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We present an algebraic framework demonstrating that electron spin states arise dynamically rather
than being predetermined. By reinterpreting Thomas precession in accelerated motion, we establish
the natural quantization of spin angular momentum to h̄/2, and its characteristic 4π periodicity. The
0-Sphere model introduces a dynamic photon sphere, characterized by Zitterbewegung oscillation at
approximately 0.04c. This mechanism resolves the superluminal velocity paradox in classical electron
models, while providing a physical basis for spin orientation. Our analysis of the outer product
operation reveals that spin states emerge from periodic variations, with orientation determined
by dynamic processes rather than predefined properties. The model naturally explains spin’s
pseudovectorial nature through the geometric properties of the photon sphere, providing a unified
understanding of spin transformation under spatial inversion and time reversal. Furthermore, we
propose a novel interpretation of quantum entanglement through temporal phase progression, where
correlated spins maintain their relationship via coherent oscillations instead of non-local interactions.
Our findings suggest that the violation of Bell’s inequality originates from the failure of realism, not
locality. This perspective preserves locality and explains entangled states through coherent temporal
phase evolution, offering a novel understanding of quantum mechanical correlations.

I. INTRODUCTION

Bell’s seminal work in 1964 established a rigorous
mathematical framework to test the compatibility of
quantum mechanical predictions with local realism [1].
The resulting inequality demonstrates that quantum
mechanics must violate at least one of three fundamental
assumptions: realism (the belief that physical properties
exist independently of observation), locality (the principle
that interactions are limited to local influences), or
observer free will (the assumption that experimental
settings are freely chosen). While numerous experiments
have confirmed the violation of Bell’s inequality [2, 3],
identifying which specific assumption fails has remained
a central question in quantum foundations. In this
study, we demonstrate algebraically through closed-form
equations that the assumption of realism among these
three assumptions is violated, while preserving locality
through a novel interpretation based on temporal phase
progression.

The discrete nature of electron spin states, definitively
demonstrated by the Stern-Gerlach experiment [4],
challenged classical interpretations and established the
quantum mechanical nature of spin. However, the physical
mechanism behind spin angular momentum quantization
and quantum entanglement remains poorly understood,
a gap this study seeks to address.
While the pseudovectorial nature of electron spin

is well-established through quantum mechanics and
Pauli matrices, a fully intuitive geometric visualization
reconciling this property with relativistic constraints
remains an open challenge. Classical rotating sphere
models encounter superluminal velocity issues, while
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modern geometric phase theories, though mathematically
advanced, lack intuitive interpretability. The 0-Sphere
model presented here bridges this gap, offering a unified
geometric framework that naturally incorporates spin’s
pseudovectorial properties while remaining consistent with
quantum mechanical and relativistic principles.

Our approach reinterprets Thomas precession in
accelerated motion, revealing a new origin for the
quantization of spin angular momentum to h̄/2 and the
characteristic 4π periodicity of spinors. By examining
the geometric nature of phase evolution under Thomas
precession, we show that spin states arise dynamically
from periodic variations, challenging the view of spin as
a pre-existing intrinsic property.

While simple harmonic motion traditionally lacks a
directional orientation, our modified oscillator model
incorporates forward orientation throughout the cycle to
account for the electron’s magnetic nature. This effective
breaking of time-reversal symmetry emerges naturally
from our closed algebraic equations, offering a unified
mathematical explanation for spin quantization and its
directional properties.

Our algebraic formulation provides a framework that
not only offers an intuitive visualization of electron spin
and entanglement but also maintains consistency with
established quantum mechanical principles. Most notably,
our approach demonstrates how quantum correlations
can arise through coherent temporal phase progression
without requiring non-local interactions, suggesting
new possibilities for understanding the deeper physical
mechanisms underlying quantum phenomena.

The 0-Sphere model offers a novel interpretation of
quantum entanglement. It preserves locality and explains
the violation of realism through temporal phase evolution.
Additionally, it resolves historical challenges, including
the superluminal velocity paradox in classical spin models.
Through the introduction of a dynamic photon sphere
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Fig. 1. Evolution of the pendulum model from
conventional to oriented oscillation: (a) Traditional
simple harmonic pendulum showing reciprocating motion
without directional properties. (b) Modified pendulum
model introducing forward (F ) and backward (B)
orientations, maintaining time-reversal symmetry in
conventional 360-degree oscillation.

mechanism, this approach maintains consistency with
both quantum electrodynamics and special relativity
while offering new insights into the nature of quantum
correlations.

II. FUNDAMENTAL PROPERTIES
OF TIME REVERSAL

The concept of time reversal plays a fundamental role
in quantum mechanics. While classical time reversal
can be understood as simply “running time backwards” -
like reversing a video - quantum mechanical time reversal
exhibits more subtle and profound properties, particularly
when applied to spin systems. This quantum behavior is
encapsulated in the mathematical relationship:

T ŜT −1 = −Ŝ. (II.1)

Here, T represents the time-reversal operator acting on
the spin operator Ŝ. The negative sign on the right-hand
side reveals a crucial quantum mechanical property: under
time reversal, spin direction is reversed. This behavior
has no classical analog and lies at the heart of quantum
mechanical spin properties.
This property plays a crucial role in various quantum

phenomena, particularly in the context of quantum entan-
glement and Cooper pair formation in superconductivity,
where the interplay between time-reversal symmetry and
spin dynamics becomes essential. Our model provides
a framework for understanding these subtle quantum
mechanical behaviors, particularly in the context of
quantum entanglement and Cooper pair formation in
superconductivity.
When we introduce directional labels to this classical

system, as shown in Fig. 1(a,b), we maintain classical

Fig. 2. Spinor-like pendulum representation showing
time-reversal symmetry breaking: (c) Outward motion
maintaining forward (F ) orientation of the oscillating
mass. (d) Return motion where the mass preserves
its forward orientation, demonstrating a fundamental
departure from conventional pendulum dynamics and
suggesting a new perspective on electron spin properties.
In (c), the pendulum with the bar magnet moves outward
with the blue (F ) pole pointing to the left. Even if
time-reversed, the forward (F ) orientation of the blue
pole would remain leftward, as in Fig. 1(b). However,
considering the time-reversal properties of a spinor, a
negative sign must be applied, reversing the polarity.
Consequently, the time-reversed pendulum must have
reversed magnetic poles, with the blue (F ) pointing
to the right, as shown in (d). This implies that the
time-reversed pendulum, with its polarity inverted, must
return as depicted in (d). This preservation of directional
properties under time reversal, while maintaining spin
orientation relative to motion, provides an early indication
of spin’s pseudovectorial nature (see Section IVF for
detailed discussion). This figure schematically illustrates

why a simple pendulum cannot satisfy T ŜT −1 = −Ŝ
and captures the spinor-like dynamics of time-reversal
symmetry.

time-reversal symmetry but still fail to capture quantum
mechanical properties. To understand Fig. 2 intuitively,
we can trace the evolution from classical to quantum
behavior in pendulum motion. A traditional pendulum
exhibits simple back-and-forth motion without any
inherent directional properties, where time reversal merely
reverses the motion path. The crucial transition occurs
in Fig. 2(c,d), where forward orientation is preserved
throughout the oscillation while time reversal demands a
fundamental reversal of magnetic poles. This behavior,
unique to quantum systems, naturally leads to the
characteristic 4π periodicity of spin- 12 particles and
demonstrates why conventional mechanical analogies are
insufficient for describing electron spin.
The time-reversal operation reverses the direction of

spin, a quantum mechanical property uniquely captured in
our proposed model shown in Fig. 2(c,d). In conventional
pendulum representations with mere polarity, such as
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Fig. 1(b), time reversal would maintain the same F and
R orientations, failing to reflect the necessary reversal of
magnetic poles ( N and S).

The conventional model thus cannot properly represent
how spin direction should reverse under time-reversal
operations. A critical limitation of the traditional circular
current model of electron spin is its inability to explain
why spin angular momentum is quantized to half-integer
values of Planck’s constant. In contrast, our proposed
model naturally achieves this quantization through the
transition from the state shown in Fig. 2(c) to that in
Fig. 2(d).

The preservation of forward orientation in our model
is not merely a mathematical construct but reflects a
fundamental physical reality: the electron’s magnetic
nature remains coherent throughout its motion. This
coherence manifests in the characteristic 4π periodicity
of spinors, a property that emerges naturally from
our mathematical framework as shown in Eq. II.1 and
illustrated in Fig. 2.

Panel (c) shows the same configuration as Fig. 2(c),
where the spin axis vector points into the page during
rightward rotation. Panel (d) represents the time reversal
of (c), where the spin axis vector points outward from
the page in accordance with the time-reversal operation
(T ŜT −1 = −Ŝ). Panel (e) introduces a critical aspect
of the model through the mirror reflection of F -R
labels, representing the phase progression from π to 2π.
To understand this configuration, consider an electron
continuing leftward beyond x = −a to x = −2a after
the state shown in (c). In such motion, the sphere
would maintain clockwise rotation with an unchanged
spin axis vector direction, as altering the direction with
each movement would necessitate distinguishing between
kernels A and B. Given that single-electron states
are exchangeable, the spin axis vector must point into
the page when moving leftward from the state in (c).
This behavior must be consistent with Zitterbewegung,
analogous to Brownian motion: when moving in random
directions, if the spin axis vector consistently points
rightward relative to the direction of motion, then upon
reversal as shown in (e), the F -R circle undergoes mirror
reflection. Consequently, the spin axis vector in (e) points
outward from the page, maintaining the same direction
as the axis vector in (d) while preserving the rightward
orientation relative to the direction of motion.

The preservation of forward orientation in our harmonic
oscillator model emerges naturally from the mathematical
structure of the double angle term sin(2ωt). This
geometric interpretation provides a natural explanation
for the time-reversal properties of electron spin. When
time is reversed, the spatial motion reverses, but
the accumulated internal phase ensures that the spin
orientation transforms according to the correct quantum
mechanical properties.

The time-reversal symmetry properties discussed above
have significant theoretical implications for the under-
standing of quantum mechanical systems. Section III will

Fig. 3. Classical representation of electron spin as
continuous rotational states in magnetic field. This
model, showing continuous orientations of magnetic
dipole moments, was invalidated by the Stern-Gerlach
experiment, which demonstrated the quantum nature of
spin with only two discrete states. This historical view
helps illustrate why the classical circular motion model
fails to explain the quantum mechanical properties of
electron spin.

examine how this framework provides a mathematical
basis for several fundamental aspects of quantum
mechanics: the quantization of spin angular momentum
to h̄/2, the emergence of the electron’s magnetic moment,
and the manifestation of quantum entanglement states.
The detailed mathematical formulation of the energy
relationships that underpin these phenomena has been
previously established in [6].

III. ELECTRON SPIN REINTERPRETED

A. From Thomas Precession in Circular Motion to
Linear Harmonic Acceleration

The closed algebraic equation discussed here, Eq.
(III.4), will be derived and presented later in this
section [6]. The harmonic oscillation in our model
emerges naturally from the thermal energy gradient
between the two kernels (for a detailed derivation, see
Appendix VIC). This analysis bridges the gap between
Thomas precession in circular motion and linear harmonic
acceleration, as discussed in the following subsections.
The traditional interpretation of electron spin, visualized
in Fig. 3, assumed continuous rotational states of magnetic



4

moments. However, the Stern-Gerlach experiment
definitively demonstrated that electron spin exists only
in two discrete states, fundamentally challenging this
classical picture.

The concept of quantum entanglement, first identified
by Einstein, Podolsky, and Rosen [5], has evolved
from a theoretical paradox to an experimentally verified
phenomenon. While Bell’s inequality [1] provided
a mathematical framework to test the compatibility
of quantum mechanics with local realism, leading to
numerous experimental confirmations [2], the fundamental
physical picture of electron spin remains unclear.
The conventional model (Fig. 3) treating spin as

continuous circular motion encounters several fundamen-
tal limitations. First, it fails to explain the discrete
nature of spin states conclusively demonstrated by the
Stern-Gerlach experiment. Additionally, the model
cannot account for the gyromagnetic ratio of exactly
2, which defies classical explanation. Furthermore,
the observed 4π periodicity of spinor rotation remains
inconsistent with classical angular momentum principles.

To address these limitations, we propose a fundamental
revision of Thomas precession by removing the assumption
of constant acceleration. In our approach, the electron’s
motion is characterized by harmonic acceleration. As
derived in detail in Appendix VIC (Eq. VI.8), the
temperature gradient between the two kernels naturally
leads to a sinusoidal force. This harmonic oscillation
perspective leads us to substitute a = − sin θ into
Thomas precession in place of the conventional constant
acceleration (a = const).
The discussion begins with the background of the

association of spin with precessional motion. In relativity,
if the electron is in uniform linear motion, the coordinate
system describing the electron’s motion can be calculated
by Lorentz transformation. However, if the electron is in
an accelerated motion, it is calculated that the axis of the
coordinate system describing this electron rotates when
observed from the laboratory system. Thomas wrote in
his paper that the axes of a coordinate system with an
origin and translating with the electrons are observed in
a laboratory system to rotate with the following angular
velocity as in Eq. (III.1),

Ω =
1

2c2
[a× v], (III.1)

where a is the acceleration of the electron and v is the
velocity of the electron. Note that in Eq. (III.1), the
approximation (β = 1 − v2/c2 ≒ 1) is set in Lorenz
transformation. Equation (III.1) can also be applied to
the general case where the particles are not in uniform
circular motion. As the particles are in uniform circular
motion, the following equation is obtained,

Ω = −1

2

v2

c2
ωconst. (III.2)

The spin image in precession that we now recall comes
from Eq. (III.2). The angular velocity Ω obtained is a
constant proportional to ωconst. In this study, however,
we will not consider the issue using Eq. (III.2), but rather
equation (III.1).

The quantisation of the orbital angular momentum into
units of h̄ reflects the nature of space, which returns to
its original state after one rotation. According to the
relationship between angular momentum and magnetic
moment, if the angular momentum is halved to h̄/2, the
magnetic moment should also be µe/2. However, the
magnetic moment of the spin angular momentum is equal
to µe, even though the angular momentum is h̄/2. This
means that spin rotation can generate magnetic fields
twice as efficiently as orbital rotation and responds to
magnetic fields with twice the sensitivity. This property
could not be explained by theories based on circular
currents observed in three-dimensional space.
Consider this discrepancy from the perspective of

Thomas precession. Equation (III.3) forms an important
basis for this paper. The traveling of the photon sphere,
γ∗, is represented by a sinusoidal function. The study was
described as the 0-Sphere electron model (see Appendix
VI for a detailed introduction to the 0-Sphere concept).
In this electron model, the Thermal Potential Energy
(TPE) of the electron is a set of radiation and absorption,
which describes the motion of the electron; the TPE
changes partly kinetic energy, which drives the photon.
The motion of the photon could be represented by a very
simple sinusoidal function in this research model. First,
we let the two values as follows;

(V erocity) : vγ∗ = cosωt,

(Acceraration) : aγ∗ = −sinωt.
(III.3)

Substitute Eq. (III.3) into Eq. (III.1) then,

Ω =
1

2c2
[aγ∗ × vγ∗ ]

=
1

2c2
[−sinωt× cosωt]

=
1

2c2
·
(
−1

2
sin2ωt

)
.

(III.4)

The above discussion yields an extremely important
result. Namely, when the outer product of cosine and sine
is calculated, − 1

2 sin2ωt appears. Equation (III.4) is the
basis for obtaining a doubled angular velocity cycle. It
was found that the displacement, velocity and period of a
single oscillation have a cycle of ωt, whereas the angular
velocity has a cycle of 2ωt. One wave period of single
oscillation is determined by the angular velocity. The
angular velocity with Thomas precession has a period of
half the displacement.

The results of the study of the above equation provide a
basis for the quantisation of the spin angular momentum
to a value half the Planck constant.
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B. Non-Predetermined Nature of Spin States

Through a reinterpretation of Thomas precession using
the 0-Sphere model, we examine how spin states emerge
from temporal phase progression. By analyzing the
harmonic oscillations, we show that the spin orientation
alternates naturally between “up” and “down” states
within a single oscillation cycle.

Specifically, during the first half-cycle with phase
(0 ≤ ωt/2 < π), the spin orientation corresponds to
a “spin-up” state, while during the second half-cycle (π ≤
ωt/2 < 2π), it transitions to a “spin-down” state. This
alternation is governed by the time-reversal symmetry of
spinors (T ŜT −1 = −Ŝ), which induces a 4π-periodicity
characteristic of spin- 12 particles.

The algebraic equations presented in this study provide
a closed-form derivation of this behavior, offering a
deterministic framework for understanding spin dynamics
that aligns with the experimental observations of the
Stern-Gerlach experiment. These findings underscore the
dynamic nature of spin states, challenging traditional
views of spin as an intrinsic and static property.

IV. DISCUSSION

A. Physical Interpretation of the Double Angle
Term

Traditional quantum mechanics relies heavily on plane
wave formalism, which, while mathematically powerful,
presents certain conceptual challenges in describing
electron transport and energy propagation. The process of
energy conversion in the 0-Sphere model can be expressed
mathematically as:

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
.

(IV.1)
where E0 represents the rest energy of a single electron
in the system. The first term containing cos4(ωt/2)
corresponds to the fourth power of the rest mass of kernel
A, while the second term with sin4(ωt/2) represents the
fourth power of the rest mass of kernel B. The final term
containing 1

2 sin
2(ωt) describes the portion of the kernel’s

Two-Photon Exchange (TPE) that has been converted
into kinetic energy.

The radiation pressure generated by the photon sphere
plays a crucial role in this transport mechanism. When the
thermal potential energy (TPE) of kernel A transforms
into radiation pressure, it creates a gradient between
positions A and B (see Appendix VIC for the complete
derivation of this gradient) that follows a simple sinusoidal
form:

∇Prad = P0 sin(ωt) (IV.2)

where P0 represents the maximum radiation pressure
amplitude. This physical mechanism, based on radiation
pressure gradients and energy conversion processes,
provides an intuitive framework for understanding
electron transport while maintaining consistency with
quantum mechanical principles [6].
The emergence of the term − 1

2 sin(2ωt) in Eq. (IV.1)
presents a significant advancement in understanding the
quantum mechanical properties of electron spin through
classical mathematical formalism. This section analyzes
the physical implications of this mathematical result and
its relationship to established quantum phenomena.
The conventional quantum mechanical description

of spin angular momentum presents a fundamental
puzzle: while the spin angular momentum is h̄/2, the
magnetic moment equals µB rather than the expected
µB/2 [8]. The classical interpretation has struggled to
explain this apparent discrepancy. The term − 1

2 sin(2ωt)
provides a mathematical foundation for understanding
this phenomenon:

Ω =
1

2c2
[aγ∗ × vγ∗ ] =

1

2c2
·
(
−1

2
sin2ωt

)
(IV.3)

The factor of 1/2 appearing in Eq. IV.3 naturally
accounts for the quantization of spin angular momentum
to h̄/2. More significantly, the double angle term 2ωt
indicates that the angular frequency is twice that of
conventional orbital motion.

The appearance of sin(2ωt) suggests that the electron’s
phase completes two cycles for each spatial rotation. This
behavior aligns with the experimental observation that
electron spin states return to their initial configuration
only after a 4π rotation, rather than the 2π rotation char-
acteristic of classical angular momentum [9]. Furthermore,
the presence of the double angle term provides a natural
explanation for the existence of two distinct spin states
(spin-up and spin-down), as the system undergoes two
oscillations per rotation cycle.

The interpretation through harmonic oscillation, rather
than uniform circular motion, resolves several longstand-
ing issues in the classical picture of electron spin. The
sinusoidal nature of the solution indicates that the spin
angular momentum varies periodically, consistent with
quantum mechanical superposition of spin states. This
oscillatory behavior, combined with the double frequency
term, suggests that the electron’s internal dynamics are
more complex than simple rotation.
Through the reinterpretation of Thomas precession,

even with uniformly accelerated linear motion, the oscilla-
tor system manifests angular momentum—specifically,
spin angular momentum. This formulation bridges
the gap between classical and quantum mechanical
descriptions of electron spin, providing a mathematical
foundation for properties previously considered purely
quantum mechanical. The double angle term emerges
naturally from the classical equations of motion when
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considering harmonic oscillation, suggesting that some as-
pects of quantum spin can be understood through classical
mathematics, albeit with non-classical interpretation.

B. Geometric and Algebraic Proof of Forward
Orientation Preservation

The preservation of forward orientation in our harmonic
oscillator model, as illustrated in Fig. 2(c,d), emerges
naturally from the mathematical structure of the double
angle term sin(2ωt). This section provides a rigorous
mathematical proof of this phenomenon and explores its
physical implications.

In the conventional treatment of harmonic motion, the
position x(t) of the oscillator is given by x(t) = cos(ωt).
The corresponding velocity v(t) = −ω sin(ωt) changes
sign at the endpoints of the oscillation. However, our
analysis reveals a deeper structure when we consider the
internal rotation described by the angular velocity Ω
derived in equation (III.1).

When the oscillator reaches the left endpoint (t =
π/ω), the internal phase has completed a full 2π rotation.
This mathematical structure explains why the forward
orientation (F ) must remain unchanged: the oscillator
has undergone one complete rotation in its internal space
while moving through only half a cycle in physical space.

The preservation of forward orientation can be
understood through the lens of spinor transformation
properties. Under spatial translation from right to left
(0 → π), the internal state undergoes a full 2π rotation,
maintaining its original orientation. This behavior is
different from vector quantities, which return to their
original state after a π rotation.

The geometric interpretation of the 0-Sphere model
(see Appendix VIB for the mathematical definition
and properties) provides a natural explanation for
the time-reversal properties of electron spin. The
equation T ŜT −1 = −Ŝ emerges as a consequence of
the relationship between spatial and internal rotations.
When time is reversed, the spatial motion reverses, but
the accumulated internal phase ensures that the spin
orientation transforms according to the correct quantum
mechanical properties.

This geometric proof not only validates our pendulum
model but also provides a deeper understanding of
the relationship between classical harmonic motion and
quantum mechanical spin. The preservation of forward
orientation, far from being an ad hoc assumption, is
a necessary consequence of the mathematical structure
of the theory. Moreover, the mathematical structure
presented in Eq. (IV.1) provides insight into the quantum
mechanical property of spin- 12 particles requiring a 4π
rotation to return to their initial state. The presence
of sin(2ωt), indicates that the internal phase completes
two cycles for each spatial rotation, consistent with the
topological phase acquired by spinors under rotation [10].

C. Time Reversal in the 0-Sphere Model

The pendulum representation shown in Fig. 2 warrants
deeper examination in the context of time-reversal
symmetry. The reinterpretation of Thomas precession
demonstrates that while angular velocity vanishes during
uniform linear motion through the origin, it emerges
during accelerated motion. This fundamental principle
has significant implications for the oscillator model.

To illustrate these implications systematically, consider
the progression shown in Fig. 4. (a) Depicts uniform linear
motion without spinorial rotation, where masses maintain
constant F -R orientation during translation. (b) Shows
uniform linear motion incorporating 720-degree spinorial
rotation. Neither (a) nor (b) generates angular velocity
through Thomas precession due to their uniform motion.
(c) Illustrates the mass undergoing simple harmonic
acceleration through the origin (x = 0). Through deep
reinterpretation of Thomas precession, this accelerated
motion manifests angular velocity. As the mass traverses
from the right endpoint (x = +a) to the left endpoint (x =
−a), while the simple harmonic oscillator phase advances
by π, the F -R oriented sphere itself completes a full
360-degree (2π) rotation. During one complete oscillation
cycle, the photon sphere’s kinetic energy phase advances
by 2π, while the F -R sphere undergoes two complete
rotations. This relationship provides a novel visualization
of the conventional 720-degree spinor periodicity, resolving
the long-standing puzzle of why spinors require a 4π
rotation to return to their initial state. The color intensity
in (c) correlates with the velocity of the mass: the absence
of coloration (white) at x = ±a indicates zero velocity at
these turning points, while the yellow and brown coloring
at x = 0 represents maximum velocity at the equilibrium
position. Moreover, the time-reversal symmetry of spin,
expressed as T ŜT −1 = −Ŝ, naturally corresponds to the
spin orientation in (c): spin-up during the initial phase
(0 to π) as the mass moves from +a to −a, followed
by spin-down during the subsequent phase (π to 2π),
providing a geometric visualization of spin reversal under
time reversal.
However, consider the uniform linear motion depicted

in Fig. 4(a), where circular elements progress along a
linear path. In this configuration, no angular velocity
manifests, rendering this representation insufficient for
describing the quantum mechanical behavior of electron
spin. This limitation necessitates a more sophisticated
model that incorporates the periodic nature of both the
kernels and the photon sphere.
As previously established in Eq. IV.1, the energy

conservation relationship describes the distribution of
total energy E0 among different components of the system.
A detailed analysis of this equation reveals a critical
relationship: kernel A exhibits periodicity in phase ωt/2,
while the kinetic energy term of the photon sphere,
represented by 1

2 sin
2(ωt), demonstrates periodicity in

phase ωt. This doubling of frequency between the
kernel components and the photon sphere’s kinetic energy
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Fig. 4. Schematic images of spinorial motion and Thomas precession in the 0-Sphere model. (a) Linear uniform
motion of F -R spheres with constant angular velocity ω = 0, representing a zero spin-axis vector in conventional
physics. (b) Uniform circular motion through the origin, where F -R spheres rotate with constant acceleration,
corresponding to angular velocity ω = const. This represents the conventional spin concept with definite clockwise or
counterclockwise rotation, preserving realism in Bell’s inequality as described in Eq. III.2. (c) Harmonic oscillatory
motion of F -R spheres in both velocity and acceleration, where through reinterpretation of Thomas precession, the
spin-axis vector alternates between up and down states depending on the temporal phase, as described by Eq. III.1.
The 0-Sphere model yields an average microscopic Zitterbewegung oscillation velocity approximately 0.04c. The
distance between x = +a and x = −a represents the actual amplitude of the photon sphere’s oscillation. The circles
represent photon spheres with inherent directional polarity (F -R), which mediate kinetic energy transport, rather
than conventional non-oriented masses. The model introduces these spheres as quantum mechanical entities that
manifest both particle-like and wave-like characteristics through their directional polarization and oscillatory motion.
The coordinate x = +a represents the initial position where kernel A resides with its rest mass energy, while x = −a
represents the endpoint where kernel B is located. The photon sphere mediates energy transfer between these kernels
through radiation. In the 0-Sphere model, the photon sphere radius is defined as rphotonsphere = 2a, with both kernels
A and B existing within this sphere. For clarity of visualization of the 360-degree rotation, the photon sphere is
depicted at a reduced scale in these schematic representations.

term proves fundamental to understanding the quantum
mechanical behavior of the system. Equation IV.1 evokes
a more concrete image of the electron: as the photon
sphere physically traverses from one endpoint to the
other during half a period of simple harmonic motion, it
completes one full 360-degree rotation about its axis.

As established in Eq. IV.3, the angular velocity arising
from Thomas precession reveals a fundamental relation-
ship between phase progression and spin orientation. This
mathematical structure indicates that during a phase

progression of π as the photon sphere travels from x = +a
to x = −a, the spinor component undergoes a phase
advancement of 2π. Fig. 4(b) illustrates this behavior,
depicting one complete rotation of the F -R-marked circle
during a π phase progression of the photon sphere.

The well-documented 720-degree periodicity of
spinors [11] finds natural expression in this framework: a
2π phase progression of the photon sphere corresponds
to two complete rotations of the sphere itself. This
relationship, illustrated in Fig. 4(c), provides a novel
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visualization of spin-1/2 behavior that maintains con-
sistency with both quantum mechanical principles and
relativistic constraints [12].
The representation of harmonic oscillation with

directional orientation presented in Fig. 4 offers a
unique perspective on spin dynamics, bridging classical
and quantum mechanical descriptions while preserving
essential mathematical relationships derived from Thomas
precession.
This oscillatory behavior, combined with the phase

relationships described by Equations IV.1 and III.4,
provides a comprehensive framework for understanding
the emergence of spin in linear harmonic motion. The
model resolves the apparent paradox between linear
oscillation and angular momentum generation through
the geometric phase accumulated during accelerated
motion [13, 14]. This interpretation aligns with modern
perspectives on geometric phases in quantum mechanics
while maintaining consistency with the principles of
special relativity.
The conventional representation of electron spin as

continuous rotation, as illustrated in Fig. 3, fails to
account for the fundamental binary nature of spin states.
However, the harmonic oscillator model presented in
this study naturally leads to the emergence of spin
dichotomy. When a mass undergoes simple harmonic
motion through the origin, traditional physics would
suggest no angular momentum is generated. This
preconception has historically hindered our understanding
of spin angular momentum.
The present model demonstrates how the temporal

evolution of harmonic oscillation inherently gives rise
to two distinct spin states. During the first half-cycle
(0 to π), as the oscillator moves from +a to −a, the
system manifests one spin orientation. In the subsequent
half-cycle (π to 2π), the time-reversal symmetry of spinors

(T ŜT −1 = −Ŝ) naturally leads to the opposite spin
orientation. This bifurcation of spin states emerges not
as an imposed condition but as a natural consequence
of the oscillator’s motion and the inherent properties of
spinors under time reversal.
This insight reveals how the quantum mechanical

property of spin discreteness can arise from a more
fundamental consideration of harmonic motion, providing
a bridge between classical and quantum descriptions.
The model resolves the long-standing puzzle of spin
binary states without invoking additional assumptions,
demonstrating that the discrete nature of spin states is
intrinsically connected to the temporal evolution of the
system.
The photon sphere mechanism in the 0-Sphere model

provides a consistent framework for understanding mag-
netic moment generation and spin state transitions. The
relationship between photon sphere velocity and magnetic
moment generation suggests potential connections to
broader phenomena in quantum systems, warranting
further experimental investigation.
A crucial question arises: does the photon sphere,

with its radius on the order of the Compton wavelength,
avoid exceeding the speed of light during its rotation?
Historically, the concept of an electron with finite size has
been rejected due to the superluminal velocities it would
necessitate. In the following subsection, we will review
this historical context and demonstrate how the 0-Sphere
model, with its prediction that Zitterbewegung oscillation
velocity is approximately 0.04c, provides a mathematical
framework that remains consistently below the speed of
light.

D. Magnetization Dynamics and Phase Transition
in the Oscillator Model

A critical examination of the transition from Fig. 2(c) to
(d) reveals a fundamental challenge in the preservation of
forward orientation during oscillation. If the mass were to
reverse its orientation at the endpoints through continuous
rotation, it would necessitate a classical magnetic pole
reversal process analogous to that shown in Fig. 3. Such
a reversal would require intermediate orientations, similar
to the bar magnets positioned at 3 o’clock and 9 o’clock in
Fig. 3, to transition between the 12 o’clock and 6 o’clock
positions.
An instantaneous F -R reversal would violate special

relativity’s prohibition of superluminal motion [15]. This
constraint is analogous to the classical requirement that
flipping a coin from heads to tails, even at the oscillation
endpoints where velocity vanishes, necessitates a finite
time interval. The 0-Sphere model addresses this apparent
paradox through the photon sphere mechanism revealed
in Fig. 4(c).

The photon sphere in this model mediates kinetic energy
transport and exhibits unique behavior at the endpoints
(x = ±a) where the oscillator velocity vanishes. At these
points, the photon sphere velocity reaches zero, leading to
a nullification of magnetic effects. This state is analogous
to the Meissner effect in superconductivity where photons,
acquiring effective mass, exclude magnetic flux lines [20].
The absence of coloration (white circles) at the endpoints
in Fig. 4(c) signifies this vanishing the photon sphere
velocity and corresponding zero magnetic moment.

Time-reversal symmetry demonstration in the 0-Sphere
model (Fig. 5) provides a comprehensive visualization of
spin state transitions. Panel (c) represents phase 0 to

π corresponding to the state Ŝ, where the circle rotates
clockwise. This choice of rotation direction is arbitrary
and has no mathematical significance - counterclockwise
rotation would be equally valid. Panel (d) shows

the time-reversed state (π to 0), representing T ŜT −1,
demonstrating how the spin orientation transforms under
time reversal. Panel (e) depicts phase π to 2π showing −Ŝ,
with the F -R mirror reflection illustrating the spinorial
characteristic of mirror image inversion during directional
reversal.

The x-axis in the figure represents the spatial trajectory
of the electron’s Zitterbewegung oscillation, showing its
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Fig. 5. Time-reversal symmetry demonstration in the 0-Sphere model. Panel (c) represents temporal phase 0 to π

corresponding to the state Ŝ, panel (d) shows time-reversed state (π to 0) representing T ŜT −1, and panel (e) depicts

phase π to 2π showing −Ŝ. Blue arrows indicate the spin axial vector direction. The F -R mirror reflection in panel
(e) illustrates the spinorial characteristic of mirror image inversion during directional reversal, providing a geometric
visualization of spin’s pseudovectorial nature (see Section IVF). In panel (c), the circle rotates clockwise, though
this choice is arbitrary and has no mathematical significance - counterclockwise rotation would be equally valid. The
x-axis in the figure represents the spatial trajectory of the electron’s Zitterbewegung oscillation, showing its motion
from x = +a to x = −a and back to x = +a. While the electron traverses the x-coordinate, the F -R circle’s spin axis
vector maintains its orientation in the direction of motion. For clarity of visualization, we have taken the z-axis to
be perpendicular to the page (pointing towards the viewer) to better illustrate the spin axis vector. In reality, the
photon sphere maintains its spin axis vector parallel to the direction of motion along the x-axis while undergoing
Larmor precession. This precession, though not explicitly shown in the figure for simplicity, is an essential feature
of the electron’s motion. The preservation of spin orientation relative to motion direction, combined with the F -R
mirror reflection, demonstrates how the model naturally incorporates the fundamental transformation properties of
pseudovectors under spatial inversion.

motion from x = +a to x = −a and back to x = +a.
While the electron traverses the x-coordinate, the F -
R circle’s spin axis vector (indicated by blue arrows)
maintains its orientation in the direction of motion. For
clarity of visualization, we have taken the z-axis to be
perpendicular to the page (pointing towards the viewer)
to better illustrate the spin axis vector. In reality, the
photon sphere maintains its spin axis vector parallel to
the direction of motion along the x-axis while undergoing
Larmor precession, though this precession is not explicitly

shown in the figure for simplicity.

The notion of massive, stationary photons at the
endpoints aligns with established quantum mechanical
observations in superconducting states. This framework
provided by the closed algebraic equations of the
0-Sphere model offers a consistent interpretation of the
experimentally observed binary nature of spin states
without contradicting fundamental physical principles.
The relationship between the photon sphere velocity
and magnetic moment generation suggests potential
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connections to broader phenomena in quantum systems,
warranting further experimental investigation.

E. Interpretation of Quantum Entanglement States
Through Temporal Phase

The quantum entanglement state represents a state
where two electrons take states (c) and (e) respectively,
as shown in Fig. 5 (5). When single electron rest masses
are placed in two kernels A and B and the pendulums
begin to oscillate, the two simple pendulums interact
alternately. This state constitutes quantum entanglement,
where each pendulum alternates between Ŝ and −Ŝ states
in temporal phase. This represents the alternating state
of up and down spins, and even when the two electrons are
separated remotely, as long as they oscillate in the same
period and direction—that is, in a coherent state—each
single electron periodically alternates between up and
down spins without requiring Einstein’s “spooky action
at a distance.” The up and down spins are then revealed
upon measurement. Through the progression of temporal
phase, the two electrons alternately transition between Ŝ
and −Ŝ states. Therefore, each spin is not predetermined,
which constitutes a violation of realism. This provides a
basis for accepting the violation of realism (where spin
is not predetermined) without violating the locality in
Bell’s inequality.
Therefore, the energy state of the quantum entangle-

ment state in the 0-Sphere model can be expressed as
follows:

2E0 =E0

(
cos4

(
ωe1t

2

)
+ sin4

(
ωe1t

2

)
+

1

2
sin2(ωe1t)

)
+ E0

(
cos4

(
ωe2t

2
+

2π

2

)
+ sin4

(
ωe2t

2
+

2π

2

)
+
1

2
sin2(ωe2t+ π)

)
(IV.4)

Quantum entanglement requires that the angular
momenta of the two electrons must be identical, meaning
ωe1 = ωe2. When the phases ωe1 ̸= ωe2, the periodicity
of alternation between Ŝ and −Ŝ states becomes
inconsistent, leading to decoherence. The expression 2π

2

is deliberately used without simplification in the cos4

and sin4 terms to emphasize that these terms represent
spinorial oscillators. This equation represents the state of
two entangled single electrons, where the total energy 2E0

remains constant regardless of temporal phase changes,
thus satisfying the law of energy conservation.
Separating entangled electrons to remote locations

means maintaining equal ωe1 and ωe2 while physically
separating them. Both electrons continue to alternate
between spin-up and spin-down states at the same
frequency. Therefore, when one electron is measured
and found to be in state Ŝ, the other electron’s state

is determined to be −Ŝ without requiring any“spooky
action at a distance.”

F. Pseudovectorial Nature of Spin
in the 0-Sphere Model

The behavior of the photon sphere during harmonic
oscillation provides a natural geometric interpretation
of spin’s pseudovectorial nature. While the FR circle
undergoes mirror reflection during direction reversal, the
preservation of clockwise rotation demonstrates how spin
angular momentum transforms differently from polar
vectors under coordinate inversion. This characteristic
aligns with the mathematical properties of pseudovectors,
where Ŝ → Ŝ under parity transformation, distinguishing
spin from conventional polar vectors r⃗ → −r⃗.
Moreover, this inherent pseudovectorial behavior

manifests in the model’s treatment of time-reversal
symmetry. The photon sphere’s preservation of rotational
direction relative to its motion, even after spatial
inversion, naturally explains why spin angular momentum
behaves as a pseudovector rather than a polar vector.
This geometric property emerges organically from the
model’s structure rather than being imposed as an
additional constraint, providing a natural framework
for understanding the transformation properties of spin
angular momentum.

G. Relativistic Limitations and the 0-Sphere Model

1. Historical Context: Relativistic Limitations
of Classical Electron Spin

The classical interpretation of electron spin as a rotating
sphere encountered a fundamental contradiction with
special relativity theory [16]. This limitation emerged
from a straightforward calculation of the equatorial
velocity of a hypothetical spinning electron. The
calculation proceeds from the known quantum mechanical
spin angular momentum of the electron, S = h̄/2, and
attempts to interpret it as classical rotational motion.
For a spherical electron with classical radius re =

e2/mc2, the moment of inertia I is given by:

I =
2

5
mr2e (IV.5)

The angular velocity ω can be derived from the spin
angular momentum relation:

S =
h̄

2
= Iω (IV.6)

Substituting Equation IV.5 into IV.6 yields:
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ω =
5h̄

4mr2e
(IV.7)

The equatorial velocity v is then:

v = ωre =
5h̄

4mre
(IV.8)

When numerical values are inserted (h̄ = 1.05 ×
10−34 J · s, m = 9.11 × 10−31 kg, re = 2.82 × 10−15 m),
the equatorial velocity becomes:

v ≈ 170c (IV.9)

This result, exceeding the speed of light by more
than two orders of magnitude, further demonstrates the
incompatibility between classical rotation and quantum
spin [17].

2. The Velocity of Electrons in the Bohr Model:
A Classical Paradox

The Bohr model, a cornerstone of early quantum theory,
provides an illustrative, albeit simplified, framework to
understand the motion of electrons in hydrogen-like atoms.
In this model, electrons are assumed to revolve around the
nucleus in circular orbits, with their motion governed by
the quantization of angular momentum. While the Bohr
model offers valuable insights into atomic spectra and the
quantization of energy levels, it also presents intriguing
challenges, particularly when examining the velocity of
electrons in their designated orbits.
The velocity of an electron in the Bohr model can be

derived by considering the balance of forces acting on
the electron. The centripetal force required for circular
motion is provided by the Coulomb attraction between
the positively charged nucleus and the negatively charged
electron. The balance of forces leads to the equation:

mv2

r
=

Ze2

4πϵ0r2
, (IV.10)

wherem is the mass of the electron, v is its orbital velocity,
r is the radius of the orbit, Z is the atomic number (with
Z = 1 for hydrogen), e is the elementary charge, and ϵ0
is the permittivity of free space.
The quantization of angular momentum in the Bohr

model stipulates that:

mvr = nh̄, (IV.11)

where n is the principal quantum number and h̄ is the
reduced Planck constant. By solving Equation IV.10 and

Equation IV.11, one can express the velocity v of the
electron as:

v =
Ze2

4πϵ0h̄
. (IV.12)

Substituting the known physical constants for a
hydrogen atom (Z = 1), we obtain:

v = αc, (IV.13)

where α is the fine-structure constant, approximately
equal to 1/137, and c is the speed of light in a vacuum.
Thus, the electron in the ground state of the hydrogen
atom moves at roughly 1% of the speed of light.
An apparent paradox arises when extending this

reasoning to highly charged nuclei or when interpreting
classical analogs to quantum spin. For example, in the
classical depiction of spin angular momentum, attempts
to ascribe a rigid spherical rotation to the electron lead
to surface velocities exceeding the speed of light. Such
results are inconsistent with the tenets of special relativity,
which prohibit any physical object or signal from traveling
faster than c [15]. In the Bohr model context, the issue
becomes pronounced for high-Z nuclei, where v ∝ Z,
implying that relativistic corrections become increasingly
significant.
The comparison of the Bohr velocity expression with

the classical spin surface velocity illustrates a conceptual
divergence. While the Bohr model velocity remains
subluminal for hydrogen, the rigid-body interpretation of
electron spin leads to calculated surface velocities like 137c
or 170c, as discussed in Subsection IVG. These estimates,
rooted in classical mechanics, are physically inadmissible
because they violate the relativistic invariance of the speed
of light [16, 17].
While the Bohr model provides a foundational

understanding of atomic structure, its classical un-
derpinnings necessitate careful reinterpretation when
applied to relativistic or quantum mechanical [12]. The
velocity derived for electrons in hydrogen-like atoms,
approximately αc, exemplifies the utility and limitations
of the model. Furthermore, comparisons with classical
interpretations of spin underscore the necessity of modern
quantum theories that transcend classical analogies. The
rejection of superluminal surface velocities, as derived
from classical spin analogies, reaffirms the fundamental
principles of relativity and highlights the intricate
interplay between classical and quantum perspectives.

3. Interpretations in the 0-Sphere Model

The 0-Sphere model presents a distinct departure
from conventional electron representations. Rather
than maintaining an ambiguous description that merely
acknowledges both particle and wave characteristics, the
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model provides a precise energetic allocation for these
dual properties. The single electron in the 0-Sphere model
manifests both particle and wave attributes through a
well-defined energy distribution mechanism, which can be
expressed as:

Etotal = Ekernel + Ekinetic (IV.14)

where Ekernel represents the rest mass energy distributed
between kernels A and B, and Ekinetic denotes the
converted motion energy.
The kernels A and B, representing distinct man-

ifestations of rest mass, undergo phase-dependent
dissolution. While the term “dissolution” warrants
careful consideration, it effectively describes the temporal
transformation process. The model postulates that kernel
A possesses finite dimensions, a necessary condition for
temporal phase-dependent dissolution. This finite size
requirement emerges from the mathematical constraint
that a point-like kernel would preclude dissolution within
finite time parameters.

Historically, the concept of finite electron size has been
algebraically rejected due to rotational considerations [18].
As discussed in the previous subsection, a rigid
body interpretation of finite electron size necessitates
either angular momentum complications or superluminal
surface velocities, both of which violate relativistic
constraints [19]. The 0-Sphere model circumvents these
limitations by eliminating rotational motion entirely.
Instead, the kernels undergo dissolution within finite
time intervals. The Two-Photon Exchange (TPE) energy
possessed by the kernels completely converts to kinetic
energy according to Eq. IV.1.
Although the kernels themselves do not rotate, the

model proposes the existence of a real the photon sphere
surrounding the single electron, with a radius on the
order of the Compton wavelength. Kernels A and B
exist within this photon sphere. Consequently, the kinetic
energy radiated from kernel A is propagated through these
physically existing photons, aligning with conventional
physical understanding of radiation transport through
photons [20]. This mechanism exhibits conceptual
parallels with solar radiation pressure transporting energy
to Earth, though with a fundamental distinction: whereas
solar radiation represents an external driving force, the
0-Sphere model describes an internally driven system
where the source of radiation pressure resides within the
photon sphere itself. This intrinsic oscillation mechanism
differentiates the electron’s behavior in the 0-Sphere
model from externally driven radiation phenomena [21].
Given that the electron’s Zitterbewegung moves at

approximately 0.04c, the subsequent subsection will
demonstrate that even if this photon sphere rotates,
its equatorial velocity remains below the speed of light.
The physical implications of this photon sphere rotation
lie beyond the scope of the present investigation and
warrant future examination. This formulation maintains
consistency with quantum electrodynamics while avoiding

the complications associated with classical rotational
models [11].

The key innovative aspects presented in this subsubsec-
tion can be summarized as follows:

1. Internal Radiation Drive: The model proposes
an internally driven radiation mechanism that
generates the electron’s Zitterbewegung motion.
This mechanism, distinct from external radiation
phenomena, explains the origin of the oscillatory
motion as an inherent property of the electron’s
structure, while maintaining consistency with
established quantum electrodynamics principles.
The internal radiation pressure serves as the
driving force for the characteristic trembling motion
(Zitterbewegung) occurring at approximately 0.04c.

2. Precise Energy Allocation: The model provides
a quantitative framework for the distribution of
energy between particle and wave characteristics,
replacing traditional qualitative descriptions.

3. Improve Rest Mass Structure: The introduc-
tion of kernels A and B as distinct manifestations
of rest mass, with a phase-dependent dissolution
mechanism, offers a new perspective on electron
structure.

4. Introduction of The Photon Sphere: The
model introduces the photon sphere with a radius
on the Compton wavelength scale, which provides
a physical mechanism for energy propagation. This
photon sphere, having dimensions on the order of
the Compton wavelength, differs from conventional
electron models. The concept enables analysis
of kinetic energy management through spherical
harmonics, offering a mathematical framework
for understanding the spatial distribution and
dynamics of energy transport within the electron
structure [22]. This photon sphere as a component
of electron structure presents a new perspective in
quantum electrodynamics.

5. Non-rotational Solution: The model resolves
the historical paradox of finite electron size by
eliminating rotation entirely, replacing it with a
dissolution-based energy conversion process.

These innovations collectively constitute a self-
consistent framework that addresses longstanding chal-
lenges in electron modeling while maintaining compat-
ibility with both relativistic constraints and quantum
mechanical principles. The implications of this framework,
particularly regarding the photon sphere’s behavior,
suggest promising directions for future investigation.
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4. The 0-Sphere Electron Model and Zitterbewegung:
A Relativistic Perspective

In previous work [6], it was demonstrated that
Zitterbewegung can occur in a single electron through
a reinterpretation of Dirac equation’s negative energy
solutions. Rather than interpreting these negative energy
solutions as antimatter states, they correspond to the
kernel pairs in the 0-Sphere model. This interpretation
enables Zitterbewegung to manifest in single electrons, as
predicted by the Dirac equation.
Building on this foundation, the relationship between

the electron’s anomalous magnetic moment and Lorentz
contraction during Zitterbewegung oscillation was estab-
lished through the equation:√

1− v2

c2
=

1

1 + 1√
2
aexpe

(IV.15)

where aexpe = 0.001 159 652 180 59 (13) is the experi-
mentally measured anomalous magnetic moment of the
electron [23]. Solving this equation for v yields:

vγ
∗

electron ≒ 0.04047197635× c (IV.16)

The 0-Sphere model provides a self-consistent frame-
work for analyzing electron spin dynamics without
violating relativistic constraints. Consider a spherical
object moving linearly from point A (x = +a) to point
B (x = −a) at the calculated Zitterbewegung velocity of
approximately 4% of the speed of light, vlinear = 0.04c.
The total distance covered during this motion is set to
the electron’s Compton wavelength, λc = h/mc, which
corresponds to the amplitude of Zitterbewegung predicted
by the Dirac equation [11]. Additionally, the sphere’s
radius is set equal to λc, encapsulating the characteristic
spatial scale of quantum mechanical oscillations.
The system parameters can thus be summarized as

follows:

vlinear = 0.04c,

2a = λc,

r = λc.

(IV.17)

The time required for the sphere to traverse this
distance at the given linear velocity is calculated as:

T =
λc

vlinear
=

λc

0.04c
=

h

mc2 · 0.04
=

25h

mc2
. (IV.18)

During this interval, the sphere completes one full
rotation (2π radians). The tangential velocity at the
equator, arising from this rotational motion, is determined
by:

vtangential = ωr =
2πr

T
=

2πλc

25h
mc2

=
2π ·mc2 · λc

25h
.

(IV.19)

Substituting λc = h/mc simplifies the expression:

vtangential =
2πh/mc ·mc2

25h
=

2πc

25
≈ 0.08πc. (IV.20)

The total velocity at the equator is the vector sum of
the linear velocity and the tangential velocity. Using the
Pythagorean theorem, this is given by:

vtotal =
√
v2linear + v2tangential. (IV.21)

Substituting vlinear = 0.04c and vtangential = 0.08πc,
we find:

vtotal = c
√

(0.04)2 + (0.08π)2

≈ c
√
0.0016 + 0.0632

≈ c
√
0.0648.

(IV.22)

Numerical evaluation yields:

vtotal ≈ 0.2547c. (IV.23)

To further validate the relativistic consistency of this
model, we now consider the maximum instantaneous
velocity predicted for Zitterbewegung. The relationship
between Lorentz contraction and the anomalous magnetic
moment can be expressed without using the root-mean-
square (RMS) value:

L

L0
=

1

1 + aexpe
(IV.24)

This equation yields the theoretical maximum velocity
of the photon sphere’s motion. Compared to Eq. IV.15,
the 1/

√
2 term is absent from the denominator, resulting

in a higher velocity than that derived from Eq. IV.15.
According to [6], solving this equation gives the maximum
velocity:

vmax = βmaxc = 0.048117317159c (IV.25)

This value represents the instantaneous maximum
velocity, in contrast to the RMS-derived average velocity
of approximately 0.04c discussed earlier.
Even at this maximum velocity, the linear and

rotational contributions remain within relativistic limits.
Using the same framework for calculating the total
velocity, we substitute vlinear = 0.048117317159c and
vtangential = 0.08πc:

vtotal,max = c
√
(0.048117317159)2 + (0.08π)2. (IV.26)

Performing the computation:

vtotal,max = c
√
0.002315 + 0.0632

= c
√
0.065515

≈ 0.256c.

(IV.27)

Thus, even when incorporating the maximum velocity of
Zitterbewegung as predicted by the model, the equatorial
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velocity remains approximately 0.256c, well below the
relativistic limit.
This analysis demonstrates that the 0-Sphere model

avoids the unphysical predictions of classical spin
interpretations, such as velocities exceeding the speed
of light. Both the average and maximum velocities
predicted for Zitterbewegung are consistent with special
relativity and further affirm the model’s robustness in
describing electron dynamics within quantum mechanical
and relativistic frameworks.

V. CONCLUSION

The present study has established a fundamental
connection between electron spin states and periodic
variations through the analysis of Thomas precession
in accelerated motion. The algebraic derivation
demonstrates that spin states emerge from dynamic
processes rather than existing as predetermined properties,
providing new insights into the nature of quantum
mechanical systems.
The natural emergence of spin’s pseudovectorial

properties in the 0-Sphere model provides a geometric
foundation for understanding quantum phenomena.
The model’s ability to explain how Ŝ → Ŝ under
parity transformation while preserving the time-reversal
symmetry T ŜT −1 = −Ŝ demonstrates its consistency
with fundamental quantum mechanical principles. This
geometric interpretation bridges the gap between classical
intuition and quantum mechanical observations, particu-
larly in explaining the discrete nature of spin states and
their transformation properties.
The reinterpretation of Thomas precession has led

to several significant findings. First, the 0-Sphere
model naturally explains the quantization of spin angular
momentum to h̄/2, through the mathematical structure
revealed in Equation III.4, where the double angle term
emerges from the outer product operation. This result
bridges the historical gap between classical and quantum
mechanical descriptions of angular momentum.
A significant advancement in the understanding of

spin dynamics may arise from the harmonic oscillator
framework illustrated in Fig. 4. This model elucidates how
uniform acceleration through the origin—traditionally
regarded as incapable of generating angular momen-
tum—can give rise to spin angular momentum when

interpreted through the lens of a redefined Thomas
precession. By incorporating this reinterpretation, the
framework offers a novel perspective on the mathematical
foundations of the 4π periodicity characteristic of spin- 12
particles.
The temporal evolution of the system naturally gives

rise to spin dichotomy, as shown in Section III. Through
closed algebraic equations, this study demonstrates that
spin states emerge dynamically through phase progression.
The mathematical framework reveals how time-reversal
symmetry of spinors combines with the 720-degree
periodicity of harmonic oscillation to establish a rigorous
basis for spin state alternation. Specifically, during
one oscillation cycle, the phase progression from 0 to π
corresponds to spin-up, while the subsequent progression
from π to 2π corresponds to spin-down.

This framework provides significant insights into Bell’s
inequality violation. Most notably, our analysis reveals
that quantum entanglement can be understood through
temporal phase progression, where two electrons in states
Ŝ and −Ŝ respectively (as shown in Fig. 5) maintain
their correlation through coherent oscillations rather than
“spooky action at a distance.” This formulation through
closed algebraic equations provides mathematical evidence
supporting the violation of realism rather than locality in
quantum mechanics, while maintaining consistency with
special relativity.
Furthermore, the relativistic analysis presented in

Section IV demonstrates that the model avoids the
historical paradox of superluminal surface velocities
in classical electron models. Even at maximum
Zitterbewegung velocity, the total velocity remains well
below the speed of light, ensuring compatibility with
special relativity.

The 0-Sphere model’s introduction of the photon sphere
with radius on the order of the Compton wavelength
provides a novel mechanism for understanding energy
transport in quantum systems. This framework maintains
consistency with quantum electrodynamics while avoiding
the complications associated with classical rotational
models. These findings collectively suggest a new
direction in quantum foundations research, offering a
mathematical framework that naturally accommodates
both the discrete nature of quantum phenomena and
the continuous evolution described by the Schrödinger
equation. Future investigations may explore the
implications of this framework for quantum entanglement
and the development of quantum technologies.

[1] Bell, J. S., On the Einstein Podolsky Rosen
Paradox, Physics, 1(3), 195-200 (1964).
doi:10.1103/PhysicsPhysiqueFizika.1.195

[2] Aspect, A., Grangier, P., & Roger, G., Experi-
mental Realization of Einstein-Podolsky-Rosen-Bohm
Gedankenexperiment: A New Violation of Bell’s In-
equalities, Physical Review Letters, 49(2), 91-94 (1982).

doi:10.1103/PhysRevLett.49.91
[3] Zeilinger, A., Quantum Entanglement is Independent of

Space and Time, Nature Physics, 14(9), 893-895 (2018).
doi:10.1038/s41567-018-0297-3

[4] Gerlach, W., & Stern, O., Der experimentelle Nachweis
der Richtungsquantelung im Magnetfeld, Zeitschrift für
Physik, 9(1), 349-352 (1922). doi:10.1007/BF01558878

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.49.91
https://doi.org/10.1038/s41567-018-0297-3
https://doi.org/10.1007/BF01558878


15

[5] Einstein, A., Podolsky, B., & Rosen, N., Can Quantum-
Mechanical Description of Physical Reality Be Considered
Complete?, Physical Review, 47(10), 777-780 (1935).
doi:10.1103/PhysRev.47.777

[6] Hanamura, S., Redefining Electron Spin and Anomalous
Magnetic Moment Through Harmonic Oscillation and
Lorentz Contraction, viXra:2309.0047, viXra preprint
(2023).

[7] S. Hanamura, A Model of an Electron Including Two
Perfect Black Bodies, viXra:1811.0312 (2018)

[8] Pauli, W., Exclusion Principle and Quantum Mechanics,
Nobel Lecture (1946). nobelprize.org

[9] Thomas, L. H., The Motion of the Spinning Electron,
Nature, 117, 514 (1926). doi:10.1038/117514a0

[10] Uhlenbeck, G. E., & Goudsmit, S., Spinning Electrons
and the Structure of Spectra, Nature, 117, 264-265 (1925).
doi:10.1038/117264a0

[11] Hestenes, D., The Zitterbewegung Interpretation of
Quantum Mechanics, Foundations of Physics, 20(10),
1213-1232 (1990). doi:10.1007/BF01889466

[12] Dirac, P. A. M., The Quantum Theory of the Electron,
Proceedings of the Royal Society A, 117(778), 610-624
(1928). doi:10.1098/rspa.1928.0023

[13] Berry, M. V., Quantal Phase Factors Accompanying
Adiabatic Changes, Proceedings of the Royal Society A,
392(1802), 45-57 (1984). doi:10.1098/rspa.1984.0023

[14] Aharonov, Y., & Anandan, J., Phase Change
During a Cyclic Quantum Evolution, Physical
Review Letters, 58(16), 1593-1596 (1987).
doi:10.1103/PhysRevLett.58.1593

[15] Einstein, A., Zur Elektrodynamik bewegter
Körper, Annalen der Physik, 17, 891-921 (1905).
doi:10.1002/andp.19053221004

[16] Tomonaga, S.-I., The Story of Spin,
University of Chicago Press (1997).
doi:10.7208/chicago/9780226807799.001.0001

[17] Ohanian, H. C., What is spin?, American Journal of
Physics, 54(6), 500-505 (1986). doi:10.1119/1.14580

[18] MacGregor, M. H., The Enigmatic Electron, Springer
Netherlands (1992). doi:10.1007/978-94-015-8072-4

[19] Barut, A. O., & Zanghi, N., Classical Model of the Dirac
Electron, Physical Review Letters, 52(23), 2009-2012
(1994). doi:10.1103/PhysRevLett.52.2009

[20] Cohen-Tannoudji, C., Dupont-Roc, J., & Grynberg, G.,
Photons and Atoms: Introduction to Quantum Electrody-
namics, Wiley-VCH (1997). doi:10.1002/9783527618422

[21] Jackson, J. D., Classical Electrodynamics, 3rd Edition,
John Wiley & Sons (1998). doi:10.1002/047122927X

[22] Arfken, G. B., Weber, H. J., & Harris, F. E., Mathematical
Methods for Physicists: A Comprehensive Guide, 7th
Edition, Academic Press (2012). doi:10.1016/C2009-0-
30629-7

[23] X. Fan, T. G. Myers, B. A. D. Sukra, G. Gabrielse,
Measurement of the Electron Magnetic Moment, Phys.
Rev. Lett. 130 no.7, 071801 arXiv:2209.13084 (2023)

Fig. 6. Energy distribution in the 0-Sphere model
showing perfect energy conservation. The graph shows
how energy oscillates between thermal and kinetic forms:
thermal potential energy terms cos4(ϕ/2) at kernel A
and sin4(ϕ/2) at kernel B (complementary oscillations),
and kinetic energy term (1/2) sin2(ϕ) of the photon
sphere (double-frequency oscillation). Their sum remains
constant at 1 throughout the complete cycle of 4π,
demonstrating exact energy conservation as the system
transitions between thermal potential and kinetic energy
states.

VI. APPENDIX

A. An electron’s structure in this study

In the 0-Sphere electron model, an electron consists of
two fundamental components: a central thermal source
called the kernel and a surrounding photon sphere. The
kernel, initially designated as A, represents the electron’s
rest mass. During Zitterbewegung motion, kernel A
undergoes complete transformation into radiation energy
before recondesning at a different location as kernel B.
The photon sphere, acting as a real photon, maintains
electromagnetic interaction with the kernel [6, 7].

A fundamental characteristic of the 0-Sphere model is
the discrete transition of rest mass between kernels A and
B, contrasting with the continuous motion of the photon
sphere. This distinction between discrete mass transfer
and continuous photon propagation directly addresses
the ultraviolet divergence problem, which traditionally
necessitates renormalization techniques. By reconciling
discrete quantum transitions with continuous geometric
evolution, the model offers a robust framework for
exploring fundamental quantum mechanical principles.
The energy distribution in this model is characterized

by three distinct oscillators that govern the electron’s
behavior, as shown in Fig. 6:

• Oscillator 1: cos4(ωt/2) represents the Thermal
Potential Energy (TPE) at kernel A

• Oscillator 2: sin4(ωt/2) represents the TPE at
kernel B

• Oscillator 3: 1
2 sin

2(ωt) represents the kinetic energy
of the photon sphere
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The fourth-power relationship in oscillators 1 and 2 is
derived from the Stefan-Boltzmann law, which states that
the radiation energy I is proportional to the fourth power
of temperature T :

I = σT 4 (VI.1)

These three oscillators are governed by a fundamental
energy conservation equation:

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
(VI.2)

where E0 represents the electron’s rest mass energy.
In equation VI.2, the sum of the three oscillator terms
within the parentheses equals unity, demonstrating perfect
energy conservation throughout all phase transitions, as
shown in Fig. 6.
The mathematical basis for energy conservation in

equation VI.2 is demonstrated by the following equation:

cos4
(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2 (ωt) = 1. (VI.3)

Equation VI.3 shows that the sum of the three
oscillator terms equals unity and remains constant
regardless of the time phase progression. This constancy,
as demonstrated in Fig. 6, provides the fundamental
basis for energy conservation in the system. This
mathematical framework serves as a bridge between
quantum mechanics and classical physics by providing
a precise description of quantum fluctuations while
maintaining energy conservation principles.

The model exhibits a quantum-classical correspondence
through its oscillator behavior. Oscillators 1 and 2
follow fermionic rules with a time phase period of (ωt/2),
reflecting spin-1/2 characteristics. In contrast, oscillator
3 follows bosonic rules with a time phase period of
(ωt), reflecting spin-1 behavior. This synchronization
provides a unified description of both the 360-degree and
720-degree periodicities characteristic of quantum spin.

B. What is the 0-sphere

A 0-sphere is a pair of points and has no area. The
general form of 0-sphere is represented as n-sphere. In
this subsection, we will review the electronic model with
the 0-sphere. A 0-sphere is a pair of points at the ends
of a one-dimensional line segment. A 1-sphere is a circle
as shown in Fig. 7 (a,b). Alternatively, the 0-sphere is
indicate an intersection of a straight line and a circle put
on the same plane. In other words, by expanding a two-
dimensional circle into three dimensions, the 0-sphere is
an intersection points with a straight line passing through
a hollow sphere.

Fig. 7. (a) a 0-sphere (b) a 1-sphere. The 0-sphere
consists of two points. In this paper, it illustrated in the
blue and green dots. In this paper, these blue and green
dots are mentioned as the kernels.

C. Thermal energy gradient caused by two kernels

The Appendix quotes from the paper [7] on how the
energy gradient arises from two kernels. To maintain the
law of conservation of energy, we take each of the two
kernels or bare electrons as a thermal potential energy.
These two kernels act as both emitters and absorbers in
turn. To meet the requirements for simultaneous emission
and absorption, assign Te1 and Te2, as follows;

(Oscillator 1) : Te1 = E0 cos
4

(
ωt

2

)
,

(Oscillator 2) : Te2 = E0 sin
4

(
ωt

2

)
,

(VI.4)

where E0 is the ground state of quantised energy. Set the
two electrons as paired oscillators with Te1 = E0 cos

4 ωt/2
and Te2 = E0 sin

4 ωt/2. The temperature gradient
between the two kernels is calculated as,

grad Te = grad (Te2 − Te1) . (VI.5)

Since the values of thermal energy at both thermal
kernels vary with time, the temperature gradient changes
with time. Let the previous ωt is θ,

grad Te1 =
d

dθ

(
E0 cos

4

(
θ

2

))
= −2E0 cos

3

(
θ

2

)
sin

(
θ

2

)
. (VI.6)

grad Te2 =
d

dθ

(
E0 sin

4

(
θ

2

))
= 2E0 cos

(
θ

2

)
sin3

(
θ

2

)
. (VI.7)

grad Te1 and grad Te2 include only time derivative terms;
their space derivatives are zero, because the kernels do
not change in position with time. That is,
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Fig. 8. Behavior of the photon sphere as a spatial
simple harmonic oscillator while the two kernels behave
as emitters and absorbers. The blue and green dots are
two kernels inside one electron. Since the equation of
Kernel1 + Kernel2 + γ∗

Kinetic.E = E
0
, the sum of the

thermal potential energy (TPE) of the two kernels and
the kinetic energy of the virtual photon is constant. The
energy conservation law is preserved. See paper [7] for
details.

grad (Te2 − Te1) = 2E0 cos

(
θ

2

)
sin3

(
θ

2

)
+ 2E0 cos

3

(
θ

2

)
sin

(
θ

2

)
= 2E0 cos

(
θ

2

)
sin

(
θ

2

)
= E0 sin θ . (VI.8)

Equation (VI.8) shows that the temperature gradient
between grad Te1 and grad Te2 produces a force F. The
force drives the velocity of the virtual photon along with
simple harmonic motion. On the basis of the above
assumption, the virtual photon swing back and force
spatially between the two kernels.
Interaction between thermal and kinetic energy is

essential in the 0-Sphere electron model, because the
interaction between the two kinds of energy, i.e., the
thermal potential energy of the spinors and the kinetic
energy of the virtual photon, drives the virtual photon
along with the harmonic oscillator. See yellow line on
Fig. 8.
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