remainder (r) of 8 and at the same time 21 – 8 = 13 → 
21 = 8 + 13 (r + q). If we substract 21 of 112, we take off the remainder 8 and one factor 13 and what 
remains is therefore multiple of 13 → 112 – 21 = 91 = 7 x 13.
112 – 27 is not prime because 112 : 5 (q) has a r = 2 and thus 27 – 2 = 25 → 27 = 2 + 25 =   2 + 5 x 5 ( r + 
nq).
112 – 57 is not prime because 112 : 5 has a r = 2 and 57 = 2 + 55 = 2 + 11 x 5 (r + nq). Furthermore, 112 : 11 
(q) has a r = 2 and 57 = 2 + 55 = 2 + 5 x 11 (r + nq).
112 – 63 is not prime because 63 is a multiple of 7 and 112 : 7 has r = 0.
 112 – 87 is not prime because 112 : 5 has r = 2 and 87 = 2 + 85 = 2 + 17 x 5. (r + nq)

 But when q > E/2 or 112/2 = 56 the remainder r is either prime or not. For q > E/2 the strong 
conjecture (E = p + p') itself becomes Euclidean division in the form E = aq + r with q = P2 and  r = P1 and 
the quotient a = 1 → E = P2 + P1 = P1 + P2 such that P2 > E/2 > P1. And in this case T = q = P2 and E – T =
E –  q = P1 = r. Note that r = P1 may be prime or not. This brings new equidistant primes (See Table 12 with 
the comments that follow) . In this case, we also have the rule stated above. For instance 100 = 53 + 47. Here
we have for example 100 : 11 has a r' = 1 while   53 : 11 has a r = 9 and 47 : 11 has a r = 3 and we see that 
r'≠r in both cases. However if we have 100 = 67 + 33 we have 67 : 11 has r = 1 and we see that 33 is a 
composite relatively to q = 11 = 3 x 11 which has a  r = 0 → r' = r and 33 = n'q = 3 x 11. Here is another 
example. 100 = 61 + 39. We have 100 : 13 has a r' = 9 while 61 : 13 has a r = 9 and r' = r → 39 is composite 
relatively to q = 13 ad 39 = 3 x 13. If for one q, r'=r then P + X → X is composite = n'q except if n' = 1 (see 
Table 12 and what follows).
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Table 11A. Primality test of (E – T) numbers by looking at the remainders of euclidean divisions E:q and (E – T):q.  Be
E any even E  ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and
E = p + p'. In the table, E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown).
The divisor q or prime divisors < E are shown in the first column and remainders r on the second one. E – T (E = 112)
numbers are calculated with T values shown in the first line (odd 3n).  Columns colored are those corresponding to
E – T being prime numbers and columns with an isolated colored spot indicate non-prime numbers and the remainders
they are related to. If T = r  + nq (n any integer including 0) then E – T is not prime. Underlined numbers in bold on the
first line correspond to equidistant primes in Tables 11A+B. The highlighted and underlined numbers in the two first
columns are equidistant primes obtained with E : q such that q > E/2. The prime factor q > E/2 is indicated by a colored
line.

π(E) E:q T values to substract from E = 112 and divide by q (E – T : q) to determine remainders (r)

q r 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105

3 1

5 2

7 0

11 2

13 8

17 10

19 17

23 20

29 25

31 19

37 1

41 30

43 26

47 18

53 6

59 
>E/2

53

61 51

67 45

71 41

73 39

79 33

83 29

89 23

97 15

101 11

103 9

107 5

109 3
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2E.2 Second rule: In order to have prime numbers by adding T to E or E + T : T  ≠ q – r or
T≠ nq – r.

Only some of E + T that are not prime are going to be explained (Table 11B).
1. 112 + 9 is not prime because 112 : 11 has a remainder r = 2 and 9 = 11 – 2 (q – r).
2. 112 + 33 is not prime because 112 : 5 has r = 2 and 33 = 35 – 2 = 7 x 5 – 2 (nq – r). Furthermore, 112 : 29 has

r = 25 and 33 = 58 – 25 = 2 x 29 – 25 (nq – r).
3. A last example. 112 – 75 is not prime because 112 : 11 has a r = 2 and 75 = 77 – 2 = 7 x 11 –  2 (nq – r). In

addition, 112 : 17 has r = 10 and 75 = 85 – 10 = 5 x 17 – 10 (nq – r). In tables 11A and 11B corresponding
equidistant primes are underlined in the first line, and two first coloumns (q > E/2).

Table 11B. Primality test of (E + T) numbers by looking at the remainders of euclidean divisions E:q and (E + T):q. Be
E any even ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and E = p + p'.
In the table, E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown). The divisor q
or prime factors < E are shown in the first column from left and remainders r on the second one. E + T (E = 112)
numbers are calculated with T values shown in the first line. Columns colored are those corresponding to  E + T being
prime numbers and columns with an isolated colored spot indicate non-prime numbers and the remainders they are
related to. If T = nq – r (n any integer including 0) then E + T is not prime. Underlined numbers in bold on the first line
correspond to equidistant primes in Tables 11A+B. The highlighted and underlined numbers in the two first columns are
equidistant primes obtained with E : q such that q > E/2. The prime number q > E/2 is indicated by a colored line. 

π(E) E:q T values to add to E = 112 and divide by q to determine remainders (E + T : q)

q r 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105

3 1

5 2

7 0

11 2

13 8

17 10

19 17

23 20

29 25

31 19

37 1

41 30

43 26

47 18

53 6

59 
(>E/2

) 

53

61 51

67 45

71 41

73 39

79 33

83 29

89 23

97 15

101 11

103 9

107 5

109 3
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 2E3. The specific case of q > E/2 where we have E : P2 = 1 with the remainder r = P1. The
congruence rules for this case.

Table 12. Congruence rules that determine whether the strong Goldbach conjecture holds in the case of q = P2 > E/2. 
Let E be an even number ≥ 8, q any prime number < E in π(E), and P2 a prime > E/2. To convert E to the sum of two 
primes P2 and P1 (E = P2 + P1) such that P1 < E/2 we perform the Euclidean divisor E : P2 which has a quotient = 1 
and a remainder = P1 or C (C is any composite number). If P2 ≡ E modulo (q) (for example in the table q3) then           
E = P2 + C unless C = q . If E P2 on all the remainders of E: q (r1 to rn) then P1 is prime and E = P2 + P1. We see that ≢
a prime number is a solution to a problem: that of finding a number which has no congruence with the number of which 
it is an addition term. In the  table  means no congruence. If there is a congruence (for example modulo q3) P1 is ≢
composite (C) except if  C = q.

q < E P2 > E/2 and  P1 or C < E/2 
E : P2 = P1 or E : P2 = C → E = P2 + P1 or E = P2 + C

Prime factor (q) of π(E)  Remainder
E : q

P2 : q
P1 Composite (C)

Except if C = q

P2 : q
P1 Prime 

q1 r1 ≢ ≢
q2 r2 ≢ ≢
q3 r3 ≡   P1 = C not prime except if

C = q.

q4 r4 ≢ ≢
q5 r5 ≢ ≢
q6 r6 ≢ ≢
q7 r7 ≢ ≢
... ... ≢ ≢
qn rn ≢ ≢

Demonstrations in the case of q > E/2 (also the case of the equidistant primes of the two first colums in Tables 11A+B
above and 12A+B below).

1)- Be E = aq + r and P2 a prime number > E/2.
Be P2 = a'q+ r
then E – P2 = X = (a – a')q → X is not prime except if a – a' = 1. Only if a' - a = 1 is the GSC verified 
E = P2 + P1 with P1 < E/2.

2)- Be E = aq + r
Be P2 = a'q+ r'
then E – P2 = X = (a – a')q + (r – r') → X is prime if r ≠ r' for any q < E. Only under this condition is the GSC 
verified E = P2 + P1 with P1 < E/2.

3)- If the GSC is verified E = P2 + P1 with P2 > E/2 and P1 < E/2  → E ≡ P2 moduloP1. 
E = aP1 + r → P2 = aP1 + r – P1 → P2 = (a – 1)P1 + r  → E ≡ P2 moduloP1.

4)-  If E = aq + r and P2 = (a – 1)q + r then E – P2 = P1 is prime. E – P2 = (aq + r) - ((a – 1)q + r)) = (a – a + 1)q + 
(r – r) = q knowing that q is any prime < E.

5)- E : P2 = X (note P2 is prime > E/2). Let E = aq +r ; P2 = a'q + r' and X = a''q + r''. In all cases we have              
r' + r'' = r or r' + r'' = nq + r (n ≥ 0). If this is true for all q < E or any q of π(E) then E = P2 + P1 which are both
primes and the GSC is verified. If for one q of π(E), r'' = 0 and r = r' then X is composite except if X = q. 

Examples : 
100 = 67 + X knowing that 67≡100 modulo11 then X is composite (except if X = q = 11) but X = 33 = 3 x 11.
1000 = 571 + X  knowing that 571≡100 modulo11 X is composite X = 429 = 3 x 11 x 13.
100 = 89 + 11 Even if 89≡100 modulo11 X is prime because X = 11 (the case in the table when X = q).
2000 = 1303 + X  knowing that 1303≡2000 modulo 41 X is compostite X = 697 = 17 x 41.
2000 = 1873 + X  Even if 1873≡2000 modulo127 X is prime because X = 127 (the case in the table whe X = q).
2000 = 15 x 127 + 95 and 1873 = 14 x 127 + 95 (according to demostration 3 above).
200 = 149 + 51. For all q of π(200) the remainders r' of  (149 : q) + r'' of (51 : q) = nq + (r of 200 : q) except for 3 and
17 for which r'' = r and 51 is composite = 3 x 17.
200 = 139 + 61 For all q of π(200) the remainders r' of  (139 : q) + r'' of (61 : q) = nq + (r of 200 : q) therefore 61 is
prime and therefore Goldbach conjecture is verified.
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What then do these demonstrations mean in the case where E : P2 = X knowing that E is any even
number  ≥ 8 and      P2 > E/2 and denoting any prime number < E or  π(E) as q ? For any even
number E, there are three possible numbers          P2 > E/2: composite (C), prime numbers P2≡E
modulo at least one factor q, and prime numbers P2  ≢E for any factor q. The congruent P2 will
always add to a composite number C to form E except if C is a unit prime factor. Whereas the non-
congruent P2 will  necessarily add to  a prime number P1 to form E.  Why? By using the same
demonstrations cited above. In fact, if there is congruence between E and P2 and if we write E = P2
+ X this means that the remainders of E : q and P2 : q are identical and that necessarily X is a
multiple of q except in the case where X is itself the prime factor q, which could happen sometimes
but not always. On the contrary, if there is never any congruence between E and P2 ; and if we write
E = P2 + X and we note E = aq + r ; P2 = a'q + r' ; and X = a''q + r'' we therefore have r' + r" = r or
r' + r'' = nq + r. In this case, r'' cannot be zero because we contradict ourselves since there will be
congruence between E and P2. Therefore, r'' is always non-zero in this case for any factor q. In
other words, the non-congruence of E and P2 entails that of E and P1 whatever the factor q of π(E).
Consequently in this case X = P1 which is prime and E = P1 + P2. This is a demonstration of
Goldbach strong conjecture because there will always be at least one probability chance that a non-
cogruent prime number will appear after E/2, this probability is never zero. All prime numbers after
E/2 cannot all be congruent because this is incompatible with the progression of natural numbers
unit by unit. This is why Goldbach's conjecture is always true if we admit that there always exist
enough prime numbers between E/2 and E whatever the value of E. For instance  100 = 73 + 27
means 100≡73 modulo(3) while 100 = 59 + 41 means 100 59 and 100 41 for any factor q < E.≢ ≢
We can conclude that  the progression of  natural  numbers  always  produces two types  of prime
numbers. Among the latter we have those which are never congruent with an even number E ; E/2 is
located at an equal distance between a non-congruent prime number P2 > E/2 and another prime
number P1 < E2.  

The strong Goldbach's conjecture E = P1 + P2 ↔ E P1 for any prime q < P1 and  ≢ E P2 for any≢
prime q < P2  with q any prime of π(E) and such that P2 > E/2 et P1 < E/2 . Howevere, 

E≡P2 if P1 = q.
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 2E4. Another example : a 3n number E = 240 and E/2 = 120.

Table 13A. Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, T takes values of primes (or
composites but primes are used here).  The same legends as in tables 11. Here E/2 – T. Empty  Columns are those
corresponding  to  E  – T  being  prime  numbers and  an  isolated  colored  spot  indicate  non-prime  numbers  and  the
remainders they are re lated to. If T = r  + nq (n any integer) then E – T is not prime . Underlined numbers in bold on the
first line correspond to equidistant primes in Tables 12A+B. Both equidistant primes are shown on the two left-columns
if q > E/2 or q > 60 for 120 number. Note equidistant primes are E –  T and E + T that are both primes.  

π(E) E:
q

T values to substract from E = 120 and divide by q to determine remainders (E – T : q)

q r 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 57 61 67 71 73 79 83 89 97 101 103 107 109 113

3 0

5 0

7 1

11 10

13 3

17 1

19 6

23 5

29 4

31 27

37 9

41 38

43 34

47 26

53 14

59 2

61 
>E/2

59

67 53

71 49

73 47

79 41

83 37

89 31

97 23

101 19

103 17

107 13

109 11

113 7
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Table 13B. Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, t takes values of primes (or
composites  but  primes are used  here).  The same legends  as  in  tables  11.  Here  E + T.  Empty  Columns are those
corresponding to  E/2  + T being prime numbers and an isolated colored spot  indicate non-prime numbers  and the
remainders they are related to. If T = nq –  r (n any integer) then E + T is not prime. Underlined numbers in bold on the
first line correspond to equidistant primes in Tables 12A+B. Both equidistant primes are shown on the two left-columns
if q > E/2 or q > 60 for 120 number. Note equidistant primes are E –  T and E + T that are both primes.  

π(E) E:q T values to add to E = 120 and divide by q to determine remainders (E + T) : q

q r 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 57 61 67 71 73 79 83 89 97 101 103 107 109 113

3 0

5 0

7 1

11 10

13 3

17 1

19 6

23 5

29 4

31 27

37 9

41 38

43 34

47 26

53 14

59 2

61 59

67 53

71 49

73 47

79 41

83 37

89 31

97 23

101 19

103 17

107 13

109 11

113 7
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2F. The GSC explains how a prime number gives the prime number that follows it and this 
progression obeys the two rules decribed above in relation to the remainders of the Euclidean 
divisions 

 Be any two prime numbers  p and p' such that p' > p → p' – p = 2n. Let us suppose a number noted
X – p = 2n and let us see if X is prime nor not. X will be prime if 2n ≠ mq – r with q any prime
factor < X and m any integer  ≥ 1. When n = 1 and this rule verified then we have twin prime
numbers. But if we have n = 1 and the rule not verified (meaning  2n = mq – r) then we do not have
twin prime numbers. For instance, let us take 17 and 17 : 3 has a remainder r = 2 ; 17 : 5 has r = 2 ;
17 : 7 has r = 3, 17 : 11 has r = 6, and 17 : 13 has r = 4. Therefore if we add 2 to 17 we have
2 ≠ mq – r in all those euclidean divisions and so 17 + 2 = 19 is prime. By contrast if we take a
number like 31 we have 31 : 11 = 2 and r = 9 and so 2 = 11 – 9 = mq – r → 31 + 2 = 33 is not prime
because it is a multiple of 11. In a similar way 31 : 3 = 10 and r = 1 and 2 = 3 – 1 = mq – r and so if
we add 2n to 31, it is not prime because it is a multiple of 3.
This rule determines if p + 2n is prime or not and can therefore explain how equidistant primes are 
produced. Let us take some examples. 11 + 12 knowing that 11 : 12 = 0 and r = 11.
In this case 12 ≠ mq – r = m11 – 11 for instance 12 ≠ 22 – 11 or 12 ≠ 33 – 11 and so on. Therefore 
11 + 12 = 23 is prime. We have two primes 11 and 23 and 11 + 23 = 34 : 2 = 17 and therefore 11 
and 23 are equidistant to 17. In this specific case 2 x 17 = 34 = 11 + 23.
If we take 11 + 10 = 21 not prime because 11 : 3 = 3 and r = 2 and 10 = 12 – 2 = 4 x 3 – 2 = mq – r.
Or 11 : 7 = 1 and r = 4 and we have 10 = 14 – 4 = 2 x 7 – 4 = mq – r. Therefore 21 is a multiple of 3 
and 7.
Let take another number like 31 + 12 and whatever prime factor < 31; 12 ≠ mq – r. For instance if q 
= 7, then 31 : 7 = 4 and r = 3. Hence 12 ≠ m x 7 – 3 whatever m value; if m = 1, 12 ≠ 4; if m = 2, 
12 ≠ 11; and m = 3,  12 ≠ 18 and so on. Hence 31 + 12 = 43 is prime → 31 + 43 = 74 : 2 = 37 →  31
and 43  are equidistant to 37 and 37 x 2 = 74 = 31 + 43. We can argue differently 31 + 12 = 43 the 
mean value is either 31 + 6 or 43 – 6 which also means that 2 x 6 is the distance between 31 and 43 
and therefore 37 x 2 = 31 + 43.
Because an even value has to be added to a prime number p to get the next one p' (p' = p + 2n) 
therefore there is always a mean value M located at the same distance from the two such that         
M = p + n = p' - n and therefore 2M = p + p'. However if q is any prime factor < p', the rule              
2n ≠ mq– r has to be verified to get the next prime number p'.
The most important element is that the rule  2n ≠ mq– r is always verified because there is an 
infinity of n values of 2n to get the next prime number. For example, if we take any prime number 
like 73 we can get 79 (73 + 2 x 3); 89 ( 73 + 2 x 8); 97 ( 73 + 2 x 12) and so on. In other words, we 
will never find a prime number that will not give another prime number by adding to it 2n with n 
being any integer > 0. When we say prime numbers are infinite this means that any prime p 
increased by 2n would give another prime p' and therefore p + n = p – n = N → 2N = p + p'. This 
proves that GSC is always true as long as  a prime number p increased by 2n gives another one 
noted p'. 
Reciprocally, if we have one prime number p' and want to go down to p such that p < p' then           
p' – 2n = p. This time we divide p' by all prime factors noted q < p' and 2n ≠ r or  2n ≠ mq + r (m 
any integer including 0). For instace 97 – 6 = 91 is not prime because 97 : 7 = 13 and r = 6 so 6 is 
the remainder (2n = r). Therefore 6 = r → 6 = mq + r with m = 0. 
Let us take another example 443 – 234 = 209. We have 443 : 11 has a remainder r = 3. However 
234 = 231 + 3 = 11 x 21 + 3 = mq + r.  Therefore 209 not prime because multiple of 11. Or           
443 : 19 has a remainder r = 6. And 234 = 228 + 6 = 122 x 19 + 6 = mq + r.
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• Demonstration: 
• p + 2n = p'. If p = aq + r and 2n = mq – r then p + 2n = aq + r + mq – r = (a + m)q thus not

prime. 
• p ' – 2n = p.  If p' = a'q + r and 2n = mq + r then p' - 2n = a'q + r – (mq + r) = (a' + m)q thus

not prime. The same if 2n = r then  p' - 2n = a'q + r – r = a'q thus not prime.
• If p is prime and if p + 2n = p' then p' is prime only if 2n ≠ mq – r with q being any prime

factor < p and r the rremainder of the Euclidean division of p by q. Let determine π(p) and
then divide p by all prime factors of π(p) and calculate the remainder r for each euclidean
division then apply this rule.

• If p is prime and if p' - 2n = p then p is prime only if 2n ≠ r and  2n ≠ mq + r with q being
any prime factor < p' and r the remainder of the Euclidean division of p' by q. Let determine
π(p') and then divide p' by all prime factors of π(p') and calculate the remainder r for each
euclidean division then apply this rule.

For p + 2n = p' or p' – 2n = p and knowing that n → + ∞, there must exist at least one value of n
such that p' and p are primes. GSC means that one or more values of n always exist such that p and
p' are primes. Given that there exists a limitless possibilities that one value of n exists such that p
and p' are primes then p + 2n = p' → p + n = p' – n → be N any integer such that N = p + n = p' – n
→ 2N = (p + n) + (p' – n)= p + p'. Goldbach conjecture is therefore verified to be true. In other
words, this conjecture means that whatever values of any prime numbers p and p' such that p' > p
and whatever π(p) or π(p'),  there always exist a value n such that p + n = p' – n. Because prime
numbers are limitless, then their additions would produce all possible even numbers ↔ any even is
a sum of at least two primes. If the strong conjecture is true ↔ the weak one is also true. Even if
prime  numbers  might  be  less  frequent  beyond  E/2,  this  is  compensated  by their  much  higher
frequence below E/2 leading to at least one verification of Goldbach's conjectures.

 The rules stated above indicate that GSC is linked to the progression of prime numbers one
after another. If we take any prime number and divide it by all prime factors lesser than it,
we will get remainders. These latters will determine the next prime number and so on.  For
instance, if we take a prime number like 31, we have 3, 5, 7, 11, 13, 17, 19, 23, and 29 prime
numbers that are < 31 and therefore we have 9 remainders of 9 euclidean divisions between
31 and each of them. On the other hand, we have too many possibilities not to complete
these remainders and not to get non-prime numbers. For instance, if we add 8 to 31, that is
no prime, but if we add 6 to it, that is prime. Whatever the size of a prime number, there will
always be too many possibilities to bypass all the remainders and get a new prime number,
which is in accordance with the fact that prime numbers are limitless. Any time a prime
number p gives another one p' that follows it, Goldbach conjecture is verified because p + 2n
= p' ↔ Even = p + p' as demonstrated above. In addition, any prime number combines with
a limitless prime numbers to form an even number so that each even number is a sum of two
prime numbers.  The other  property of  prime numbers  is  that  if  we take any two prime
numbers and whatever the distance between them, we will find the same rules that explain
how a prime numbers gives a new one. This is where the truth of Goldbach's conjecture lies.
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2G. Calculation examples

2G1. Direct calculation with small numbers using the rules described 

Let E/2 being any integer ≥ 4 and E any even ≥ 8 be the sum of two prime numbers P1 and P2 such
that P2 > P1. If E = P1 + P2 then P1 = E/2 - t and P2 = E/2 + t with t being any non-zero integer.
We say that P1 and P2 are two equidistant prime numbers. In this case E/2 mod t = P1 mod t = P2
mod t. This rule allows us to find the equidistant prime numbers around E/2 and thus convert the
even number E into the sum of two prime numbers P1 and P2 according to Goldbach's conjecture.
Given that E/2 can be any integer ≥ 4 we can deduce that all natural integers ≥ 4 are in the middle
of two equidistant prime numbers whether they are evens or odds, primes or composite. The only
parameter to take into consideration as demonstrated above is to see if the number is a multiple of 3
or not. Other rules are described above which are based on 6x ±1 equations.

Here are detailed calculation examples to prove the authenticity of these rules to verify GSC.
Let's take for example the number E = 84 (E/2 = 42). Because 42 is 3n then equidistant primes are located after gaps = 
prime numbers or multiple of prime numbers. Let focus on gaps = prime numbers only.   

 42 – 5 = 37 → 42 + 5 = 47 →  37 and 47 are equidistant primes and 37 + 47 = 84.

 42 – 7 = 35 → 42 + 7 = 49   

 42 – 11 = 31 → 42 + 11 = 53 →  31 and 53 are equidistant primes and 31 + 53 = 84.

 42 – 13 = 29 → 42 + 13 = 55  

 42 – 17 = 25 → 42 + 17 = 59  

 42 – 19 = 23 → 42 + 19 = 61 →  23 and 61 are equidistant primes and 23 + 61 = 84.

 42 – 23 = 19 → 42 + 23 = 65  

 42 – 29 = 13 → 42 + 29 = 71 →  13 and 71 are equidistant primes and 13 + 71 = 84.

 42 – 31 = 11 → 42 + 31 = 73 →  11 and 73 are equidistant primes and 11 + 73 = 84. 

 42 – 37 = 5 → 42 + 37= 79 →  5 and 79 are equidistant primes and 5 + 79 = 84.

 42 – 41 = 1 → 42 + 41 = 83  
The mod rule applies as follows:

 37 and 47 are equidistant to 42 and the gap = 5. Then the remainders of the euclidean divisions  37 : 5 ; 47 : 5 ; 
and 42 : 5 are the same = 2.

 31 and 53 are equidistant to 42 and the gap = 11. Then the remainders of the euclidean divisions 31 : 11 ; 53 : 
11 ; and 42 : 11 are the same = 9.

 23 and 61 are equidistant  to 42 and the gap = 19. Then the remainders of the euclidean divisions 31 : 19 ; 53 : 
19 ; and 42 : 19 are the same = 4.

 13 and 71 are equidistant  to 42 and the gap = 29. Then the remainders of the euclidean divisions 13 : 29 ; 71 : 
29 ; and 42 : 29 are the same = 13.

 11 and 73 are equidistant  to 42 and the gap = 31. Then the remainders of the euclidean divisions 11 : 31 ; 73 : 
31 ; and 42 : 31 are the same = 11.

 5 and 79 are equidistant  to 42 and the gap = 37. Then the remainders of the euclidean divisions 5 : 37 ; 79 : 
37 ; and 42 : 37 are the same = 5.

If the number is not 3n such like 140, we then substract or add 3n values to 140/2 = 70.
 70 - 3 = 67 →   70 + 3 = 73 →   67 + 73 = 140
70 - 9 = 61 →   70 + 9 = 79 →   61 + 79 = 140
70 – 21= 49 →   70 + 21 = 91
70 – 27= 43 →   70 + 27 = 97 →    43 + 97 = 140
70 – 33 = 37 →   70 + 33 = 103 →    37 + 103 = 140
70 – 39 = 31 →   70 + 39 = 109 →    31 + 109 = 140
70 – 51 = 19 →    70 + 51 = 121   
70 – 57 = 13  →     70 + 57 = 127 →    13 + 127 = 140
70 – 63 = 7  →     70 + 63 = 133 →    7 + 133 = 140
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Be E = P1 + P2 such that P2 > P1 and P1 = E/2 – t and P2 = E/2 + t. Hence t is the gap between E/2
and the equidistant primes P1 and P2.
Be E/2 = at + r  with a the quotient and r the remainder of the euclidean equation or division of E : 
t.

E/2 = at + r  → P1 + t =  at + r → P1 = (a – 1)t + r.
E/2 = at + r  → P2 –  t =  at + r → P2 = (a + 1)t + r.

These equations can be useful to convert an even number into a sum of two prime numbers. 
Examples of these are given below.

E/2 = 42. 42 : 5 = 8 and r = 2. Then P 1 = (8 – 1) x 5 + 2 = 7 x 5 + 2 = 37. P2 = (8 + 1) x 5 + 2 =  9 x 5 + 2 = 47.
E/2 = 42. 42 : 7 = 6 and r = 0. Then P 1 = (6 – 1) x 7 + 0 = 5 x 7 + 0 = 35. P2 = (6 + 1) x 7 + 0 =  7 x 7 + 0 = 49. 
However neither P1 nor P2 is prime.
E/2 = 42. 42 : 11 = 3 and r = 9. Then P 1 = (3 – 1) x 11 + 9 = 2 x 11 + 9 = 31. P2 = (3 + 1) x 11 + 9 = 4 x 11 + 9 = 53.
E/2 = 42. 42 : 19 = 2 and r = 4. Then P 1 = (2 – 1) x 19 + 4 = 1 x 19 + 4 = 23. P2 = (2 + 1) x 19 + 4 = 3 x 19 + 4 = 61.
E/2 = 42. 42 : 23 = 1 and r = 19. Then P 1 = (1 – 1) x 23 + 19 = 0 x 23 + 19 = 19. P2 = (1 + 1) x 23 + 19 = 2 x 23 + 19 =
65. However P2 = 65 is not prime.
E/2 = 42. 42 : 29 = 1 and r = 13. Then P 1 = (1 – 1) x 29 + 13 = 0 x 29 + 13 = 13. P2 = (1 + 1) x 29 + 13 = 3 x 19 + 4 = 
71.
E/2 = 42. 42 : 37 = 1 and r = 5. Then P 1 = (1 – 1) x 37 + 5 = 0 x 37 + 5 = 5. P2 = (1 + 1) x 37 + 5 = 3 x 19 + 4 = 79.

Let E = P1 + P2 such that P2 > P1 → P1 < E/2 and P2 > E/2. Therefore, E/2 : P2 = 1 and r = P1. In
fact Goldbach's conjecture E = P1 + P2 can be posed as an euclidean equation E = a x P2 + P1 with
a (quotient)  = 1 and the remainder r  = P1 and P2 > E/2.  Then there is  a third prime number
P3 = 2P2 + P1  such that P3 + P1 = 2P2 + 2P1 = 2E. Here is the demonstration.
The equation results from the Mod rule. If we divide E/2 by P2 which is >E/2 the quotient is = 1
and the  remainder  is  necessarily  P1 because  E = P1 + P2.  And since  P1 =  (a  –  1)t  +  r  and
P2 = (a + 1)t + r ; P1 remains unchanged while a new prime number P3 will appear and which is
equal  to  2P2  +  P1.  In  fact  P1  =  (1  –  1)t  +  r   knowing  that  r  =  P1  thus  P1  =  P1.  While
P2 = (a + 1)t + r = (1 + 1) x P2 + P1 (note t = P2 the divisor) and because it is impossible that
P2 = 2P2 + P1 we rather set a new prime number P3 = 2P2 + P1 → P3 + P1 = 2P2 + 2P1 = 2E. To
convert an even 2E (E is also even) in sum of two primes, we start with its half E. Note that this
equation  cannot  give  a  prime  any time  but  rather  gives  equidistant  primes  after  one  or  more
operations. This equation can be used to convert an even in sum of two primes as follows.

Let's take the number 180 as an example. Then we start with 90 = 180/2 and 90/2 = 45. Let us take a prime P2 > 45 and 
< 90 such that the remainder r = 1. 
P2 = 47. Then 90 : 47 = 1 and r = 43 → P1 = 43 and P2 = 47. Therefore, P3 = 2 x 47 + 43 = 137. Therefore, P3 + P1 = 
137 + 43 = 180.
P2 = 59. Then 90 : 59 = 1 and r = 31. P3 = 2 x 59 + 31 = 149 and 149 + 31 = 180.
P2 = 83. Then 90 : 83 = 1 and r = 7. P3 = 2 x 83 + 7 = 173 and 173 + 7 = 180. Therefore 173 and 7 are equidistant to 
90.
The equation  2P2 + P1 gives the gap separating the two equidistant primes which the P2 value. In the case above of   
P2 = 83. P1 = 7. P3 = 173. We have 83 separating 7 and 173 from 90. And in the latter P1 = 13 and  P3 = 2 x 77 + 13 = 
167, we have 77 separating 167 and 13 from 90. Another example 90 : 59 = 1 and r = 31. Therefore, P3 = 2 x 59 + 31 = 
149 and thus 149 + 31 = 180. The primes 31 and 149 are both 59 away from 90, the P2 value.
These calculations will apply to any even number ≥ 8 to convert it to the sum of two prime numbers.
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2G2. Calculation with 6x ± 1 equations using tables with numbers relatively larger in value 

Note that the rules explained here apply to any number. However, the direct calculation shown
above is easier with relatively small numbers but with larger numbers, a table is essential to be able
to proceed. Here are two examples of conversion of evens into the sum of two prime numbers.

As aforementioned, there are two types of even numbers 2n with even or odd n. We have seen 
examples of 2n with even n, here is one example of even with odd n and another 2n with even n is 
added.

1. Even 2n with odd n

Let's first take a small number to explain the rules of calculation.
The number 66 : 2 = 33 and thus E = 66 and E/2 = 33. This times E/2 is divided by evens and not by odds to get prime 
numbers. For instance 33 : 10 = 3 and r = 3. P1 = 10 x 2 + 3 = 23. P2 = 10 x 4 + 3 = 43. P1 + P2 = 23 + 43 = 66. Or  
33 : 20 = 1 and r = 13. Hence P1 = 13. P2 = 2 x 20 + 13 = 53. P1 + P2 = 13 + 53 = 66. 
 Here is another example E = 206. E/2 = 103 → 103 : 16 = 6 and r = 7.  But P1 = 5 x 16 + 7 = 87 which is not prime. 
We see that we have to set the calculation so that we have one prime at first. 103 : 20 = 5 and r = 3. P1 = 4 x 20 + 3 = 
83. P2 = 6 x 20 + 3 = 123 which is not prime. 103 : 24 = 4 and r = 7. P1 = 3 x 24 + 7 = 79. P2 = 5 x 24 + 7 = 127 →   
P1 + P2 = 79 + 127 = 206.
Let's take now a larger number E = 2380106 = 2 x 1190053. We are going to apply the mod rule by dividing the number
by any even number < E/2 such as 895020. We are going to convert E in sum of two primes P1 and P3 such that          
P1 < P3 using mod rules stated above with P3 = 2P1 + P2.  

Note that P3 + P1 = E if we divide E by a divisor < E/2; but P3 + P1 = 2E if we divide it by a divisor > E/2. This is
always the case whether the divisor is even or odd. But the result is the same: either we start with 2E, find equidistant
primes around E and then convert 2E. Otherwise, start with E, find out equidistant primes around E/2 and convert E. All
depends on which divisor we choose in comparison to E/2. The two cases are detailed here with this example with a
divisor < E/2 and the next one involving a divisor > E/2.

We have E = 2380106 and E/2 =  1190053. Let us take any even divisor such  895020.

Therefore, 1190053 : 895020 = 1 + r and r =  295033.  Hence P1 = (1 – 1) + r = 0 + 295033 = 295033.

 P3 = (1 + 1) x 895020 + 295033 = 2085073 + 295033 = 2085073. However P3 is not prime. We will have to apply the
rule of 6x ± 1 equations to find out two équidistant primes. A table is thus needed (table 14).

However there are two major rules already discussed above. 
1. Prime numbers or odd multiples of prime numbers that are not multiples of 3 are all written 

as 6x ± 1. So the first step is to determine whether an odd number is 6x + 1 or 6x – 1.
2. It should be noted that prime numbers or their multiples which have the same writing in 

equation 6x ± 1 follow each other by gaps of 6n. But the numbers 6x + 1 and 6x – 1 are 
separated by variable gaps having any possible value of 2n. It is therefore necessary to 
separate the numbers 6x – 1 from the 6x + 1 to facilitate the calculation. In table 14 only 
prime numbers that follow or precede the investigated numbers by 6n gaps are shown.
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P1 = 295033; P3 = 2085073.

295033 + 2085073 = 2380106 : 2 = 1190053 but P3 = 2085073 is not prime.

The number 295033 = 6 x 49172 + 1 → 6x + 1.

The number 2085073 = 6 x 347512 + 1→ 6x + 1. 

Table 14: Conversion of a larger even number = 2n with odd n into the sum of two prime numbers using the 6x ± 1 
equation method. The calculated equidistant primes are highlighted.

295033 + 6n 2085073  - 6n

295039 6 2085049 24

295081 48 2085037 36

295111 78 2085007 66

295123 90 2084989 84

295129 96 2084983 90

According to table 14 we have two equidistant primes relatively to E/2 = 1190053. Therefore,
(295033 + 90) + (2085073 – 90) = 295123 + 2084983 = 2380106 : 2 = 1190053. Note that both 295123 and 2084983
are both primes and therefore 2380106 = 2 x 1190053 was converted in sum of two primes.

2. Even 2n with even n

Let convert 238 in sum of two primes.
E = 237 = 137438953472
E/2 = 137438953472 : 2 = 68719476736
Let choose any prime number > E/2, such 68719479749.
137438953472 : 68719479749 = 1 and the remainder r = 68719473723 = P1.
Then we calculate P3 = 2 x 68719479749 + 68719473723  = 206158433221 = 6 x 34359738870 + 1.
While 68719473723 is 3n = 3 x 22906491241. Because we cannot get 6x ± 1 equation with the latter we have to make a
change: remove two units from P3 = 206158433221 (- 2) = 206158433219 = 6 x 4359738869 + 5 (6x – 1).  Add them to
P1 → P1 + (2) = 68719473723 + (2) = 68719473725 = 6 x 11453245620 + 5 (6x – 1).                              
Neither  206158433219 nor  68719473725 is prime. We therefore have to set a table (table 15).

Table 15: Conversion of a larger even number = 238 with even n into the sum of two prime numbers using the 6x ± 1
equation method.

68719473725 + 6n   206158433219  - 6n

68719473839 114 206158433213 6

68719473917 192 206158433189 30

 206158433177 42

206158433111 108

  206158433099  120

206158433083 138

206158433051 168

206158433027 192
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Therefore (68719473725 + 192) + (206158433219 – 192) = 68719473917 + 206158433027 = 274877906944 = 238 
274877906944 : 2 = 137438953472 = 237.  
Note as said above if the initial divisor is > E/2 then we get 2E because the two additive primes are equidistant to E.
Both  68719473917 and  206158433027  are  both  equidistant  primes  and  therefore  274877906944  =  2  x  2 37 was
converted in sum of two primes.
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3. Discussion

This article discusses the major rules that Goldbach's conjecture must obey because in mathematics
everything obeys rules or theorems. However, with this conjecture one is forced to reason in terms
of probabilities since the prime numbers are almost impossible to put into an equation. One sees
that Goldbach's conjecture is very closely linked to the distribution of prime numbers but also to
their progression, that is to say how a prime number produces the other one that follows it or the
one that precedes it. First, this article shows that the conversion of an even number into the sum of
two prime numbers obeys the equation 6x ± 1. Then, it shows that two equidistant prime numbers
obey a new modulo rule with respect to the gap that separates them from half of the even number.
On the other hand, the article gives methods for identifying equidistant prime numbers or additive
equidistant  prime  numbers  that  reconstitute  an  even number.  Finally,  the  article  also  draws  its
originality by stating two major rules relating to the remainders of Euclidean divisions which allow
us to understand the progression of prime numbers and thus know how one prime number leads to
another.
Overall, the article clarifies some aspects of prime numbers such as the gaps between them and their
progression. This article argues for the truth of the strong Goldbach conjecture as well as the weak
one. Examples of calculations based on the stated rules are given, but despite all possible efforts, no
counterexample could be found to reject these conjectures. They derive their truth from the very
progression of natural numbers which produces an infinity of equidistant prime numbers producing
in turn all the even numbers (two primes) and all the odd numbers (three primes). Biprimes are all
products of two equidistant prime factors (excluding 2) which proves that all primes are equidistant
and therefore their average will produce an even number. Suppose we take all the even numbers at
infinity, and see all their partitions of sums, the article says that there would be at least one sum of
two primes. If we follow the prime numbers, we realize that there is a perfect summetry from 0 to
infinity and vice versa from infinity to 0.
A prime number is a solution to an equation or a problem that results from the progression of
numbers; it represents the number that will bypass all the remainders of the Euclidean divisions of
the numbers that follow or precede it. This is shown in the article with two major rules relating the
primality of a number and the remainders of Euclidean divisions of the number from which it comes
divided by all the prime factors that are less than it or those enumerated by the prime counting
function of a number. Suppose a prime number p (or any other number), however giant it may be,
and consider all the prime numbers preceding it, which we call q, the Euclidean division of p by
each q will produce a remainder. Since p will produce another larger prime number only by adding
to 2n, this article suggests that there is always a value of n that will circumvent all the remainders of
p : q according to the two major rules stated in this article, and gives a larger prime number called
p'. This is also true in the opposite direction, i.e. starting from p' - 2n = p. This is also true for any
integer n  ≥ 4 to which we subtract or add a certain quantity. Since the process is symmetric, it
generates  equidistant  prime  numbers  at  key  positions,  which  explains  Goldbach's  conjecture.
Therefore, the prime number is the one that makes the natural numbers progress to infinity because
if the equation N + T or N - T (T < N, N and T two integers  ≥ 4) does no longer produce prime
numbers, this means that the numbers more graduated to infinity are only multiples of the preceding
prime numbers, but this is not the case. Goldbach's conjecture means a continuous progression of
integers and therefore a continuous production of natural numbers with newer prime factors.  
It is true that for any integer n = a + b (a < n/2 and b > n/2) there exists a value x < n  such that         
n = (a + x) + (b – x). This value x can be calculated by the mean (M) of n → M = (a + b)/2 and        
b – M = x. However, when n is any even noted E sum of two primes p and p', this means that p and 
p' are equidistant to E/2 such that p + p' = 2 x E/2 = E. And reciprocally E = p + p' only if p and p' 
are equidistant with respect to E/2 such that E/2 – p = p' – E/2.  This is also true for any even E = 
2pq (p and q are any prime factors except 2) so that E/2 = p x q such that q > p. Because E/2 can be 
in the form of  x2 – y2  and therefore E/2 = (M – z)(M + z) → E = 2 (M – z) (M + z). 
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By resorting to deductive reasoning, one can argue that since all prime numbers are in advance
equidistant with respect to any integer value, then it is logical to admit that their addition will give
any possible even and therefore any even  ≥ 4 is the sum of two primes because if p and p' are
equidistant relatively to E/2 then 2 x E/2 = p + p'. The results of this paper confirm that GSC is true.
And because the weak one depends on the strong one, then both of them are true. 
With all the prime numbers known to date, the largest of which can have millions of digits, the
results of this paper can be verified by calculation: take any even number, divide it by 2 and look
for prime numbers equidistant to this fraction, you will see the conjectures are verified. However, a
theorem that directly gives us the values  of the two equidistant prime numbers is still  missing.
Hence the fact that these conjectures are always considered unproven. We can therefore say that for
any integer there exists at least one pair of equidistant prime numbers that obey Mod's rule such that
E/2 mod t = P mod t = P' mod t (E is any even ≥ 8 and E/2 is any integer ≥ 4).
The article published in 2019 by Guiasu contains the proof that every positive composite integer n
strictly larger than 3, is located at the middle of the distance between two primes, which implicitly
proves  Goldbach’s  Conjecture  for  2n  as  well.  However,  the  present  article  shows  that  every
integer  ≥ 4 (prime or compostite) is surrounded by equidistant primes indicating that the rule is
true all the time. Furthermore, the present paper is designed differently by targeting the basic rules
of calculation and from there deriving prerequisites for these conjectures to be true or verified. It
also provides easy and reliable method to verify them by calculation. 
 The best known equidistant primes are the twins but their density would seem not to be sufficient
to reproduce all the even integers of the set N (not to mention odd ones). They only form the even
which is the double of the even which is  between them, for example 17 + 19 = 36 = 2 x 18.
Therefore,  Goldbach's  conjecture  makes  a  prediction  on  prime  numbers  and imposes  a  certain
equidistant distribution with respect to integers. If an even number E does not have at least one
prime number > E/2 then the strong conjecture can no longer remain true in its initial version (2n =
p1 + p2). However, it is indeed known that any interval [x-2x] x  ≥ 2 contains at least one prime
number but there must be two equidistant primes so that E can form by their addition. Till now,  the
amount of prime numbers < n is π(n) ≈ n/ln(n) with n an integer and that means the prime numbers
become very rare when n → +∞. This also means that evens  E → +∞ might not have that primer >
E/2 for the strong conjecture of Goldbach to be true. Nevertheless,  the gap between E and E/2 is
several times greater than ln(E) which represents the average gap with the nearby prime number
(gap ≈ ln(n) with n being an integer). This means that between E and E/2 it is very likely that one or
many prime numbers p > E/2 satisfies GSC. Mathematics seeks absolute theorems which are true at
infinity and this is undoubtedly the real problem with Goldbach's conjectures: to what extent are
they true? But what is paradoxical is what we call infinity is a relative notion because its limits
recede  as  computers  become  more  powerful.  We  can  reason  differently  and  say  that  these
conjectures are true as long as we cannot demonstrate that they are false by finding an even number
which does not have a prime number equidistant between E/2 and E. Each integer ≥ 4 has its own
pattern of equidistant primes. and the larger is the number the more complex it is. 
On the other hand, this article proposes a method to convert an even or odd numbers in sums of
primes numbers which is based on the equations M + 1 and M + 5 with M being a multiple of prime
numbers  except 2 and 3 or M is prime.  This  method shows that  there are two types  of prime
numbers 6x - 1 and 6x + 1 and that there are three types of even numbers 6x, 6x + 2 and 6x + 4
(also previously reported by Markakis et al (2013)). The method described here based upon M + 1
and  M +  5  equations  could  be  programmed in  a  computer  and  generate  a  new algorithm by
converting even numbers into the sum of two or three prime numbers. Goldbach's conjectures touch
on the foundations of arithmetic, namely the distribution of prime numbers with respect to integers.
The truth of these conjectures depends on the presence of prime numbers equidistant from integers. 
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An even number may have many equidistant prime numbers but their  number may decrease to
infinity or the gaps may increase but the result of the paper show that for any prime number there
exist a equidistant one and therefore Goldbach's conjecture holds true to infinity. A counterexample
cannot be found to contradict this rule.  
The data of the present paper show a strong correlation between equidistant primes (by measuring
their distance from E/2 or the gap between them) even though this seems to decrease as the number
is larger, the linear correlation coefficient will be always stronger between close equidisant primes
which proves that they are occurring in a regular fashion. This leans in favor of the truthfulness of
Goldbach's strong conjetcure because if equidistant primes were not correlated and occur randomly
then even numbers not satisfying this conjeture would be easier to find. Furthermore, this article
gives for the first time new two rules to determine why a number N – T or N + T  (N ≥ 4) is not
prime. These rules relate to the rest of the Euclidean divisions of the even E to be converted into
sums of prime numbers with all the prime factors < E. These two rules apply especially for the
prime factors < E/2 but beyond the Goldbach conjecture E = P1 + P2 itself becomes an Euclidean
division with the remainder = P1, the divisor is P2 and the quotient denoted a = 1 → E = aP2 + P1.
To express it more simply beyond E/2, the subtraction E - P2 (P2 > E/2) will give P1 which is prime
or not. It is likely that other hidden rules also related to remainders would dictate if P1 resulting
from such Euclidean divisions are prime or not. 

If we take an integer n and all prime numbers < n. Since [0-n/2] and [n/2-n] have the same length
and the prime numbers 6x - 1 and 6x + 1 swap after the same intervals of 6n, we can assume that a
given  position  is  either  occupied  by  a  prime  number  (P)  or  multiple  of  prime  numbers  (M).
Calculating the probability will tell us that P or M have an equal chance of occupying this position
either before or after n. For example a P < n/2 and another P' > n/2 may well occupy two equidistant
positions,  the  probability is  never  zero neither  negilgeable and therefore  Goldbach's  conjecture
cannot be refuted, and therefore it can be that admitted as true. Even if we tend to infinity and we
take at random an integer n, the largest that we can imagine, this rule of probability would not
change and would not  be zero.  If  this  is  not the case then formal  mathematics are not  unitary
because this means that its rules are not the same when we tend to 0 and when we tend to infinity.

Undoubtedly the major factor  in  GSC is the fact that  the same integer  n  ≥ 4 gives two prime
numbers in a symmetrical way: n - t and n + t with t < n. The prime number equation, if there is one,
must  take  this  fact  into  consideration  and  generates  the  two  equidistant  prime  numbers  in  a
reciprocal way like an equation that has two or more solutions.  For instance, if we have all the
prime numbers present in [0-n] then at least two of them noted p and p' such that  p' > n/2 > p must
be equidistant (n/2 – p = p' – n/2) so that the GSC be true. Therefore if one equation gives us these
prime numbers of one integer n or π(n) and if none of them are equidistant then the conjecture is
false in the strict sense of mathematics (one exception causes rejection of the rule). Nevertheless,
when we perform calculations with the rules described here in this paper, we always find those
equidistant primes in a same way and showing a strong linear correlation.

How to set the equation of prime numbers? This article shows that we must start with an integer,
any integer, and then extract all possible prime numbers of it. For example, we can define intervals
whose  largest  is  [0-2n].  This  equation  must  give  symmetric  solutions  and  equidistant  prime
numbers, otherwise it is inconsistent or Goldbach's conjectures are false. Goldbach's conjecture will
weigh heavily in this equation of prime numbers. This would probably be the true indisputable
formal mathematical demonstration of the strong Goldbach conjecture that has been awaited for
centuries.  Without  it,  and  whatever  the  size  of  the  number  and  the  limit  which  verifies  this
conjecture, a shadow of doubt will always hover, and this conjecture will remain mathematically
unproven and can only be verified by applying rules of calculation such as those stated in this
article.
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 Supplementary data including Table S1 ; Table S2 and Table S3
(see page 25 of the article above)
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Table S1 : Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 100000 and E/2
= 50000 (non-3n). The t values are all 3n (see the table).The graphic shows a high correlation coefficient of 1 of the t-
values.
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19941 33117 39501 45549
20079 33177 39513 45603
20121 33339 39567 45651
20163 33471 39657 45717
20181 33579 39669 45747
20241 33639 39753 45783
20571 33777 39819 45789
20589 33813 39849 45873
20667 33873 39867 45987
20769 33903 39897 46053
20793 33933 39909 46137
20853 33939 39939 46149
20877 34191 39963 46167
20937 34239 40059 46179
20979 34263 40071 46221
20991 34317 40149 46233
21039 34431 40179 46281
21129 34449 40281 46323
21249 34503 40371 46329
21339 34533 40527 46377
21429 34701 40533 46419
21453 34713 40659 46443
21483 34731 40677 46461
21537 34737 40863 46587
21597 34827 40971 46671
21693 34869 40989 46749
21711 34947 41139 46779
21789 35049 41151 46797
21837 35061 41163 46911
21849 35103 41193 46959
21999 35109 41253 46989
22047 35121 41331 47001
22053 35133 41373 47073
22173 35229 41457 47103
22221 35247 41463 47157
22227 35259 41499 47259
22251 35331 41571 47301
22353 35361 41577 47367
22383 35439 41631 47379
22461 35451 41703 47523
22551 35577 41757 47553
22671 35751 41781 47577
22701 35793 41961 47583
22719 35847 42051 47607
22893 35991 42177 47649
22923 36069 42243 47787
23013 36117 42297 47847
23019 36171 42357 47859
23079 36201 42459 47871
23121 36243 42567 47919
23277 36249 42669 47931
23331 36291 42693 47961
23583 36351 42717 47973
23607 36381 42753 48123
23613 36423 42789 48129
23643 36477 42849 48213
23679 36501 42921 48387
23751 36531 42957 48429
23823 36579 42987 48507
23847 36771 43053 48519
23859 36783 43083 48561
24159 36813 43089 48573
24201 36837 43131 48627
24297 36951 43239 48639
24357 36993 43263 48711
24411 37041 43281 48717
24531 37083 43419 48807
24561 37107 43479 48837
24609 37179 43683 48849
24699 37257 43701 48897
24747 37359 43827 48909
24771 37473 43887 48939
24831 37509 43911 48981
24873 37587 43971 49017
24903 37623 44121 49023
25011 37671 44151 49053
25029 37719 44307 49089
25083 37797 44331 49119
25149 37803 44343 49137
25323 37881 44349 49173
25329 37887 44427 49191
25377 37959 44449 49257
25389 38019 44529 49317
25407 38169 44559 49347
25527 38211 44583 49401
25557 38223 44613 49431
25629 38301 44727 49497
25641 38379 44811 49551
25683 38589 44847 49581
25797 38607 44949 49611
25821 38721 44961 49671
26091 38883 45027 49689
26253 38997 45063 49707
26259 39021 45111 49719
26367 39051 45213 49767
26463 39153 45267 49809
26541 39261 45279 49833
26631 39387 45327 49929
26667 39393 45483 49971
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Table S2:  Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 10000 and E/2
= 5000 (non-3n). The t values are all 3n (see the table).The graphic shows a high correlation coefficient of 1 of the t-
values.
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4941 2703
4929 2691
4887 2649
4851 2643
4833 2607
4803 2589
4767 2583
4749 2577
4743 2559
4719 2541
4689 2523
4551 2457
4539 2451
4533 2307
4521 2247
4497 2211
4491 2121
4479 2103
4437 2043
4431 2001
4413 1977
4341 1959
4323 1917
4281 1911
4257 1863
4239 1833
4227 1791
4203 1779
4173 1701
4161 1653
4137 1551
4059 1473
4029 1329
3969 1323
3951 1299
3849 1221
3837 1203
3819 1197
3807 1089
3783 1053
3741 1011
3699 987
3693 981
3681 927
3627 867
3573 861
3513 843
3501 783
3447 741
3429 717
3387 711
3363 651
3291 591
3123 519
3111 507
3093 483
3087 477
3069 417
2937 351
2919 309
2901 297
2793 279
2757 81
2727
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Table S3: Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 9000 and E/2 = 
4500 (3n). The t values are either prime or composite but not 3n (see the table). The graphic shows a high correlation 
coefficient of 1 of the t-values..
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163 1769 3203
173 1771 3217
203 1787 3223
229 1801 3241
259 1811 3329
283 1817 3377
289 1823 3383
299 1829 3409
361 1837 3437
371 1843 3449
389 1853 3451
409 1867 3509
443 1879 3517
451 1921 3553
473 1949 3559
487 1951 3581
493 1969 3589
499 2053 3593
511 2063 3617
577 2077 3623
581 2107 3647
619 2119 3661
647 2153 3671
653 2159 3679
667 2161 3691
679 2189 3731
697 2191 3743
731 2203 3773
733 2219 3791
761 2233 3817
773 2261 3853
781 2263 3869
803 2279 3887
809 2293 3923
823 2357 3929
887 2363 3931
893 2369 3943
907 2371 4001
917 2411 4013
919 2417 4021
941 2447 4037
943 2461 4039
971 2471 4043
983 2483 4081
1001 2497 4099
1031 2501 4127
1139 2513 4141
1149 2527 4147
1153 2569 4163
1157 2621 4169
1169 2627 4189
1193 2677 4193
1201 2679 4207
1241 2711 4219
1243 2713 4231
1249 2747 4237
1279 2753 4261
1283 2803 4303
1291 2831 4307
1313 2833 4319
1379 2893 4321
1381 2917 4337
1439 2933 4349
1481 2951 4361
1529 2957 4363
1537 2977 4387
1543 2989 4393
1547 3007 4429
1573 3017 4433
1591 3029 4441

3041 4463
3047 4469

4471


