There not exits odd perfect numbers

Juan Elias Millas Vera. Zaragoza (Spain) December 2024

0-Abstract:

Proof by contradiction of non existence of odd perfect numbers by parity comparasion.

1- Introduction:

Is there an old problem to determine the existence or non existence of odd perfect numbers. In this paper I asume the possible form of the descomposition in primes of odd perfect number and logically solve it.

2- The equations:

All perfect odd number should be in the form:

$$(2n+1)^{m} \cdot (2k+1) \cdot \dots = \underbrace{(2n+1) \cdot \dots \cdot (2n+1)}_{m} \cdot (2k+1) \cdot \dots$$

So being a variable $\lambda = n, k...,$

$$\prod_{\lambda \in \mathbb{N}} (2\lambda + 1) = (\sum_{\lambda \in \mathbb{N}} \prod_{\lambda \in \mathbb{N}} (2\lambda + 1)) + 1$$

Should be true to the existence of odd perfect numbers, but we can reduce it to:

$$\prod_{\lambda \in \mathbb{N}} (2\lambda + 1) = (\sum_{\lambda \in \mathbb{N}} \prod_{\lambda \in \mathbb{N}} (2\lambda + 2))$$

Since $\prod_{\lambda \in \mathbb{N}} (2\lambda + 1)$ always will be odd and $(\sum_{\lambda \in \mathbb{N}} \prod_{\lambda \in \mathbb{N}} (2\lambda + 2))$ always will be even we have a contradiction, so we assume that there will never exists an odd perfect number. QED.