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ABSTRACT

The study of nonautonomous scalar equations comprises a subset of solutions defining the regions of1

stability and instability inherent to a system. Under specific shifts in the variables of such equations,2

those referring to a scalar parameter, the quantity of stability points may vary. The exact value at which3

the quantity of stability points changes, refers to a bifurcation in the system. When a specific function,4

or set of functions, cannot be solved exactly through algebraic methods, an equivalence to geometric5

structures may provide intuitive connections to a more abstract topology that solves for those values6

exactly. Examples considered include ẋ = x − x2e−1(1 + t2)−1, and the Spruce-Budworm and7

Forest Model.8

I Introduction9

In the study of differentiable systems, exists a continuously evolving field of research. One that seeks to better10

understand and simplify the methods of analysis that coincide with known observations in nature. Developments11

in this area of study are unique in that any definition given must be true by self-consistent logic, and that the12

structure of logic be accurate when tested with known predictable systems. A successful contribution to the study13

of differentiable systems is one that either, (1) solves previously unsolved problems; or (2) simplifies the steps14

required to solve known problems. This paper will look at a branch of dynamics dealing with such differentiable systems.15

16

The pivot point for investigation begins with “Bifurcations in nonautonomous scalar equations”.[11] Discussion provided17

looks at functions of the type, ẋ = f(x, t, λ). Analysis is predicated exclusively on the determination that for any18

function expressible by variables x, t, λ, that these functions also be equivalent to the variable, x, differentiated once19

with respect to variable, t. Understanding the fundamental principles governing this type of equation is useful for20

understanding the geometry of change; given, that one is concerned with how some variable, x, changes with respect to21

(or in conjunction with) the variable, t. The third variable, λ, applies a conditional unknown to any function of this22

type; being, an implicit requirement for determining units.23

24

Fundamental theory related to nonautonomous scalar equations of this type, and the set of functions with variables25

x, t, λ, all having equivalence to ẋ, also includes the set of all autonomous functions, ẋ = f(x, λ). For both autonomous26

and nonautonomous scalar equations, problems are often used to examine the stability or instability of a system under27

specific initial conditions. Correlation of variables and their units maintains information related to the system when28

examining changes in stability, changes in the number of stability points, rates of convergence to a stability point, &c.29

Maintaining the logical basis for the definitions and theorems involved is necessary when building a geometry that can30

simultaneously answer several questions pertaining to a single dynamics problem.31

32

Geometry of a nonautonomous scalar equation relies on the continuity of the equation being considered. Continuity of33

the equation and correlation between units involved can then produce a geometric structure that takes into account how34
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the function will behave when placed somewhere within the geometry. Determining how the system behaves in terms of35

unit changes, or a constant variable, is useful when analyzing regions of convergence that may otherwise be considered36

chaotic. The extrapolation of changes in the equation, in terms of specific units, also provides regions of significant37

shifts in the geometry or stabilities of the equation. The focus of this paper is to examine the foundational theory of38

nonautonomous scalar equations, and then to investigate the branches of solutions that stem from this approach.39

II Definitions40

An autonomous or nonautonomous equation is defined as the first derivative of some function or variable, x, in terms of41

some independent variable, t. The choice of variables is arbitrary, and if x(t) is invertible, then t can also be considered42

as a function in terms of x.43

ẋ =
dx

dt

An autonomous equation is any function of this type that includes the variable being differentiated, but not the44

independent variable being differentiated with respect to: ẋ = f(x). A nonautonomous equation is any function that45

includes the variable being differentiated, in this case, t, and the independent variable being differentiated, in this case,46

x: ẋ = f(x, t). Any nonautonomous scalar equation includes a scalar, λ, that is neither the variable being differentiated47

nor the variable being differentiated with respect to. The general form for the nonautonomous scalar equation is written48

as any function defined in terms of x, t, λ.49

ẋ =
dx

dt
= f(x, t, λ) (1)

The set of all autonomous scalar equations is a subset of all nonautonomous scalar equations. This occurs because if ẋ50

requires that x be a function of t, then substitution of one or more x in f(x, λ), with the function defining x, in terms of51

t, allows for solutions of the type f(t, λ) and f(x, t, λ). The existence of ẋ also requires that x be continuous with52

respect to t; since, the variable, x = x(t), being differentiable with respect to t, implies that integration of ẋ with53

respect to t has the solution, ẋdt = x(t) + c, with c being some constant of integration.54

55

The method for defining a dynamical system of this type is simplified to three unique elements: {T ,X , φt}. This is56

the reduction of a nonautonomous scalar equation to a set of three linearly independent variables. All three of these57

elements, T ,X , φt, are themselves sets that may or may not contain cardinalities greater than the cardinality of the58

reduction on the dynamical system; specifically, T and φt are sets comprising a larger cardinality, but X may contain59

more, less, or the same number of elements as the reduction on the dynamical system.160

|{T ,X , φt}| = 3

For a dynamical system, the element, T , is the time set: T = {t}.[10] The variable, t, being a unit of time, requires61

that the total number of elements in the time set, T , be equivalent or bijective to the set of all Real numbers, R. The62

element, X , is the state space of a dynamical system. This is defined to be some n−dimensional Real number space,63

Rn, with n ∈ N. The linear dependence on the Real number space requires that the state space be equivalent to the64

set, X = {x : x = (x1, x2, ..., xn)}=̂Rn. When setting all variables, x1, x2, ..., xn ∈ R, the state space reduces to a65

single element, |x0| = 1, allowing for any autonomous equation to reduce to a singleton.66

∀f : Rn → Rn ∃X = Rn :
67

ẋi = fi(x1, x2, ..., xn) ∈ Rn ⇒ ẋ = f(x) ∈ R

Since the time set and state space, T and X , are linearly independent, in order to define a nonautonomous scalar68

equation based on these two elements, requires a third element that connects the elements. For any unique x ∈ X , the69

variable is represented by a unit, x̂ ∈ {0, 1}, and a scalar-magnitude, ||x|| ∈ R. The equivalence, x = ||x|| · x̂ = ||x||x̂,70

defines a vector, that correlates a dimensionless length in R, with a determination that the scalar-magnitude is defined71

in terms of that linearly independent unit, x̂ = 1, or is not defined in terms of that linearly independent unit, x̂ = 0. A72

nonautonomous equation, ẋ = f(x, t), that is in terms of x̂ and t̂, with t̂ being the unit defining a vector in the time set,73

1See Appendix A for the proof on why the cardinality of a set containing an infinite set is not infinite.
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provides a solution that is neither uniquely defined in terms of x̂ or t̂. The correlation between these two units then74

requires an evolution operator, φt. The exponential form in terms of the time set, is due to the integration of a given75

ẋ = ||ẋ||x̂t̂−1, having the divisor unit, t̂, be some ln(t̂) proportionality with respect to some x̂ element in the state76

space.77

φt : X → X

When solving for a nonautonomous scalar equation, ẋ = f(x, t, λ), determining that a unique solution exists for a78

given, x ∈ Rn, the singleton of this unique element, x0, is defined to be the initial value at t = 0. Then, setting the79

evolution operator to have this position at t = 0, returns the initial unique element, x0. Looking at the change in the80

system for t > 0 or t < 0, defines the trajectory of the dynamical system over time. This general setup for the trajectory,81

is defined by the unique element, x0, at t = 0, with t ̸= 0 being another element of the state space, xt, at t ∈ R.82

xt = φtx0 ⇐⇒ x0 = φ0x0

Obtaining an evolution operator, φt, for a dynamical system, is determined by the information inherent to the system.83

When given only the nonautonomous scalar equation, ẋ = f(x, t, λ), the trajectory is dependent upon all three84

elements of the system, x, t, λ. If nothing is known about the system, then the stability for some x0 is found by85

obtaining the values, ẋ = 0. These are all known values at which the derivative of the state space, with respect to the86

time set, will have no change: ẋ = 0. Any x ∈ X will be a fixed point; where, the value ẋ = 0, is equivalent to the87

maxima and minima of x = x(t), with some fixed point being defined as, x∗ ∈ X .88

89

The stability of a fixed point, x∗, is unstable if the element is a relative or absolute maxima of the function, x = x(t);90

otherwise, a fixed point, x∗, is stable if the element is a relative or absolute minima. An evolution operator, φt, given an91

initial state, x0, will always converge to some stable fixed point as t → +∞ and converge to some unstable fixed point92

as t → −∞. The principle being, that any element of a state space will have a continuously decreasing change in the93

state space as the elements of the time set increases, and that any dynamical system is equivalent to an energy system;94

where, an energy system is assumed to approach a minimum energy value as time increases instead of a maximum95

energy value. This is also referred to as a dissipative dynamical system.96

97

Given some function, ẋ = f(x, t, λ), any solution can be represented by the set of all coordinate values in R4; such98

that, {(ẋ, x, t, λ)} ⊆ R4. If the function is reduced to an autonomous scalar equation, ẋ = f(x, λ), then the set99

of all coordinates can be represented in R3; such that, {(ẋ, x, λ) : x = x(t)} ⊆ R3. A vector space provides the100

trajectory path that an initial state, x0 will take given some unique, λ. The trajectory path is a continuous subset101

of the function, ẋ = f(x, λ), with a given λ, that starts at the position x0, and ends at the first stable fixed point:102

{ẋ : λ ∈ R} × [x0, x
∗) ⊆ R2. Then a trajectory path can be defined by the interval of elements in the state space that103

map to some autonomous equation, and converge to some stable fixed point. When a trajectory path begins at some104

initial state that is not a fixed point, then that trajectory path does not contain any fixed points.105

∀x∗
i ∈ {x : x 7→ ẋ} ⊆ X ∃x0, x

∗
j ∈ X , x0 ̸= x∗

j :
106

lim
t→±∞

φtx0 = x∗
j ∈ {x∗

i } ⇒ {x∗
i } ∩ [x0, x

∗
j ) = ∅

For unstable fixed points, the same statement applies, except that t → −∞ instead of t → +∞. This statement also107

does not include the set of initial states, x0, that do not converge to a defined fixed point. For the case when there exists108

a unique unstable fixed point for some initial state, x0, but no stable fixed point, the limit as t → +∞ will diverge to109

positive or negative infinity, instead of converging to a unique x∗ ∈ X . For the unique case that an initial state is equal110

to some fixed point, x0 = x∗, the trajectory path is equivalent to the fixed point for all elements of the time set. The set111

of all time-varying solutions having equivalence to the initial state is the family of invariant elements in the space that112

do not vary from the fixed point.113

φtx0 = x∗ = xt(∀t ∈ T ) ⇐⇒ x0 = x∗

The setup for an evolution operator at an initial state, φtx0 = xt, can be considered in terms of a general construction;114

where, the set of initial state elements converge to global attractors.[22] Methods for analyzing a global attractor allows115

for the system to be treated as a set of subsets on the state space, with any initial state from one subset remaining116

exclusively within that subset and converging to a fixed point, being the global attractor of that subset. Specifically, a117

3
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global attractor will be a set of stable fixed points. The method for employing a definition on global attractors is useful118

when considering broader solutions given an evolution operator that does not strictly rely on Cauchy-Convergence of119

the original equation, or may otherwise disparage approximate trajectory paths for a solution. The broader claim on the120

definition of global attractor takes into account topological statements and properties of a dynamical system; otherwise,121

being equivalent to the statements preceding.[22] The use of new variables defining a global attractor is to be explained122

by the following definition.123

Definition: For a set A ⊂ E , A is called a global attractor of the semigroup {F(t)} if it has the following properties:124

1.) A is a compact set in the topology of the space E ;125

2.) A attracts or translates F(t)B of any bounded subset B ⊂ E in the topology of E as t → +∞;126

3.) The set A is strictly invariant under the semigroup {F(t)}; such that,127

F(t)A = A(∀t ≥ 0).

Setting a dynamical system to have these properties takes into consideration equivalent spaces that may arise, or those128

which are equivalent to some nonautonomous scalar equation, f(x, t, λ), but are uniquely quantified. For example,129

after some analytical process, a fixed point, x∗, or the set of all fixed points, {x∗}, may map to the subset, A. The130

subset, B, being regions or sets of initial states, x0, that converge towards the set, A. The semigroup, F(t), operates on131

the state space in terms of the compact set, E , and evolution operator, φt.132

133

Solutions that look to the trajectory path of a dynamical system given by the set, {X , T , φt}, relies on information134

which is obtainable from the system. For all cases, it may not be plausible to define the exact trajectory. For example,135

suppose an accurate prediction method requires that the evolution operator comprise more than just the initial state at136

t = 0, and the final state, x∗. Then a dynamical system with a set of evolution operators determining the trajectory137

path between the initial and final state, is referred to as a family of solution operators: {S(t, s) : x(s) = x0}t≥s.138

Given two time steps, τ, s, with τ > s, for an initial time, s ∈ T , the solution operator with these two time steps is the139

composition of their respective solution operators.140

S(t, τ)S(τ, s)xs = S(t, s)xs ⇐⇒ φtφsx0 = φt+sx0 ⇐⇒ F(t)F(s)B = F(t+ s)B

If a continuous map of elements in the state space, x : R → Rn, for all t, s, provides a solution equivalent to the141

composition of solution operators, the trajectory is referred to as a complete trajectory: S(t, s)x(s) = x(t)(∀t, s ∈ R).142

By determining the regions of convergence for a dynamical system, or for ϵ-neighborhoods as subsets of the state space143

between fixed points in a nonautonomous scalar equation, a stronger picture is obtained for trajectory paths and their144

geometry. For example, a system that has some invarient element, x∗, can also comprise a subset of that invariant that145

is not unique for all t ∈ T . If a fixed point, x∗ ∈ X , contains a subset of vectors, {⟨x1, x2⟩t} ⊆ x∗, with some τ > t146

that returns the function back to its initial state, φt+τ ⟨x1, x2⟩t = φt ⟨x1, x2⟩t, then x∗ contains a periodic orbit. The147

trajectory path for the periodic orbit of a fixed point is defined by the function, O(x1, x2) ∈ R2.148

149

Any invariant of a nonautonomous scalar equation may be treated as a bounded subset of the dynamical system; such150

that, an initial state, x0, that is not an element of the bounded subset, is not an element of the family of invariants.151

Further, when looking at a function, ẋ = f(x, t, λ), the scalar element of the function, λ, when taken to be the set of all152

Real numbers is similar to the time set, except that the ordinary differential equation, ẋ, only requires there to exist153

linear independence between the time set and the state space. Therefore, the scalar acts as a parameter that retains154

the units given for the nonautonomous scalar equation and accurately solves for the trajectory path. The interwoven155

nature that a variable parameter has on a function, f(x, t, λ), develops a more intricate geometry to a dynamical system.156

Specific interest is given for the continuous variations that λ has on the set of invariants, x∗, and the bounded regions157

that converge to a unique x∗. In a nonautonomous scalar equation, if some λ0 ∈ {λ} changes the cardinality of158

invariants, and that for an ϵ−neighborhood about the parameter, λ0, there exists a λ1 ∈ (λ0 − ϵ, λ0 + ϵ), λ1 ̸= λ0,159

that contains a unique cardinality of invariants from f(x, t, λ0), then the element λ0 defines a bifurcation point for the160

dynamical system.161

4
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III Bifurcation Geometry162

For a nonautonomous scalar equation, ẋ = f(x, t, λ), there are three variables considered, x, t, λ. The set of163

invariants, {x∗} ⊆ X , are all elements in the state space when ẋ = 0. If the nonautonomous scalar equation can164

be reduced to an autonomous scalar equation, ẋ = f(x, t, λ) = f(x(t), λ) = f(x, λ), then the set of all coordinates165

{(x, λ) : ẋ = 0} ∈ R2, when plotted for the stable and unstable fixed points, defines a codim 1 bifurcation diagram.166

Analytical, numerical, or graphical representations for the set of fixed points for a variable, λ, provides insight to the167

trajectory paths and bounded regions that any initial state will have in the system. In a system that requires both the168

time set and state space to determine trajectories and invariants, if no direct solution for reducing the function to an169

autonomous form is obtainable, then unit analysis can supply a more intuitive understanding. Consider the following170

nonautonomous equation.171

172

Example 1:173

ẋ = x− e−t

1 + t2
x2 (2)

For the existence of this function as a nonautonomous equation to hold true, then the units of the system must be174

equivalent. That is, the two summed elements on the right-hand-side of the equation require a unit equivalence to the175

vector on the left-hand-side of the equation.176

ẋ = ||ẋ|| x̂
t̂

⇐⇒ x = ||x|| x̂
t̂
, and

e−t

1 + t2
x2 =

∣∣∣∣∣∣∣∣ e−t

1 + t2
x2

∣∣∣∣∣∣∣∣ x̂t̂
From this setup alone, the equation requires that x be a function in terms of itself and t: x = x(x, t). This produces177

a solution where the nonautonomous and autonomous equations are invertible in terms of the state space and time178

set. Specifically, any function of this type that correlates the state space and time set as invertible, will be referred to179

as a spacetime equation.2 Noting only that x = ||x||x̂t̂−1 requires that x be equivalent to some infinite, convergent,180

self-iterating function that converges to itself when differentiating with respect to t. That is, x is defined as a function in181

terms of t, and t is defined as a function in terms of x. A simple way to show this invertibility between two variables of182

a self-iterating equation is by noting the conditions necessary for a general solution to the Lambert Function.[14]183

t(1 + x)
dx

dt
= x ⇒ dx

dt
=

x

t(1 + x)
=

x

t(1 + t(1 + x)dxdt )
184

⇐⇒ ẋ2t2(1 + x) + ẋt− x = 0 ⇐⇒ dt

dx
=

2t(1 + x)

−1±
√
1 + 4x(1 + x)

(3)

The reflexive relation of the function with respect to itself, the linearly independent variable being differentiated185

with respect to, and an evolution operator, then requires that any spacetime function of this type be an explicit186

nonautonomous scalar equation. For the case when the vector, x2e−t(1 + t2)−1 = 0, equation (2) can be written187

where, ϕ = x(t+ t2 + tx)−1; such that, ẋ = f(x, t, ẋ) = ϕẋ−1. For all other solutions when x2e−t(1− t2)−1 ̸= 0,188

the method for solving will then require the introduction of variables, α, β, being a subset of the spacetime function.189

This requirement on the self-iterating function is one that will follow with respect to equation (3), rewritten by Euler as190

tα − tβ = (α− β)xtα+β .[8]191

tα − tβ = (α− β)xtα+β ⇒ x =
t−α − t−β

α− β
192

⇒ dx

dt
=

αt−α−1

α− β
− βt−β−1

α− β

This produces a general solution in terms of variables, α, β, that are similarly found in equation (2). Which, for a193

self-iterating function of the form ẋ = p(x) + q(x) to exist, also requires that the functions, t−α, t−β , be functions in194

terms of α, β, x.195

t−α = 1− αx− 1

2
α2β(α+ β)x2 − 1

24
α3β(α+ 2β)(2α+ β)x3 − 1

120
α4β(α+ 3β)2α+ 2β)(3α+ β)x4 − ...

196

t−β = 1− βx− 1

2
β2α(β + α)x2 − 1

24
β3α(β + 2α)(2β + α)x3 − 1

120
β4α(β + 3α)2β + 2α)(3β + α)x4 − ...

2Though, not discussed in the Definitions section; here, the term spacetime refers to the class of functions where the state
space and time set are inseparable by unit reductions. This is used in analogous form to the inseparability of the speed of light,
c = ||c||x̂t̂−1, from any unique variable in a Lorenz transformation.[13]
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The reduction of this system therefore necessitating the introduction of a new set of variables for the evolution operator197

to accurately define some trajectory path given an initial state. Integrating equation (2) as a first-order nonlinear198

ordinary differential equation verifies this claim by the function having new variables, r, arctan(t).199

dx =

(
x− e−t

1 + t2
x2

)
dt

200

⇒ x(t) =
et

r + arctan t

Differentiating the system again, and setting r = 0, gives an exact equivalence to equation (2). Analysis for when201

r ̸= 0, provides information about the trajectory paths within the bounded region of convergence defining the invariant202

of the system.203

d

dt

[
et

r + arctan t

]
= ẋ = x(1− r)

(
arctan(t)

arctan(t) + r

)
− e−t

1 + t2
x2

Setting the right-hand-side of the equation to have, arctan(t) = θ and ϕ = θ(θ+ r)−1, gives a reflexive relation similar204

to equation (3), due to the introduction of variables, θ, r.205

ẋ = x(1− r)

(
θ

θ − r

)
− e−t

1 + t2
x2 = x(1− r)ϕ(θ, r)− e−t

1 + t2
x2 (4)

Finding a bifurcation diagram for this function given by the set of all fixed points, x∗ ∈ X , when ẋ = 0, being in terms206

of variables, t, r, θ. Since equation (4) will, for any unique, x∗, be in terms of some (t, r, θ) ∈ R3, a first method to207

analyze the system is to determine known fixed points in the bifurcation diagram. The method employed here will be to208

set ẋ = 0 and balance the equation, ẋ = p(x)− q(x), to q(x) = p(x).209

e−t

1 + t2
x2 = x(1− r)

(
θ

θ − r

)
(5)

210
e−t

1 + t2
x = (1− r)

(
θ

θ − r

)
(6)

Plugging in the function, x(t) = et(r + θ)−1, to equation (6), reduces the total cardinality of variables in the equation211

by one. This defines a unique space of coordinates, (x, t, r, θ) ∈ R4, that solves for the bifurcation diagram in terms of212

(t, r, θ) ∈ R3; which, can be further reduced to (t, r) ∈ R2, due to θ being a function of t: θ(t) = arctan(t).213

1

(1 + t2)(r + θ)
= (1− r)

(
θ

θ − r

)
214

⇒ (1 + t2)(r + θ)(1− r)θ − θ + r = 0 (7)
215

⇒ t2 =
θ − r

(r + θ)(1− r)θ
− 1

By the variable, θ(t) being equivalent to arctan(t), then for all t ∈ R the function is bounded: θ(t) ∈ [−π
2 , π

2 ](∀t ∈ R).216

Mapping these functions to a diagram with coordinates, (t, r, θ) ∈ R3, and (r, θ) ∈ R2, gives the geometry of the fixed217

points. This is evidence of a global attractor at r = 1, and that there exists an interior and exterior convergence and218

divergence space about this set of fixed points; which, are referred to as the nullclines of the dynamical system.219

6
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(a) Nullclines solution in R2 compiled using Desmos (b) Nullclines solution in R3 compiled using MATLAB

Figure 1: (left) tan(θ)2 = f(θ, r); (right) t2 = f(θ, r)

From equation (2), the dynamical system is shown to have a bifurcation diagram that can be converted into a solution220

of variables, θ, r ∈ R, when beginning with variables of the state space and time set, x, t ∈ R. The nonautonomous221

scalar equation, ẋ = x(1 − (xe−t)(1 + t2)−1), having an unstable fixed point at x = 0, and a stable fixed point at222

x = (1 + t2)et, is observable on the bifurcation diagram when treating t ∈ R, as a variable scalar, and x∗ ∈ {x}, to be223

the nullclines of the system.224

Figure 2: Unstable Nullcline (dotted) and Stable Nullcline (solid) for ẋ = x
(
1− xe−t

1+t2

)

The bifurcation in figure 2 is observable to occur at t → −∞. This provides a method for obtaining information about225

the bifurcation point of a limit in a dynamical system. By use of a transformation of variables, the limit for equation226

(2), as t → −∞, is visualized in figure 1. This solution for the limit of the function with dependence on arctan(t), is227

bounded to the interval, t ∈
[
−π

2 ,
π
2

]
, and is a closed periodic orbit. Therefore, equation (2) defines a system that is228

pullback Lyapunov stable as t → −∞, and pullback linearly unstable when x = 0.[11] Analytical theory on the topics229

of Lyapunov stability, stability in general, and other topological dynamics are evidentially supported by examples of230

this type.231

7
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Obtaining information about a nonautonomous scalar equation in terms of unit equivalence is a method which can232

be used to verify stability analysis for problems that arise in dynamical systems. Whether a system is necessarily233

self-iterating or dependent upon a larger set of linearly independent variables, the geometry at limit points for the234

time set at some initial state is applicable to understanding the invariant set at these limits as well. Supposing that a235

function is an explicit nonautonomous scalar equation, ẋ = f(x, t, λ), or some equivalence to a more general topology236

of linearly independent variables, {X , T , φt} ≃ {E , T ,F(t)}, a gradient on the system, ∇ẋ, can be used to consider237

the geometry of the system in terms of some evolution operator.238

∇ẋ = ∇f(x, t, λ) =
∂ẋ

∂x
x̂+

∂ẋ

∂t
t̂+

∂ẋ

∂λ
λ̂ =

〈
∂ẋ

∂x
,
∂ẋ

∂t
,
∂ẋ

∂λ

〉
The multiplication of each vector in the partial differential, with the unit being differentiated with respect to, retains239

information about the original function after the gradient operation. The function, ẋ = f(x, t, λ), is then considered in240

terms of each variable in the function as some coordinate (x, t, λ) ∈ R3, also being a vector in terms of the gradient.241

Preserving units, correlates the trajectory path in terms of an initial state, (x, t, λ) ∈ R3, and an interpretation on242

conserved, dissipative, or accumulative changes on the vector-values with respect to the evolution operator. A general243

solution for analyzing a trajectory path in terms of the gradient is to suppose that any incremental change from the244

initial state will preserve the total magnitude of the gradient. For a system that requires the total magnitude of the245

gradient to be preserved, given some initial, ẋ0 = f(x0, t0, λ0) ∈ {(x, t, λ)}, the preserved magnitude can be written246

as a constant scalar value: ||∇ẋ|| = ω.247

ω(x0, t0, λ0) = ±

√∣∣∣∣∣∣∣∣∂ẋ∂x
∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∂ẋ∂t

∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∂ẋ∂λ
∣∣∣∣∣∣∣∣2

For a system that explicitly correlates the trajectory path for a given initial state, x0, in terms of changes in the time set,248

limt→∞ ẋ, then solutions to the system with a conserved variable, ω, is dependent upon changes in t. From example 1,249

this would be given by solving the gradient of the function, and then taking t = 0, to acquire the variable, ω.250

∇ẋ(x, t) = ∇
(
x− x2e−t

1 + t2

)
=

〈
2xe−t

t2 − 1
,
x2e−t(t2 + 2t− 1)

(1− t2)2

〉
251

⇒ ω(x, t) = ±
xe−t

√
4(t2 − 1)2 + x2(t2 + 2t− 1)2

(t2 − 1)2

Already noting that the function has an invariant at x = 0, the system also has no given solution for t = 1. Therefore,252

when looking at the trajectory path as time increases, t ≥ 0, for some x0 ∈ X , taking the initial time to be t = 0, the253

trajectory path is to be considered for the interval t ∈ [0, 1). If the trajectory path is also to be considered for t < 0 and254

t > 1, then intervals, t ∈ [0,−∞) and t ∈ (1,∞) are solved for, respectively. Beginning with an initial state, x0 ∈ R255

and x0 ̸= 0, the conserved value at t = 0 can be found.256

ω(x0, 0) = ±x0

√
4 + x2

0 (8)

Taking the variable, x0 ∈ R, the trajectory path is then given by finding the set of x ∈ R for all t ∈ [0, 1) when257

ω(x0, 0) = ω(x, t) = ω. Recalling that equation (2) has a reflexive relation between the state space and time set,258

reassures that solving for x(t) from the gradient solution with constant, ω, can then be applied to the original function,259

ẋ = f(x, t); where, ẋ = f(x, t) = f(t(x)) = f(t), being a function dependent only on the time set when an initial260

state and constant, ω, are known. Otherwise, solving for x(ω(x0, 0), t) produces the evolution operator defining the261

trajectory path of the system. This system then requiring that there exists at most a set of four possible trajectory paths262

given for any given scalar, ω(x0, 0) ∈ R, when φ(t)x0 ∈ R. By the restriction that φ(t)x0 ∈ R, the set of trajectories263

will have two solutions. If the restriction is made that φ(t)x0 ∈ C, the other two solutions are given.264

φ(t)x0 = xt = ± t2 − 1

t2 + 2t− 1

√
−2±

√
4 + x2

0e
2t(4 + x2

0)(t
2 + 2t− 1)2 (9)

⇒ xt ∈ R ⇐⇒ φ(t)x0 = ± t2 − 1

t2 + 2t− 1

√
−2 +

√
4 + x2

0e
2t(4 + x2

0)(t
2 + 2t− 1)2, and

8
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xt ∈ C ⇐⇒ φ(t)x0 = ± (t2 − 1)i

t2 + 2t− 1

√
2 +

√
4 + x2

0e
2t(4 + x2

0)(t
2 + 2t− 1)2

For the case that the trajectory path is restricted to a scalar, ω, the stable and unstable fixed points from equation265

(9) require that equation (2) be solvable; such that, ẋ = 0 ⇒ t = ±
√
±2 − 1. Then, given any element of the time266

set, t ∈ T , when the evolution operator is solved for, the system will always have fixed points at t + 1 = ±
√
±2.267

Which, having determined that for some fixed scalar, ω, the element, t, has two stable fixed points at t+ 1 = ±
√
2 for268

real-valued solutions, and two unstable fixed point at t+1 = ±
√
−2 for complex-valued solutions, the nonautonomous269

scalar equation, f(x, t, λ) with scalar parameter, x0 = λ, can be referred to as being both self-propagating and cyclic270

by the orthogonality of these t+ 1 incremental time steps.271

(a) Real-valued trajectories for a set of x0 ∈ X , with fixed
points at t → −∞, t = ±

√
2− 1

(b) Complex- and Real-valued trajectories for a set of
x0 ∈ X , with fixed points at t → −∞, t → ±

√
2− 1

Figure 3

Example 2:272

273

A function with many parameters can often be analyzed as a nonautonomous scalar equation. Consider the Spruce-274

Budworm and Forest Model.[16]275

Ḃ = rBB

(
1− B

KB

)
− βB2

α2 +B2
(10)

This equation comprises a set of fixed points that vary from one to four. dependent upon inputs of B, rB ,KB , α, β ∈ R.276

The stabilities are observable in a vector space, with positive-only value. This is due to the dependent variable, B, or277

Budworm population density, being assumed quantifiable only through physical data collection of positive integer278

values. The dynamical system defined by equation (10) has, that for an increasing Budworm population density, an279

unstable fixed point at B = 0. By the polynomial nature of the function, Ḃ, the system will always comprise between280

two and four fixed points for all B ≥ 0. For the case when there are three total fixed points, one of the three fixed points281

is a bifurcation of the system. The bifurcation points are semistable fixed points; where, for any small perturbation282

about one of the variables, the total number of fixed points will either increase or decrease by one. If the pertur-283

bation increases the total number of fixed points by one, then one of the fixed points will be stable, and the other, unstable.284

285

The nullclines of this function are the set of all ḂB−1 = 0. Balancing this equation, rB−rBBK−1
B = βB(α2+B2)−1,286

allows for analyzable shifts of one or more variables on one side of the equation in terms of variables on the other287

side. The division of B from the equation also reduces the complexity of solutions. This is because, for all solutions to288

Ḃ = 0, when B = 0, the fixed point does not change. When attempting to reduce the function to as few variables as289

possible, the function can be rewritten in terms of three new variable parameters which are expressible as a combination290

of the original variables: µ = Bα−1, R = αrBβ
−1, and Q = KBα

−1.[16]291

rB

(
1− B

KB

)
=

βB

α2 +B2
(11)

292

µ =
B

α
, R =

αrB
B

, Q =
KB

α
⇐⇒ R

(
1− µ

Q

)
=

µ

1 + µ2

9
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Utilizing a method of unit analysis for equation (10), the variables are defined, such that, B represents the Budworm293

population density, rB is the linear birth rate, and KB is the carrying capacity of the Budworm population density294

proportional to tree foliage. The subtracted term, p(B) = (βB2)(α2 +B2)−1, is the rate of predation on the Budworm295

population density by mostly avian predators. The variable, β, is the upper limit of the predation as β → +∞, and296

α determines the rate at which predation reaches the upper limit, β. The variable, α, can also be considered when297

determining the minimum population density of Budworms at which the predation rate, p(B), is within some ϵ > 0298

distance from the upper limit, β.299

(a) Influence of variable shift, α → α+ δ, in predation
function, p(B).

(b) Reduced parameter graph of ḂB−1 = 0, with three fixed
points, µ−, µc, µ+.

Figure 4

From the initial model given by equation (10), the function is analyzable as a nonautonomous scalar equation. This300

is done by letting B ∈ B act as the state space; such that, B ∼= X , and letting at least one or more of the other301

variables be elements of the time set, T . From a method of direct-unit analysis, only the linear birth rate, rB , is302

a function of the time set. By this method, the variables, rB ,KB , α, must be elements of the state space as well.303

The only element that is not uniquely defined by linear dependence to only the state space or time set is the upper304

limit of predation, β; which, has linear dependence to Ḃ. The inclusion of β in the function Ḃ, requires that the305

system be invertible in terms of the state space and time set. Equation (10) is therefore a nonautonomous scalar306

spacetime equation similar to example 1. Some analysis was done regarding this conclusion, and is worth noting that307

surprisingly, the composition of a time-derivative of β with respect to the time set will normalize without having influ-308

ence on any time-derivative of Ḃ.3 This is relevant when considering the expansion of the variable, R, into a function of t.309

310

Although the determination that Ḃ can, for any variable in the equation, comprise invertibility with the state space and311

time set, the implicit function defining each variable is unknown. Therefore, when analyzing solutions regarding the312

reduced expression in terms of R,µ,Q, understanding the initial unit-dependence is applicable to developing exact313

solutions and expansions of the function.314

R

(
1− µ

Q

)
=

µ

1 + µ2
(12)

Equation (12) has a maximum R > 0, being Rc ∈ {R}; where, for any shift in variable, Q > 0, for all R ≥ Rc, there315

exists exactly one fixed point and no bifurcations. Then for all 0 < R < Rc, there exists at least one interval of elements,316

Q > 0, with exactly one fixed point, and at least one interval of elements, Q > 0 that comprises three total fixed points.317

The value Rc is obtained by determining the maximum slope of the right-hand-side of equation (12), the coordinate318

position of the slope, and then finding the value of R at which the left-hand-side of equation (12) crosses this value;319

such that, the value for R will be Rc. The maximum slope is found from taking the derivative of µ(1 + µ2)−1 in terms320

of µ. The coordinate position is found by solving the second derivative in terms of µ and setting equal to zero, since this321

will be the maximum of the first derivative when µ > 0. Then, solving for a general linear function that is equivalent to322

the left-hand-side of equation (12) produces the element, Rc, for coordinate, (0, Rc), with intersection at µ∗.323

3See Appendix B for a proof on setting β = 1.

10
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d2

dµ2

[
µ

1 + µ2

]
= 0 ⇒ µ∗ =

√
3

⇒ d

dµ

[
µ

1 + µ2

]
= −1

8

⇒ µ

1 + µ2
=

√
3

4

⇒ Rc =
3
√
3

8
⇐⇒ Qc = 3

√
3

324

Recalling unit equivalence between reduced variables, µ = Bα−1, R = αrBβ
−1, Q = KBα

−1, then for all R ≥ Rc,325

there will be no bifurcations and the foliage, KB , being dependent only on Q, will have no affect on the occurrence326

of a bifurcation. For the case that
√
3 · 4−1 ≤ R0 ≤ Rc = 3

√
3 · 8−1, where R0 ∈ {R}, then variations on Q > 0327

will have two regions with exactly one fixed point and one region with three fixed points. This region of three fixed328

points is dependent upon the maximum of the function, µ(1 + µ2)−1; whereby, taking the derivative with respect to329

µ, and setting µ = 0, the positive value solution is given by a minimum value of R1 = (2µ)−1. The fixed variable,330

R1, then defines the region at which, for any R0 ∈ [R1, Rc), there are exactly two bifurcation points, and that for all331

R0 ∈ (0, R1), there is exactly one bifurcation point.332

(a) Fixed R0 ∈ R in the interval, R1 < R < Rc, with
bifurcation points shown.

(b) Fixed R ∈ R in the interval, 0 < R < R1, with the
unique bifurcation point shown.

Figure 5

Given the existence of some maximum, Rc, at which no variation in Q will cause a bifurcation, obtaining the interval333

Q ∈ [Q−, Q+], for any unique, 0 < R < Rc, determines the shifts of variable, Q(KB) → Q(KB ± ϵ), ϵ > 0; such334

that, the function will comprise either three bifurcation points, or no bifurcation points. Recalling that the variable,335

Q = KBα
−1, is the only reduced parameter with dependence on KB , then any change in Q can also be independently336

considered through changes to the variable, KB . Then, by way of the left-hand-side of equation (12) being linear, the337

maximum, Q+, and minimum, Q−, can be determined by the same linear function equivalence that was used to find the338

value, Rc.339

Rc = −1

8
µ+

3
√
3

8
⇐⇒ 0 = −1

8
Qc +

3
√
3

8
(13)

Setting R = Rc in terms of variable, µ, equal to the right-hand-side of equation (12), provides the exact solutions340

for µc, and Qc; such that, µc =
√
3, and for Qc = 3

√
3, being the unique sum-of-roots solution for Qc. Then for all341

R ≥ Rc, any variation on µ will similarly provide exactly one solution. This can be considered through the use of342

perturbation variables, ϵ > 0 and δ > 0.343

11
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− ϵ

8
µ+

3
√
3

4
+ δ = R =

µ

1 + µ2
(14)

By flipping the sign, δ → −δ, within a boundary condition that the R−intercept of equation (13) be greater than zero;344

such that, δ ∈ (0, 3
√
3 · 4−1), then for any unique δ, there will be either, one, two, or three exact solutions for µ, for all345

ϵ > 0. Specifically, these exact solutions can be found by solving for the cubic function in terms of µ. To determine the346

set of all bifurcation points from this method, requires obtaining the set of all real-valued solutions, µ, with cardinality347

|µ| = 2. Since the function has for any unknown set of fixed points, 1 ≤ |µ| ≤ 3, finding the set of all bifurcation348

points is given by reduction to solutions of the type µ = {µ−, µ+}. Simplifying the left-hand-side of equation (13) to a349

linear function in terms of slope, m, and R−intercept, R0, generalizes this function.350

0 <
ϵ

8
= m ∈ R, and

351

3
√
3

4
+ δ = R0 ∈

(
0,

3
√
3

4

)
⊆ R

352

⇒ −mµ+R0 =
µ

1 + µ2
(15)

353

⇐⇒ µ3 −R0µ
2 + (1 +m)µ−R0 = 0

Observations on the geometry of the curve, with respect to the set of all bifurcation points, that are defined to be bounded354

by the interval, (µ,R0) ∈ [2−1,
√
3] × [

√
3·−1, 2−1], considers the set of solutions given by the infinum maximum355

values of Q = Q−, at which there exists only one fixed point, and the set of solutions given by the supremum minimum356

values of Q = Q+ when there exists only one fixed point. In order to determine the geometry of the trajectory paths357

intrinsic to the shape of these curves, a determination on the magnitude of the gradient from equation (10) can be solved358

for in terms of the discrete solutions of the bifurcation points. For the upper and lower bounds of this curve given by359

(R,Q, µ) = {(Rc, Qc, µc), (0, 1 · 0−1, 2−1)}, the definition, ḂB−1 = 0̇, is used to define the reduction of equation360

(10) to equation (11), when setting equation (11) equal to zero. As well, it is noteworthy to recall that when solving361

for the bifurcation point given by the limits R → R1, and µ → 2−1, requires that in order for Q to approach positive362

infinity, then Q = 1 · 0−1.363

∇0̇(R,Q, µ) =

〈
∂0̇

∂R
,
∂0̇

∂Q
,
∂0̇

∂µ

〉
=

〈
−1 +

µ

Q
, −Rµ

Q2
,

1− µ2

(1 + µ2)2
+

R

Q

〉
364

⇒ ω(Rc, Qc, µc) = ωRc
=

√
265

24
365

⇒ ω

(
1

2
,
1

0
,
1

2

)
= ωR1

=
2
√
10

5

From these two fixed points, being the upper and lower limit of the curve considered, the magnitude of the gradient366

given by bifurcation point solutions to equation (15) in the interval, R0 ∈ [R1, Rc], will have a magnitude increase of367

ωRc
ω−1
R1

. Which, having already determined that the slope of the linear function from equation (13), when R = Rc368

is −m = −8−1, and that the slope at R = R1 is tangent to the maxima of the right-hand-side of equation (12), then369

the slope at R = R1 is given to be −m = 0. Having obtained the exact tangent values given at the limits of the370

curve-section, then the change in angle, θ, is equivalent to the arctangent ratio: θ = arctan(−8−1). Information371

pertaining to the geometry of the bifurcation points with respect the right-hand-side of equation (12), in the interval,372

µ ∈ [µRc , µ1], added to the area covered by the change in the linear function from Rc → R1, produces an upper limit373

area within the boundary conditions. This upper limit area, being the area added onto the right-hand-side of equation374

(12), is found from the total area within the boundaries, subtracted by the complement of the area covered by the angle375

difference of the gradient.376

12
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(a) Gradient of magnitudes at R1 and Rc with angles
perpendicular to +R−axis.

(b) Area of regions within sup{min{R1 → Rc}} with
(i)+(ii)+(iii)= R1 · (µRc − µR1).

Figure 6

From figure 7(b), the area of region (ii) is obtained by integration of the right-hand-side of equation (13) from
µR1 = 2−1 → µRc =

√
3. The area of region (ii) is given by the subtraction of areas (i) and (iii), from the total area

being considered; such that, the total area is a rectangle with height, R1 − 0, and width, µR1 − µRc , being equal
to the sum of all three area components, (i)+(ii)+(iii)= R1 · (µRc − µR1). Area (iii) is then a triangle with height,
Rc −R1 = (2−

√
3) · 4−1, and base found from the intersection of the linear function of equation (13) with R = 2−1,

subtracted from Rc. This provides the area of (iii) to have equivalence, 2−1·(4−2
√
3)·((2−

√
3)·4−1) = (7−4

√
3)·4−1.

The area of (ii) is the resultant areas of (ii) and (iii), subtracted from the total area (i)+(ii)+(iii).

(i) + (ii) + (iii) = R1(µRc
− µR1

) =

√
3− 1

2

(ii) =
∫ √

3

1
2

µ

1 + µ2
dµ =

ln 2

2

(iii) =
7− 4

√
3

4

(i) =
√
3− 1

4
− (ii) − (iii) =

6
√
3− 9− 2 ln(2)

4

Having found an equivalence relation between variable, Q, and variable, µ, with respect to equation (11), then integration377

of the left-hand-side of equation (11) in terms of Q, for Qc → +∞, when Rc → R1, produces the same area as378

(i). The solution to this equivalence, being some convergent value, requires that R and Q be invertible; such that,379

R = R(Q), and Q = Q(R), where the set of all bifurcation points are governed by solutions which are defined by380

the set of sup{min{R1 → Rc}} over the curve. This solution, which has three linearly independent variables, also381

being convergent over integration, is implicitly defined to have, R, be proportional to some exponential function with382

parameter value, λ ∈ R. This implicit proportionality to an exponential function in terms of Q, is demonstrated by the383

unit-dependence of R = rBαB
−1, to the variable, rB; where, rB = ||rB ||t̂−1, requires that R have a unit-dependent384

variable in terms of the time set. Then, by the variables, µ and Q, not comprising a unit-equivalence to rB , the implicit385

requirement that R be proportional to an exponential function is exemplified by the restriction that for some Q → +∞,386

a proportionality of e−Q ln(Q) is convergent. As well, a boundary condition is provided for R∗ = R+ 2−1, due to the387

bifurcation diagram being convergent at one-half instead of zero; where, without this boundary condition, the function388

would not have equivalence to area (i).389

∫ +∞

3
√
3

[
R∗
(
1− R∗

Q

)]
dQ = [R∗(Q−R∗ ln(Q))]

+∞
3
√
3

390

⇒ lim
Q→+∞

[
R∗ (Q−R∗ ln (Q))−R∗(3

√
3−R∗ ln(3

√
3))
]
=

6
√
3− 9− 2 ln(2)

4
391

⇒ lim
Q→+∞

[2Q− ln(Q)]− lim
Q→+∞

[2R ln(Q)] =
12
√
3(R+ 1)− 9− ln(2)

2R+ 1
− (2R+ 1) ln(3

√
3) (16)

13
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The convergence of equation (15) requires that the limits on the left-hand-side of equation (16) be equivalent to the right-392

hand-side.4 Since the bifurcation diagram will have dependence on variables, R and Q, then R can be expressed as a393

function in terms of Q; such that, R = R(Q), and that the limits converge. Recalling that R = αrBβ
−1, Q = KBα

−1,394

and that the unit-dependence of these elements from equation (10), will have the variable, β, be unit-dependent to395

x̂t̂−1, then requires that β be expressible as some function in terms of Ḃ. Then equation (10) is self-iterating; such396

that, R(rB , B, β), must have a proportionality to Lambert’s problem; where, solutions to Lambert’s problem requires397

a proportionality to the exponential function.5 Specifically, that R is expressible by some R = λ0Qe−λ1Q function,398

with λ0, λ1 ∈ R. The reflexive relation of variable, R, with respect to variable, Q, being proportional to units of B̂399

and t̂, will, by the self-iterating nature of equation (10), require there to exist some time-dependent solution; where,400

Q may be treated as a nonautonomous scalar equation with some solution dependence to the time set, T . Which, for401

unknown scalar values, λ0, λ1, and unknown variable dependence of Q, with respect to the time set, T , the expression402

can be considered by the expression for the limit as Q → +∞, in terms of the finite sum of elements that converge to403

ln(3
√
3); where, R = λ0Q

−λ1Q.6404

lim
Q→+∞

[
2Q− ln(Q)− 2λ0Qe−λ1Q ln(Q) +

9 + ln(2)

2λ0Qe−λ1Q + 1
+ 2λ0Qe−λ1Q ln(3

√
3)

]
405 =
406

ln(3
√
3) + 6

√
3 (17)

A complete solution for the bifurcation diagram of the lower bounded function is the set of all fixed points for supremum407

minimum bifurcation points in the interval, R0 ∈ [2−1, 3
√
3 · 8−1], and the infinum maximum bifurcation points in408

the interval R0 ∈ [0, 2−1], for which there exists exactly two fixed points. From figure 7(a), this will be the set of all409

Q+ when R1 < R0 < Rc, and Q− when 0 < R0 ≤ R1. Then, for R0 = R1, the derivative of the right-hand-side410

of equation (14) will have some µ ∈ R equivalence to the slope of the linear function R = −mQ + 2−1; where,411

(R,Q) ∈ R2 can be solved for at 0 = −mQ+ + 2−1. The solution for Q+ as a function of µ, when substituted into412

equation (11) for R0 = R1, provides two complex-valued solutions: µ = 2−1 ± i
√
7 · 2−1. From this information,413

an approximate estimation can be given at µ+ = (4
√
7 + 3) · 4−1. With the method provided, this approximation414

for µ+ may be utilized with respect to figure 8(a) to better determine an approximate geometry of the bifurcation415

points; however, since integration from µc → µ+, subtracted from the area covered from Rc → R1, will not produce416

an exact equivalence to equation (16) unless the approximation is determind to be exact, then a stronger approach for417

obtaining the bifurcation diagram, is to consider relative slope change with respect to the supremum minimum, and418

infinum minimum bifurcation points, {Q−, Q+} ∈ (Qc,+∞). These are found by comparing the ratios of Rc → R1419

and Rc → 0 for some equivalent iterative step equivalent to the time set, t ∈ T . If the time step is set to occur

(a) (b)

Figure 7

420

4Question 1 to the reader: Can limQ→+∞[Q−ln(Q)] be solved for some Q = Q(t), with the limit of t producing an equivalence
to the Euler-Mascheroni constant, γ = 0.57721...?

5See example 1 for reasoning.
6Question 2 to the reader: If Q is expressible by some function of variable, t, and λ0, λ1 ∈ C, what is the function Q(t); such

that, limt→+∞ of equation (16) is equivalent to ln(3
√
3) + 6

√
3? Does equation (15) have an exact solution for R; such that, the

equation is balanced?

14
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exclusively within the same boundary conditions as Rc → R1, and Rc → 0, then for any Rc − t1 that maps to µ−, the421

proportionality ratio is Rc(Rc − 2−1)−1 = 3
√
3(3

√
3− 4)−1. Observable information from figure (b), and relative422

time-proportionality shifts determining Q+ with respect to Q−, provides the appearance of everywhere being the second423

fixed point in the interval, (Rc, R1). Indication of this equivalence is noteworthy, as the maximum change in the rate of424

the slope, −m, from the linear equation, R = −mµ+R0, being the third derivative of µ(1 + µ2)−1 = 0, with respect425

to µ, is the maximum change in rate of the function, µ− =
√

9 · 2−1 +
√
73 · 2−1. This reasons by evidence, that the426

difference, Q+ −Q−, for any t ∈ (Rc, R1), will have a lesser change in difference for the variables, µ−, µ+, up to the427

limit of the maximum change in rate of the function. The reflexive relation of variables in the original nonautonomous428

scalar equation with unit dependence, then allows for the generalization of t = t(B), and B = B(t); since, µ = Bα−1,429

and both, B, and α, are unit dependent on the state space, B. Then the variance of the bifurcation points, and region of430

three fixed points with respect to Budworm population density will have some shift in the difference of B+ and B− for431

variable, R ∈ R. The geometry provided for the bifurcation diagram in terms of variables, R,Q,B, can be generalized432

under these conditions.[16]

Figure 8

433

IV Discussion434

Topics and methods provided in this text are of the exploratory type. Language and definitions are constructed from435

verifiable reference material. Any deviation from the minutiae of linguistic interpretation is unintentional. The goal of436

this writing is to utilize the language provided as effectively as possible to present a narrative on the numerical and437

geometric evidence presented. All sequences of steps and processes have been considered from an exhaustive list of438

trial and error attempts. They are not claimed to be unique or novel. All solutions presented, if correct, are presumed439

solvable by differing strategies.440

441

Of topics lightly explored, but with much interest, are those of Rate- and Noise-Induced Tipping. The ongoing442

understanding is one filled with questions regarding methods used to quantify the region at which, for example, a443

Noise-Induced Tipping of a system would occur; further, as a means to learn how the composition of two functions444

defining these Noise Tipping regions might increase or decrease by an arbitrary approximation or topology.445
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Appendix A. Quantifying Nested Sets446

A set which contains an infinite number of elements can be simplified to a single statement that refers to that infinity as447

a unique number. This method is useful when considering a set of linearly independent sets that themselves are sets448

containing a finite, countable infinity, or uncountable infinity of elements. The proof of this statement contains a direct449

proof and a contradiction. Take the cardinality of a finite number of elements to be less than a countable infinity of450

elements to be less than an uncountable infinity of elements.451

|R| = |R/Q| > |Q| = |Z| = |N| > |{n}| = n ∈ R

This provides a statement that allows for sets of numbers to be mapped to other sets of numbers. Analysis on this topic452

can be simplified to three unique equivalence relations. Since the cardinality of a set defines the quantity of elements453

contained within, then the empty set, ∅, contains no elements, and therefore has a quantity of 0. The quantity of any454

singleton defining a number, including the number 0, will have a cardinality of 1. Lastly, a set containing an infinite455

quantity of singletons will have a cardinality greater than 1. Consider the time set, T , that contains an uncountable456

infinity of elements.457

∀{τ} = T ̸= ∅ ∃{τn : n ∈ N, τn ̸= τn+1} ⊆ T :
458

{τ}=̂N ⇐⇒ |T | ≥ |{τn}| ≥ |N| = ℵ0

The relation symbol, =̂, denotes a bijection between two sets. The symbol, ℵ0, refers to the number of elements in a set459

with a countable infinity of unique elements. Since the time set, T , has a bijection with the set of all Real numbers, R,460

then the quantity of elements in T is greater than ℵ0.461

|T | > ℵ0 ⇒ |T | = |R| ≥ ℵ1 > ℵ0 = |N|

When considering a set comprising an infinite number of elements, there are two cases: |ℵ0| = 1 or |ℵ0| = ℵ0. The462

same principle then applies to a set containing some unique number; such as, |1| = 1, |π| = 1, or |0| = 1. The last of463

these, |0| = 1, is distinct from the number of elements in the empty set: |∅| = 0. Since a single element, n ∈ N, that is464

not equal to 1, n ̸= 1, does not produce a cardinality that is equivalent to the value, |n| ≠ n, then the same holds true465

for |ℵ0| ≠ ℵ0.466

467

Proof by contradiction:468

469

If we assume that 0 = ∅ and are considering the empty set with respect to the set, T =̂R, then the complement of the470

empty set is the time set, T : ∅C = T . If a unique singleton, τ ∈ T , has a cardinality of 1, and since 1 ∈ T , then471

the complement of this singleton will be the full set not including that element: 1C = T /1. The cardinality of this472

set is then the full set, |T /1| = T . The complement of this set will be the empty set, T C = ∅. From this method473

of quantifying the sets, determining the cardinality of a singleton, then taking the complement by this method twice474

produces the empty set; where, the complement of the empty set is then equivalent to T and T /1. This requires that475

T = T /1, which is clearly not true.476

||τ |C |C = ∅ ⇒ ∅C = T , ∅C = T /1 :
477

1 ∈ T , 1 ̸∈ T ⇒ contradictio

■478
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Appendix B. Normalization of Upper-Limit variable, β479

Given the following equation for the Spruce-Budworm and Forest model.480

Ḃ = rBB

(
1− B

KB

)
− βB2

α2 +B2

A unit analysis determines unit-equivalences required for the function to be considered in a nonautonomous scalar481

equation form.482

Ḃ =

∣∣∣∣∣∣∣∣dBdt
∣∣∣∣∣∣∣∣ B̂t̂ ⇐⇒ r̂BB̂ ∝ B̂

t̂
,

r̂BB̂
2

K̂B

∝ B̂

t̂
,

β̂B̂2

α̂2 + B̂2
∝ B̂

t̂
, and α̂2 + B̂2 ∝ B̂2

483

⇒ r̂B ∝ 1

t̂
, K̂B ∝ B̂, α̂ ∝ B̂, and β̂ ∝ B̂

t̂

The variable, B, is taken to be analogous to the state space: B ∼= X . The variable, rB is the only variable with unique484

linear dependence on the time set, T . Requiring that β have dependence on ẋ, provides evidence that the function is485

self-iterating. Then, noting that units cancel for BK−1
B and B2(α2 + B2)−1, a reduction provides the system as a486

nonautonomous scalar spacetime function.487

Ḃ = ẋ, B = x, rB = ϕ(t),
B

KB
= λ0, β = β(ẋ),

B2

α2 +B2
= λ1

⇒ ẋ = xϕ(t)(1− λ0)− λ1β(ẋ)

Solving this equation with dimensionless scalar values, λ0, λ1 ∈ R, in terms of x, t ∈ R, provides a solution for the488

trajectory path.489

xϕ(t) =
ẋ+ λ1β(ẋ)

1− λ0

Taking the time-derivative for each of the variables with dependence on the time set, produces a system of equations490

that individually comprise depenence to the rate of change, ẍ, in the nonautonomous scalar equation.491

ẍ =(1− λ0)ϕẋ+ (1− λ0)ϕ̇x− λ1β̇

ẋ =

(
1

ϕ(1− λ0)

)
ẍ+

(
λ1

ϕ(1− λ0)

)
β̇ −

(
ẋ+ λ1β

ϕ2(1− λ0)

)
ϕ̇

ϕ̇ =

(
1

x(1− λ0)

)
ẍ+

(
λ1

x(1− λ0)

)
β̇ − ẋ2 + λ1βẋ

x2(1− λ0)

β̇ =

(
− 1

λ1

)
ẍ+

(
1− λ0

λ1

)
ϕ̇+

(1− λ0)ϕẋ

λ1

Taking the composition of ϕ̇ ◦ β̇, ẋ ◦ β̇, and ẍ ◦ β̇ removes the variable ẍ from each solution.492

ϕ̇ ◦ β̇ ⇒ ϕ̇ =
(1− λ0)ϕ(x− 1)x− ẋ(1− λ1β)

(1− λ0)(x− 1)x

ẋ ◦ β̇ ⇒ ẋ =ϕ(1− λ0)− λ1β

ẍ ◦ β̇ ⇒ x =1

This provides reasoning to conclude that the upper limit of predation, β, being dependent on Ḃ, can be normalized to493

a scalar value, β = 1, when considering the rates of change on the system, ẍ, without losing information about the494

system overall.495
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