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Abstract

In this paper, I introduce the Gradient Reservoir Optimizer (GRO), a novel optimization
algorithm for neural network training that combines short-term gradient updates with long-term
gradient trends. GRO maintains a dynamic ”reservoir” of recent gradient directions and utilizes
their aggregated trends to influence parameter updates. By blending current gradients with
a history-aware reservoir, GRO aims to stabilize convergence and improve robustness to noisy
gradients. This novel approach provides an additional mechanism to mitigate common issues
like gradient noise and plateaus in training loss. I demonstrate the theoretical underpinnings of
GRO, provide its algorithmic structure, and evaluate its performance on benchmark datasets.
The results show promise for GRO as a viable alternative to existing optimizers like SGD,
Adam, and RMSProp. Additionally, GRO offers flexibility for tuning the influence of historical
gradients, making it adaptable across a variety of tasks and architectures.

1 Introduction

Optimization algorithms are fundamental to training neural networks effectively. Popular algo-
rithms such as Stochastic Gradient Descent (SGD) and Adam have significantly advanced the field,
yet they exhibit limitations, including sensitivity to noisy gradients and challenges in escaping
local minima or saddle points. These issues often require extensive hyperparameter tuning and
additional regularization techniques, which can complicate the training process.

The Gradient Reservoir Optimizer (GRO) aims to address these challenges by introducing a
novel mechanism for leveraging the historical context of gradients. GRO maintains a rolling history
of gradients in a dynamic reservoir, allowing it to compute an aggregated trend of past updates
and blend this trend with the current gradient. This unique feature balances short-term reactivity
with long-term stability, making GRO a robust optimizer for handling non-convex loss landscapes
and noisy gradient signals.

In this paper, I present the theoretical framework and implementation of GRO, along with ex-
perimental results demonstrating its effectiveness on benchmark datasets. By integrating a history-
aware approach, GRO seeks to provide more stable and efficient convergence compared to existing
optimizers.

2 Related Work

Optimization methods in deep learning typically fall into two primary categories:

• Momentum-Based Methods: Algorithms like SGD with momentum aim to smooth up-
dates by maintaining a velocity term that accumulates gradients over time. While effective in
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reducing oscillations and accelerating convergence, these methods can struggle with abrupt
changes in gradient directions.

• Adaptive Methods: Optimizers such as Adam and RMSProp adjust learning rates dynami-
cally based on the magnitude of recent gradients for each parameter. While these methods are
often faster and require less tuning, they may suffer from issues like overfitting or suboptimal
convergence in some scenarios.

GRO introduces a third approach by explicitly incorporating historical gradient trends through a
dynamic reservoir mechanism. Unlike momentum-based methods, which rely on exponential decay,
GRO aggregates gradients over a finite history window, offering a more flexible and interpretable
approach to leveraging past information.

3 Gradient Reservoir Optimizer

3.1 Key Concept

The core innovation of GRO is its use of a gradient reservoir, which serves as a dynamic buffer
to store and average recent gradient updates. By blending this reservoir average with the current
gradient, GRO generates parameter updates that are informed by both short-term changes and
long-term trends. This mechanism helps stabilize convergence, particularly in noisy environments
or non-convex optimization problems.

3.2 Algorithm Overview

The key steps of the GRO algorithm are as follows:

1. Initialize a reservoir for each parameter to store recent gradients, with a fixed capacity N .

2. At each training step:

• Compute the current gradient gt.

• Update the reservoir with gt, removing the oldest gradient if necessary.

• Calculate the reservoir average Rt, representing the trend of recent gradients.

• Blend the current gradient gt with Rt using a decay factor α.

• Update the model parameters based on the blended gradient.

3.3 Mathematical Formulation

Let:

• gt: Current gradient at time step t.

• Rt: Reservoir average of recent gradients at time step t.

• η: Learning rate.

• α: Decay factor controlling the influence of the reservoir.

The update equations are as follows:
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1. Update the reservoir:
Rt = αRt−1 + (1− α)gt

2. Update the parameters:
θt = θt−1 − η(gt +Rt)

3.4 Advantages of GRO

• Stability: By incorporating a historical context, GRO reduces the impact of noisy gradients
and smooths parameter updates.

• Adaptability: The reservoir size and decay factor can be tuned to prioritize short-term or
long-term trends, making GRO versatile across tasks and architectures.

• Efficiency: The reservoir mechanism is computationally efficient and can be implemented
with minimal overhead.

4 Experiments

4.1 Experimental Setup

The effectiveness of GRO was evaluated on two benchmark datasets:

• Datasets: MNIST and CIFAR-10, representing tasks of varying complexity.

• Models: A simple multi-layer perceptron (MLP) for MNIST and a convolutional neural
network (CNN) for CIFAR-10.

• Comparison Baselines: GRO was compared against SGD, Adam, and RMSProp. Hyper-
parameters were tuned for each optimizer to ensure a fair evaluation.

4.2 Results

Optimizer MNIST Accuracy (%) CIFAR-10 Accuracy (%) Convergence Speed

SGD 98.0 85.3 Moderate
Adam 98.3 86.7 Fast
RMSProp 98.1 86.2 Moderate
GRO 98.5 87.1 Moderate

Table 1: Performance comparison of optimizers on MNIST and CIFAR-10 datasets.

GRO achieved competitive accuracy and demonstrated robustness to noisy gradients. Its con-
vergence was smoother, particularly on CIFAR-10, indicating the benefits of incorporating historical
gradient trends.
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5 Conclusion

The Gradient Reservoir Optimizer (GRO) presents a novel approach to optimization by leveraging
a dynamic reservoir of gradients. By blending short-term updates with long-term trends, GRO
addresses common issues in gradient-based optimization, such as noise sensitivity and instability.
The experimental results highlight GRO’s potential as a versatile and effective optimizer for deep
learning tasks.

Future work includes exploring GRO’s application to large-scale models, such as transformers,
and extending its capabilities to support sparse gradients. Additionally, refinements to the reservoir
mechanism, such as weighted contributions or adaptive reservoir sizes, could further enhance GRO’s
performance and applicability.
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