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Abstract  

The 6 variable general equation of Beal’s conjecture equation 𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐, where 𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 

and 𝑐 are positive integers, and 𝑎, 𝑏, 𝑐 ≥ 3, is identified as an identity made by expansion of 

powers of binomials of integers 𝑥 and 𝑦; where 𝑥, 𝑦 and 𝑧 have common prime factor.  Here, a 

proof of the conjecture is presented in two folds. First, powers of binomials of integers 𝑥 and 𝑦 

expand to all integer solutions of Beal’s equation if they have common prime factor. Second, 

powers of binomials of coprime positive integers 𝑥 and 𝑦 expand to two terms such that if one of 

them is a perfect power the other one is not a perfect power. 
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Introduction  

Beal’s conjecture states that if  𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐, where a, b, c, x, y and z are positive integers and 

a, b, c > 2, then x, y, and z have a common prime factor. The conjecture was made by math 

enthusiast Daniel Andrew Beal in 1997 [1]. It is a generalization of Fermat’s Last Theorem (FLT) 

which states that no three positive integers 𝑎, 𝑏, 𝑐 satisfy the equation  𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 for any 

integer value of 𝑛 greater than 2. FLT has been considered extensively in the literature [2-7] and 

was proved by Andrew Wiles [8]. Similar problems to Beal’s conjecture have been suggested as 

early as the year 1914 [9] and the conjecture maybe referred to by different names in the literature 

[10-11]. So far a proof to the conjecture has been a challenge to the public as well as to 

mathematicians and no counterexample has been successfully presented to disprove it, i.e. Peter 

Norvig reported having conducted a series of numerical searches for counterexamples to Beal's 

conjecture. Among his results, he excluded all possible solutions having each of a, b, c ≤ 7 and 

each of x, y, z ≤ 250,000, as well as possible solutions having each of a, b, c ≤ 100 and each of x, 

y, z ≤ 10,000 [12]. In this paper, we prove Beal’s conjecture by elementary approach. 

Proof of the conjecture 

Let’s recall that a binomial identity describes the expansion of powers of a binomial as given 

in equation (1).  

 (𝑥 + 𝑦)𝑛 = ∑ (
𝑛

𝑘
) 𝑥𝑛−𝑘𝑦𝑘

𝑛

𝑘=0
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(𝑥 + 𝑦)𝑛 = 𝑥𝑛 + (∑ 𝑡 + 𝑦𝑛)        , 𝑛 > 2      (1.1) 

(𝑥 + 𝑦)𝑛 = (∑ 𝑡 + 𝑥𝑛) + 𝑦𝑛        , 𝑛 > 2      (1.2) 

 

Lemma 1 

For positive integers 𝑥, 𝑦, identity (1) produces three terms in Z+.  

Proof 

On the RHS of identity (1), leaving 𝑥𝑛 as perfect power term, the term ∑ 𝑡 + 𝑦𝑛 is a positive integer 

and leaving 𝑦𝑛 as perfect power term, the term 𝑥𝑛 + ∑ 𝑡 is a positive integer in Z+. 

End of proof. 

Lemma 2 

For coprime positive integers 𝑥, 𝑦, the RHS of identity (1) produces a nonperfect power second term 

in Z+ if either 𝑥𝑛 or 𝑦𝑛 is held as perfect power of 𝑛. 

Proof 

For the case of (∑ 𝑡 + 𝑦𝑛) and (∑ 𝑡 + 𝑥𝑛)  to be expressed in the form of 𝜆𝑛𝑦𝑛 and 𝜆𝑛𝑥𝑛 respectively, 

the identities (1.1) and (1.2) ensures that the terms (∑ 𝑡 + 𝑦𝑛) and (∑ 𝑡 + 𝑥𝑛) cannot be perfect power 

of 𝑛 by FLT theorem, i.e. (∑ 𝑡 + 𝑦𝑛) cannot be reduced to 𝜆𝑛𝑦𝑛 , neither (∑ 𝑡 + 𝑥𝑛) can be reduced to 

𝜆𝑛𝑥𝑛, where 𝜆𝑛 is perfect power of 𝑛 positive integer. Therefore, such 𝜆 does not exist. 

For the case of  (∑ 𝑡 + 𝑦𝑛) and (∑ 𝑡 + 𝑥𝑛) to be expressed in the form of 𝜆𝑛𝑦𝑛 and 𝜆𝑛𝑥𝑛 respectively, 

the identities (1.1) and (1.2) ensures that the terms (∑ 𝑡 + 𝑦𝑛),  (∑ 𝑡 + 𝑥𝑛) cannot be reduced to  

𝑦𝜆𝑦𝑛, 𝑥𝜆𝑥𝑛 respectively to form a perfect power term because ∑ 𝑡 always reduces to a composite number 

for 𝑛 ≥ 3 of coprime factors. Let’s expand the binomial (𝑥 + 𝑦)3, 

(𝑥 + 𝑦)3 = 𝑥3 + 3𝑥2𝑦 + 3𝑦2𝑥 + 𝑦3         (2) 

∑ 𝑡 = 3𝑥2𝑦 + 3𝑦2𝑥 

∑ 𝑡 = 3(𝑥 + 𝑦)𝑥𝑦                     (3) 

The term ∑ 𝑡 has coprime factors since the product of two coprime numbers is coprime with their sum 

and cannot reduce to 𝑦𝜆𝑦𝑛 or  𝑥𝜆𝑥𝑛, where 𝜆 is a positive integer. This is simply because equation (3) 

always gives a power of 𝑦 or 𝑥 that is less than 𝑛, and coefficients of composite numbers, i.e. ∑ 𝑡 has 

highest power of 1 that is less than power 3 of the last term 𝑦3, therefore, it cannot be combined to produce 

a perfect power term. 

End of proof. 

Theorem 

Expansion of powers of binomials produces an identity of three terms that requires a common 

factor for all three terms to be perfect powers. 



3 

Proof 

From Lemma 1 and 2, the two terms on the RHS of equation (1) cannot be both perfect power if 

𝑥, 𝑦 are coprime. 

End of proof. 

Examples 

Let 𝑥 = 2 and 𝑦 = 3 in equation (2) 

53 = 23 + 3 ∗ 22 ∗ 3 + 3 ∗ 32 ∗ 2 + 33 

(∑ 𝑡 + 𝑦𝑛) produces the solution 

53 = 23 + 117 

We need to multiply the equation by the common factor 𝑘3, where 𝑘 = 117 with factors 1, 3, 9, 

13, 39, 117, to produce all three perfect power terms. 

(5𝑘)3 = (2𝑘)3 + 117𝑘3
 

Let 𝑘 = 117, the solution with perfect power terms then is,  

5853 = 2343 + 1174 

Let’s set 𝑦 = 𝑥 for common factor 𝑥. Equation (2) becomes, 

(2𝑥)3 = 𝑥3 + 7𝑥3 

Taking the common factor as 𝑥 = 7, the equation becomes, 

73 + 74 = 143 

Conclusion 

We have proved Beal’s conjecture by elementary means. 
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