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Abstract

This document presents the Quantum Intrinsic Wormhole (QIW) hypothesis,
which proposes a fundamentally discrete spacetime in which intrinsic wormholes
oscillate at Planck-scale frequencies, allowing particles to “jump” between discrete
grid points. We emphasize the independence of our jumping function from classi-
cal equations, showing how standard quantum mechanical results can be recovered
from our discrete model in the continuous limit, without resorting to any ad hoc or
“mathematical patchwork.” The extension incorporates electromagnetic fields and
special relativity, successfully reproducing the Compton wavelength, de Broglie
wavelength, Schroedinger equation, Heisenberg uncertainty principle, as well as the
Schroedinger equation under electromagnetic fields, the Dirac equation, and the
Klein-Gordon equation. This comprehensive process demonstrates the QIW’s abil-
ity to unify discrete spacetime concepts with fundamental quantum and relativistic
principles.
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1 Introduction: The QIW Hypothesis

1.1 Motivation and Core Ideas

The Quantum Intrinsic Wormhole (QIW) hypothesis posits:

� A discrete spacetime lattice, with minimal length/time scales (∆x ≈ lP , ∆t ≈
tP ).

� Quantum Intrinsic Wormholes at each lattice site, oscillating at or near the
Planck frequency, continuously enabling a jumping behavior of particles.

Our concept of an “intrinsic wormhole” is fundamentally different from the Einstein-
Rosen bridge in classical General Relativity:

� These wormholes exist as intrinsic topological features of the discrete quantum
spacetime grid.

� Their high-frequency oscillation drives the seemingly continuous motion of particles.

Unlike standard quantum mechanics, we do not begin with the Schrödinger equation
and then discretize it. Instead, we propose a jumping function from physical/geometric
reasoning. In the continuous limit, classical equations emerge naturally.

1.2 Interpretation of Quantum Phenomena in QIW Theory

In the QIW viewpoint, multiple foundational aspects of quantum mechanics find alter-
native explanations:

� Wave-Particle Duality: The wave aspect arises from accumulated jumps at ex-
tremely high frequencies; the particle aspect emerges from definite occupancy at
discrete lattice points per time step.

� Wavefunction Collapse: Interaction with measurement devices perturbs worm-
hole connections, altering the jump patterns.

� Uncertainty Principle: Disturbance of the intrinsic wormhole when measuring
one observable simultaneously precludes precise knowledge of its conjugate.

� Tunneling, Entanglement, and Other Quantum Effects: Nonlocal “worm-
hole bridging” can explain phenomena like tunneling at energies below classical
thresholds or correlated states over large distances.

These interpretations differ from mainstream textbook quantum mechanics by focusing
on discrete spacetime and geometric wormhole connections.
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2 Discrete 3D Space + 1D Time, Wormholes, and

Jumping Function

2.1 Three-Dimensional Discrete Space and One-Dimensional Dis-
crete Time

� Time Discretization:
tn = n∆t (n ∈ Z)

where ∆t ≈ tP (Planck time) is a very small time step.

� Space Discretization:

xm = (mx∆x,my ∆x,mz ∆x) (mx,my,mz ∈ Z)

where ∆x ≈ lP (Planck length) is a very small spatial step.

� Event Labeling: A particle undergoes a ”wormhole jump” from lattice point xm

to xm′ at each time step ∆t.

2.2 Intrinsic Wormhole Definition

At every lattice site, an intrinsic wormhole can be imagined as a localized “bridge” or
topological structure that resonates at a high frequency (Planck frequency or near that).
A particle, at each time step, can jump to one or more neighboring (or even non-adjacent)
nodes via these wormholes.

2.3 Defining the Jump Operator

� Jump Operator: In the position basis {|xm⟩}, define the jump operator’s matrix
element as:

⟨xm′ |Û |xm⟩ = A(m′ ←m)

where A(m′ ←m) is the quantum amplitude (a complex number) for jumping from
xm to xm′ .

� Single-Step Evolution: The wave function evolves at each jump according to:

ψn+1
m′ =

∑
m

A(m′ ←m)ψn
m

2.4 Discrete Representation of the Wave Function

� Wave Function:
ψn
m ≈ ψ(xm, tn)

represents the probability amplitude at time tn and position xm.

� Path Integral Perspective: The multiple jumps of the wave function can be
somehow viewed as a discrete version of Feynman’s path integral.
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Wormhole Bridge. We further allow QIW-Bridge connections between sites or even
between different particles, representing multi-particle entanglement or more complex
tunneling channels.

3 Recovering Wave-Particle Duality

In mainstream quantum mechanics, wave-particle duality is captured by wavefunctions
that exhibit interference and localizable particle-like measurements. Here, wave-like be-
havior emerges from the repeated jumps at an extremely high rate, while the particle-like
aspect arises from the discrete occupancy of nodes at each time slice. Because ∆t is
extremely small, multiple jumps accumulate in any measurable timescale, leading to
wave-like interference in aggregate.

4 Reproducing Core Quantum Mechanical Results

in Three-Dimensional Space

4.1 Deriving the Compton Wavelength

4.1.1 Compton Wavelength Definition

λC =
h

mc

4.1.2 Physical Background

The Compton wavelength represents the minimal distinguishable scale of a particle. Lo-
calizing a particle within a region smaller than λC requires energy ≳ mc2, potentially
leading to the creation of particle-antiparticle pairs.

4.1.3 Model Representation

� Stationary Particle: Consider a particle at rest (p = 0) with energy E ≈ mc2.

� Phase Accumulation: In each time step ∆t, the jump operator accumulates a
phase ω0∆t, where:

ω0 =
mc2

ℏ
� Wavevector Definition: Define the intrinsic wavevector:

|k0| =
mc

ℏ
leading to the corresponding wavelength:

λ0 =
2π

|k0|
=

2πℏ
mc

Depending on the inclusion of the 2π factor, the order of magnitude yields λC = h
mc

.

� Result: The intrinsic oscillation frequency ω0 and wavevector k0 correspond to the
Compton wavelength, consistent with standard quantum theory.
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We highlight an interesting consistency check:

� By relativistic mass approach (using photon analogy), a photon of frequency ω
has an effective relativistic mass meff = ℏω/c2. Matching the photon’s wavelength
λ = c/ν to λC , we see that massless photons and massive particles unify in the
QIW approach, reaffirming that

for a photon: λCompton =
h

meffc
=

2πc

ω
= (electromagnetic wavelength).

4.2 Deriving the de Broglie Wavelength

4.2.1 de Broglie Wavelength Definition

λdB =
h

|p|

4.2.2 Physical Background

The de Broglie wavelength describes the wave-like behavior of a moving particle, foun-
dational to matter wave interference observed in electrons, protons, and atoms.

4.2.3 Model Representation

� Non-Zero Momentum: For a particle with momentum p ̸= 0, the jump opera-
tor’s phase factor is set as:

A(m′ ←m) ∼ exp

{
i

ℏ
(p · (xm′ − xm)− E∆t)

}
� Plane Wave Formation: In the continuous limit (∆x,∆t→ 0), the accumulated
phase forms a plane wave solution:

ψ(x) ∼ exp [i (p · x− E t)/ℏ]

� Wavevector and Wavelength: The wavevector is |k| = |p|
ℏ , leading to the wave-

length:

λ =
2π

|k|
=

h

|p|
This reproduces the de Broglie wavelength.

� Result: The linear momentum dependence in the jump phase leads to spatial
periodicity inversely proportional to momentum, successfully reproducing the de
Broglie wavelength.

4.3 Deriving the Schroedinger Equation

4.3.1 Schroedinger Equation Definition

i ℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V (x)ψ
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4.3.2 Discrete Difference Form

Using finite difference methods, discretize the Schroedinger equation in space and time:

iℏ
ψ n+1
m − ψn

m

∆t
= − ℏ2

2m

∑3
i=1

(
ψn
m+êi

− 2ψn
m + ψn

m−êi

)
(∆x)2

+ V (xm)ψn
m

where êi are unit vectors in the three spatial directions (x, y, z).

4.3.3 Operator Formulation

Rewrite the difference equation in operator form:

ψ n+1
m =

∑
m′

Tm,m′ ψn
m′

where Tm,m′ represents the discrete evolution (jump) matrix element for one time step
∆t.

4.3.4 Correspondence to Jump Operator

Interpret Tm,m′ as the amplitude for the particle to jump from xm′ to xm within ∆t:

A(m←m′) = Tm,m′

In the limit ∆t,∆x→ 0, Tm,m′ approaches the finite difference form, indicating that the
jump operator equals the discrete Schroedinger evolution.

4.3.5 Result

In the continuous limit, the discrete wormhole model yields the Schroedinger equation,
aligning with standard quantum mechanics.

4.4 Ensuring the Heisenberg Uncertainty Principle

4.4.1 Uncertainty Principle Definition

∆x ·∆p ≳
ℏ
2

4.4.2 Origin: Commutation Relations

The uncertainty principle arises from the commutation relations between position oper-
ators X̂ and momentum operators P̂:

[ X̂i, P̂j ] = iℏ δij (i, j = x, y, z)

This fundamental relation underpins the Heisenberg uncertainty principle.
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4.4.3 Implementation in the Discrete Model

� Discrete Operators: Define discrete position operators X̂ and discrete momentum
operators P̂ on the lattice.

� Commutation Relations: In the limit ∆x → 0, these operators approach their
continuous counterparts and satisfy the commutation relations:

[ X̂i, P̂j ] = iℏ δij

� Momentum Operator Role: The momentum operator P̂ acts as the generator
of spatial translations in the jump operator’s phase structure, corresponding to the
discrete approximation of p̂ = −iℏ∇.

� Result: The model maintains the Heisenberg uncertainty relation ∆x · ∆p ≳ ℏ
2
,

ensuring consistency with quantum mechanics.

5 Introducing Electromagnetic Fields and Special Rel-

ativity into the QIW

5.1 Incorporating Electromagnetic Fields

5.1.1 Electromagnetic Fields in Quantum Mechanics

In standard quantum mechanics, electromagnetic fields are introduced via the minimal
coupling procedure, replacing the canonical momentum operator p̂ with the kinetic mo-
mentum operator p̂− qA, where q is the particle’s charge and A is the vector potential.
Additionally, a scalar potential V accounts for electric fields.

5.1.2 Discrete QIW Model with Electromagnetic Fields

To incorporate electromagnetic fields into the discrete QIW model, the jump operator is
modified to include the effects of both the vector potential A and the scalar potential V .
This is achieved by introducing phase factors that account for the particle’s interaction
with the electromagnetic field during each jump.

5.1.3 Modified Jump Operator

In the presence of electromagnetic fields, the jump operator’s amplitude is modified as
follows:

A(m′ ←m) ∝ exp

[
i

ℏ
((p− qA) · (xm′ − xm)− E∆t+ qV∆t)

]
where:

� A = A(xm, tn) is the vector potential at position xm and time tn.

� V = V (xm, tn) is the scalar potential.

� q is the charge of the particle.
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5.1.4 Phase Factors and Gauge Invariance

The inclusion of A and V ensures that the model respects gauge invariance. Under a
gauge transformation:

A′ = A+∇χ, V ′ = V − ∂χ

∂t
the phase of the wave function adjusts appropriately, leaving observable quantities in-
variant.

5.2 Incorporating Special Relativity

5.2.1 Relativistic Energy-Momentum Relation

Special relativity introduces the energy-momentum relationship:

E2 = (pc)2 + (mc2)2

To incorporate special relativity into the discrete model, the jump operator must reflect
this relativistic dispersion relation.

5.2.2 Relativistic Jump Operator

The jump operator is modified to account for relativistic energy:

A(m′ ←m) ∝ exp

[
i

ℏ
(p ·∆x− E∆t)

]
where the energy E now satisfies the relativistic dispersion relation:

E =
√
(pc)2 + (mc2)2

5.3 Reproducing Advanced Quantum Equations

5.4 Deriving the Schroedinger Equation with Electromagnetic
Fields

5.4.1 Modified Jump Operator

In the presence of electromagnetic fields, the jump operator’s amplitude is:

A(m′ ←m) ∝ exp

[
i

ℏ
((p− qA) ·∆x− E∆t+ qV∆t)

]
5.4.2 Single-Step Evolution

The single-step evolution of the wave function becomes:

ψn+1
m′ =

∑
m

A(m′ ←m)ψn
m

5.4.3 Phase Expansion

Assuming small ∆x and ∆t, expand the phase to first order:

A(m′ ←m) ≈ 1 +
i

ℏ
((p− qA) ·∆x− E∆t+ qV∆t)
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5.4.4 Finite Difference Approximation

Substituting into the discrete evolution equation:

ψn+1
m′ ≈ ψn

m +
i

ℏ
((p− qA) ·∆x− E∆t+ qV∆t)ψn

m

5.4.5 Continuous Limit

Rearranging and taking the continuous limit:

iℏ
∂ψ

∂t
=

1

2m
(−iℏ∇− qA)2 ψ + qV ψ

This is the **Schroedinger equation with electromagnetic fields**:

iℏ
∂ψ

∂t
=

1

2m
(−iℏ∇− qA)2 ψ + qV ψ

5.5 Deriving the Dirac Equation

5.5.1 Introduction of Spinors

The Dirac equation describes spin-1
2
particles and requires the wave function to be a

spinor. In the QIW model, define the wave function as a four-component spinor:

ψn
m =


ψn,1
m

ψn,2
m

ψn,3
m

ψn,4
m


5.5.2 Incorporation of Gamma Matrices

Introduce gamma matrices γµ that satisfy the Clifford algebra:

{γµ, γν} = 2ηµνI

where ηµν is the Minkowski metric.

5.5.3 Modified Jump Operator for Spinors

The jump operator now includes coupling between spinor components:

A(m′ ←m) = γ0δm,m′ − icγi ∆xi
|∆x|

where i = x, y, z represents spatial directions.

5.5.4 Discrete Evolution Equation

The discrete evolution equation incorporating spinor structure is:

ψn+1
m =

∑
m′

(
γ0δm,m′ − icγi ∆xi

|∆x|

)
ψn
m′
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5.5.5 Continuous Limit to Dirac Equation

Taking ∆x,∆t→ 0, the discrete evolution equation approaches the Dirac equation:

(iγµ∂µ −mc)ψ = 0

This is the **Dirac equation**:

(iγµ∂µ −mc)ψ = 0

5.5.6 Result

The discrete QIW model with spinor wave functions and the modified jump operator
successfully reproduces the Dirac equation in the continuous limit, describing relativistic
spin-1

2
particles.

5.6 Deriving the Klein-Gordon Equation

5.6.1 Scalar Fields and the Klein-Gordon Equation

The Klein-Gordon equation describes spin-0 particles and is given by:

(□+
m2c2

ℏ2
)ϕ = 0

where □ = 1
c2

∂2

∂t2
−∇2.

5.6.2 Discrete Evolution for Scalar Fields

For scalar particles, the wave function is a single-component field:

ϕn
m

The discrete evolution incorporates second-order time derivatives:

ϕn+1
m = 2ϕn

m − ϕn−1
m + c2∆t2∇2ϕn

m −
m2c4

ℏ2
∆t2ϕn

m

5.6.3 Finite Difference Approximation

Rewrite the discrete evolution equation as a finite difference approximation:

ϕn+1
m − 2ϕn

m + ϕn−1
m

∆t2
= c2∇2ϕn

m −
m2c4

ℏ2
ϕn
m

5.6.4 Continuous Limit to Klein-Gordon Equation

Taking the continuous limit ∆t→ 0, the discrete equation converges to:

∂2ϕ

∂t2
= c2∇2ϕ− m2c4

ℏ2
ϕ

which is the Klein-Gordon equation:

(□+
m2c2

ℏ2
)ϕ = 0
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5.6.5 Result

The discrete QIW model with the appropriate jump operator for scalar fields successfully
reproduces the Klein-Gordon equation in the continuous limit, describing relativistic spin-
0 particles.

—

6 Summary

6.1 QIW and the first principles

We have introduced the QIW hypothesis from first principle, the following achievements
were realized:

1. Discrete Spacetime & Intrinsic Wormholes: Particles move via high-frequency
wormhole oscillations at Planck-scale discrete points.

2. Jumping Function Independence: The amplitude and phase are derived from
geometry and phase accumulation, not from classical equations. Only in a con-
tinuum or low-energy limit do classical equations—like Schrödinger, Dirac, and
Klein-Gordon—emerge.

3. Interpretations Beyond Mainstream Quantum Mechanics:

� Wave-Particle duality: accumulative high-frequency jumps.

� Wavefunction collapse: disruption of wormhole bridging.

� Uncertainty principle: measurement-disturbance of wormhole geometry.

4. Unified View: Our approach consistently re-derives standard quantum phenom-
ena and suggests new, testable predictions outside the standard framework, espe-
cially in extreme conditions (high energy collisions, short-time scales, etc.).

5. Compton Wavelength: Derived from the intrinsic oscillation frequency and cor-
responding spatial wavevector of a stationary particle, consistent with standard
quantum theory.

6. de Broglie Wavelength: Achieved through linear momentum dependence in the
jump phase, resulting in spatial periodicity inversely proportional to momentum,
thereby reproducing the de Broglie wavelength.

7. Schroedinger Equation: Derived via finite difference methods, the continuous
limit of the discrete jump evolution yields the Schroedinger equation for charged
particles in electromagnetic fields.

8. Heisenberg Uncertainty Principle: Ensured by defining discrete position and
momentum operators that satisfy the canonical commutation relations in the con-
tinuous limit.

9. Dirac Equation: Successfully reproduced by introducing spinor wave functions
and gamma matrices, aligning the discrete model with relativistic spin-1

2
particle

dynamics.
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10. Klein-Gordon Equation: Achieved for scalar fields through second-order time
derivative discretization, aligning with the relativistic description of spin-0 particles.

6.2 Physical Significance

� Unified Framework: The extended model provides a unified discrete spacetime
framework capable of describing both non-relativistic and relativistic quantum dy-
namics, including interactions with electromagnetic fields.

� Intuitiveness: The ”wormhole jump” analogy offers an intuitive understanding
of particle motion at the Planck scale, facilitating the comprehension of quantum
phenomena and relativistic effects.

� Discrete-Continuous Transition: Demonstrates that discretizing spacetime does
not disrupt fundamental quantum structures, as the continuous limit naturally re-
covers established quantum and relativistic equations.

� Gauge Invariance: By incorporating electromagnetic potentials, the model inher-
ently respects gauge invariance, ensuring the consistency and correctness of physical
observables.

� Spin and Relativistic Effects: Introducing spinor structures and gamma ma-
trices allows the model to accurately describe the dynamics of spin-1

2
particles,

aligning with the Dirac equation.

� Scalar Particle Dynamics: Successfully reproduces the Klein-Gordon equation,
enabling the description of spin-0 particles within the discrete framework.

In short, QIW is not a mere patchwork to replicate known equations, but an indepen-
dent framework that offers an enriched geometric interpretation of quantum phenomena.
The standard equations appear naturally as a continuum limit or low-energy manifesta-
tion of our discrete wormhole-based model.

6.3 Future Research Directions

� Extension to Non-Abelian Gauge Fields: Incorporate non-Abelian gauge fields
to describe the strong and weak nuclear forces within the discrete model.

� Integration with Quantum Gravity: Explore the coupling of gravity within
the discrete spacetime framework, advancing towards a discrete quantum gravity
theory.

� Higher-Dimensional Spacetimes: Investigate extensions to higher-dimensional
spacetimes to accommodate theories such as string theory or braneworld scenarios.

� Multi-Particle Systems and Quantum Entanglement: Expand the model to
handle multi-particle systems, enabling the study of interactions and entanglement
phenomena.

� Numerical Simulations and Experimental Validation: Implement numerical
simulations to validate the model’s predictions and explore potential experimental
signatures, especially under extreme conditions like high-energy particle collisions
or the early universe.
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7 Conclusion

By introducing the QIW model, we have successfully reproduced key quantum mechani-
cal and relativistic equations within a discrete spacetime framework. This comprehensive
process not only validates the model’s consistency with established physics but also high-
lights its potential as a unified heuristic foundation for exploring quantum gravity and
the fundamental nature of spacetime. Future research building on this foundation can
further bridge the gap between discrete spacetime theories and the continuous descrip-
tions prevalent in modern physics, paving the way for deeper insights into the universe’s
underlying structure.

Author Contributions: This version is prepared by Wei and GPT. The conceptual frame-
work, equations, and interpretative approach derive from the QIW hypothesis of Wei on 24.12.2024.
The author wishes to acknowledge the valuable assistance provided by OpenAI GPT in refin-
ing the language, optimizing mathematical expressions, and analyzing theoretical concepts. The
insights generated through this collaboration significantly enhanced the clarity and rigor of the
present work. The author also gratefully acknowledges the valuable advice provided by Google
GEMINI. All research ideas, directions, and conclusions remain solely the responsibility of the
author.

Disclaimer: This document builds upon a discrete spacetime model involving quantum in-

trinsic wormholes. It is not intended to represent mainstream quantum mechanics but an

alternative interpretative framework. All equations are derived independently from the QIW

viewpoint, with the standard results serving as consistency checks rather than ad hoc starting

points.
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