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Abstract. This paper is a trial to prove Goldbach conjecture according
to the following process.

1. We find that {the total number of ways to divide an even number n into 2

prime numbers} : l(n) diverges to ∞ with n → ∞.
2. We find that 1 ≤ l(n) holds true in 4 ∗ 1018 < n from the probability of

l(n) = 0.

3. Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018.
4. Goldbach conjecture is true from the above item 2 and 3.

1. Introduction

1.1 When an even number n is divided into 2 odd numbers x and y, we can express

the situation as pair (x, y) like the following (1).

n = x+ y = (x, y) (n = 6, 8, 10, 12, · · · · · · x, y : odd number) (1)

n has n/2 pairs like the following (2).

(1, n− 1), (3, n− 3), (5, n− 5), · · · · · · , (n− 5, 5), (n− 3, 3), (n− 1, 1) (2)

We define as follows.

Prime pair : the pair where both x and y are prime numbers

Composite pair : the pair other than the above prime pair

l(n) : the total number of the prime pairs which exist in n/2 pairs shown

by the above (2). (p, q) is regarded as the different pair from (q, p).

(p, q : prime number)

1.2 Goldbach conjecture can be expressed as the following (3) i.e. any even number

(6 ≤)n can be divided into 2 prime numbers.

1 ≤ l(n) (n = 6, 8, 10, 12, · · · · · · ) (3)

Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018. So we can

try to prove Goldbach conjecture in the following condition.

4 ∗ 1018 < n (4)
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2. Investigation of l(n)

2.1 When an even number n is divided into 2 odd numbers x and y, we can find the pair

of π(n), l(n),mxx,mx,my and mxy in n/2 pairs of (x, y) as shown in the following

(Figure 1).

x y

 : prime number  : composite number

l(n)

my=π(n)-l(n)

mx=π(n)-l(n)

mxy

π(n)

mxx=n/2-π(n)

n/2

Figure 1：Various pairs in n/2 pairs of (x, y)

We define as follows.

π(n) : π(n) shows the total number of prime numbers which exist between

1 and n. But we use π(n) in the above (Figure 1) for the total number

of prime numbers which exist in n/2 odd numbers of (1, 3, 5, · · · · · · ,
n− 5, n− 3, n− 1). Strictly speaking, this value must be π(n− 1)− 1.

But we can say π(n− 1)− 1 = π(n)− 1 ≓ π(n)

because n is an even number and a large number as shown in (4).

mxx : the total number of pairs where x is a composite number. 1 is

regarded as a composite number.

mx : the total number of pairs where x and y are composite number and

prime number respectively

2.2 We have the following (5) from Prime number theorem.

π(n)

n
∼ n/ log n

n
=

1

log n
(n → ∞) (5)

We have lim
n→∞

π(n)

n
= 0 from the above (5). Then we have the following (6) from

(Figure 1) and lim
n→∞

π(n)

n
= 0

mxx = n/2− π(n) = (n/2){1− 2π(n)/n} ∼ n/2 (n → ∞) (6)
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When mxx approaches n/2 with n → ∞ as shown in the above (6), mx approaches

π(n) with n → ∞ due to the following reasons.

2.2.1 mx shows the total number of prime numbers which exist in y of mxx as shown

in (Figure 1).

2.2.2 n/2 pieces of y, (1, 3, 5, · · · · · · , n− 5, n− 3, n− 1) have π(n) prime numbers.

Then we can have the following (7) from (Figure 1).

mx = π(n)− l(n) = π(n){1− l(n)/π(n)} ∼ π(n) (n → ∞) (7)

Then we have lim
n→∞

l(n)

π(n)
= 0 from the above (7). We have the following (8) from

the above (6) and (7).

π(n)− l(n)

n/2− π(n)
∼ π(n)

n/2
(n → ∞) (8)

We have the following (9) from the above (8) and Prime number theorem.

l(n) ∼ {π(n)}2

n/2
∼ {n/ log n}2

n/2
=

2n

(log n)2
(n → ∞) (9)

We can find that l(n) has the following property from the above (9).

2.2.3 l(n) repeats increases and decreases with increase of n as shown in the follow-

ing (Graph 1). But overall l(n) is an increasing function regarding n because
2n

(log n)2
is an increasing function regarding n.

2.2.4 l(n) diverges to ∞ with n → ∞ because
2n

(log n)2
diverges to ∞ with n → ∞.

2.3
2n

(log n)2 seems to approximate l(n) sufficiently well as shown in the following

(Graph 1).
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3. Investigation of zero point of l(n)

3.1 Since both k and (n− k) in (k, n− k) are always an odd number, we must consider

the probability that k or (n − k) is a prime number in the world where only odd

numbers exist.

(k = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number)

(k = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number)

The probability that an odd number N is a prime number is

(The total number of prime numers between 3 and N)

(The total number of odd numers between 1 and N)
=

π(N)− 1

(N + 1)/2

≓ 2 ∗ π(N)

N
= P (N) (N : odd number) (10)

Then the probability that (k, n− k) or (n− k, k) is a prime pear is
4 ∗ π(k) ∗ π(n− k)

k ∗ (n− k)
= P (k) ∗ P (n− k).

Since (1, n−1) and (n−1, 1) are always a composite pair, k does not include 1. The

probability that (k, n−k) or (n−k, k) is a composite pair is {1− P (k) ∗ P (n− k)}.
Therefore the probability that all of n/2 pairs are a composite pair i.e. {the prob-

ability of l(n) = 0} : a(n) can be expressed as the following (11). Since (1, n − 1)

and (n− 1, 1) are always a composite pair, we don’t have to include them in (11).

Then (11) has (n/2− 2) terms altogether.

{the probability of l(n) = 0} : a(n)

= {1− P (3) ∗ P (n− 3)}2{1− P (5) ∗ P (n− 5)}2{1− P (7) ∗ P (n− 7)}2 . . . . . .
{1− P (k) ∗ P (n− k)}2 . . . . . . {1− P (n/2 + 4) ∗ P (n/2− 4)}2

{1− P (n/2 + 2) ∗ P (n/2− 2)}2{1− P (n/2)2} (n/2 : odd number)

= {1− P (3) ∗ P (n− 3)}2{1− P (5) ∗ P (n− 5)}2{1− P (7) ∗ P (n− 7)}2 . . . . . .
{1− P (k) ∗ P (n− k)}2 . . . . . . {1− P (n/2 + 5) ∗ P (n/2− 5)}2

{1− P (n/2 + 3) ∗ P (n/2− 3)}2{1− P (n/2 + 1) ∗ P (n/2− 1)}2

(n/2 : even number) (11)

3.2 If n is large enough, we have the following (12) as shown in [Appendix 1 : Verifi-

cation of (12)].

0 < 1− P (k) ∗ P (n− k) = 1− P (n/2 +K) ∗ P (n/2−K) ≤ 1− 4 ∗ {π(n/2)}2

(n/2)2

(12)

(k = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number)

(k = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number)

(K = 0, 2, 4, 6, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : odd number)

(K = 1, 3, 5, 7, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : even number)
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We have the following (13) from the above (11), (12) and Prime number theorem.

0 < a(n) < A(n) = [1− 4 ∗ {π(n/2)}2

(n/2)2
]n/2−2

∼ [1− 4 ∗ {(n/2)/ log(n/2)}2

(n/2)2
]n/2 = [1− 4

{log(n/2)}2
]n/2

= [{1− 1

{log(n/2)/2}2
}{log(n/2)/2}

2

](n/2)/{log(n/2)/2}
2

∼ (
1

e
)(n/2)/{log(n/2)/2}

2

=
1

e(n/2)/{log(n/2)/2}2 (n → ∞) (13)

We have the following (14) from the above (13).

lim
n→∞

a(n) = 0 (14)

If n is large enough, i.e. if 4 ∗ 1018 ≤ n is satisfied, A(n) can be approximated to
1

e(n/2)/{log(n/2)/2}2 from the above (13) and
1

e(n/2)/{log(n/2)/2}2 decreases with in-

crease of n in 4 ∗ 1018 ≤ n. Therefore we have the following (15).

0 < a(n) < A(n) < A(4 ∗ 1018) (4 ∗ 1018 < n) (15)

3.3 The following (Graph 2) shows that a(n) decreases with increase of n in n ≤ 60.
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Graph 2 : a(n) from n = 6 to n = 60

n 6 8 10 12 14 16 18 20 30 60

a(n) 0.75 0.4444 0.217 0.1225 0.07 0.0386 0.0207 0.0117 0.0008 3E-06

Table 1 : the values of a(n)
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3.4 a(n) has the following property from the above item 3.2 and 3.3.

3.4.1 a(n) decreases with increase of n at least in n ≤ 60.

3.4.2 The above (15) holds true.

3.4.3 a(n) converges to zero with n → ∞.

3.5 When l(n0) = 0 holds true we define n0 as {zero point of l(n)}. We defined a(n) as

{the probability of l(n) = 0} in item 3.1. But we can also call a(n) {the probability
of zero point occurrence of l(n)}.
Possible zero point distribution of l(n) is limited to 4 cases which are classified

according to location of zero point as shown in the following (Table 2).

n≦4*1018 4*1018<n

Case 1 ● ● item 3.5.2 NO

Case 2 ● X item 3.5.2 NO

Case 3 X ● item 3.5.1 NO

Case 4 X X nothing YES

● : zero points exist. X : no zero points exist.

Location of zero point Contradiction
with

Can this case exist

as real l(n)  ?

Table 2 : 4 cases of zero point distribution of l(n)

Distribution of zero point of l(n) is affected by the following facts.

3.5.1 a(n) has the property shown in item 3.4.

3.5.2 Zero point of l(n) does not exist in n ≤ 4∗1018 as shown in item 1.2. Goldbach

conjecture can be expressed as l(n) does not have any zero point in 6 ≤ n.

Case 1 and Case 2 cannot exist because they contradict item 3.5.2.

Case 3 cannot exist because it contradicts item 3.5.1 as shown in the following item

3.6.

3.6 From (15) we have the following (16) which shows that a(n) is extremely small in

4 ∗ 1018 < n. A(n) is defined in (13).

a(n) < A(4 ∗ 1018) ≓ 1

e(2∗1018)/{log(2∗1018)/2}2 =
1

e(2∗1018)/444
= e−4.5∗1015

= (e4.5)−1015 = (102.0)−1015 = 10−2.0∗1015 (4 ∗ 1018 < n) (16)

We can calculate the probability of zero point occurrence of l(n) near n = 6 from

(10) as follows.

a(6) = 1− { π(3)− 1

(3 + 1)/2
}2 = 1− (1/2)2 = 0.75 (17)

In Case 3 zero points exist only in 4 ∗ 1018 < n. Case 3 contradicts a(n) as follows.
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3.6.1 The situation where a zero point can exist in a(n) < 10−2.0∗1015 contradicts

the situation where a zero point cannot exist at a(n) = 0.75. Because the

larger a(n) is, the more likely a zero point will appear. In other words, Case 3

shows the situation that is completely opposite to the situation expected from

a(n).

3.6.2 0.75 is extremely larger than 10−2.0∗1015 and zero points already exist in a(n) <

10−2.0∗1015 . Therefore a new zero point must exist near n = 6. But Case 3

does not have any zero point in n ≤ 4 ∗ 1018.

By the way Case 2 and Case 4 are consistent with a(n). The following (Figure 2)

shows the contradiction between Case 3 and a(n).

a(n)

4*1018
n

a(n)

6

1E-2*1015 A(n)

A(n)

a(4*1018)

No zero points exist in Case 3. Zero points exist in Case 3.

0

0.75

60

3E-06

Figure 2 : the contradiction between Case 3 and a(n)

3.7 Case 4 is consistent with item 3.5.1 and 3.5.2. Because it is reasonable from item

3.5.1 and 3.5.2 that no zero points exist in 4 ∗ 1018 < n. Among 4 cases of zero

point distribution of l(n) shown in (Table 2), only Case 4 can exist. Therefore Case

4 shows the real l(n). We have the following (18) from Case 4 because Case 4 does

not have any zero point in 4 ∗ 1018 < n.

1 ≤ l(n) (4 ∗ 1018 < n) (18)

4. Conclusion

Goldbach conjecture is true from the following item 4.1 and 4.2.

4.1 Goldbach conjecture is already confirmed to be true up to n = 4 ∗ 1018.

4.2 Goldbach conjecture is true in 4 ∗ 1018 < n from the above (18).
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Appendix 1. : Verification of (12)

We have the following (12) in the text.

0 < 1− P (k) ∗ P (n− k) = 1− P (n/2 +K) ∗ P (n/2−K) ≤ 1− 4 ∗ {π(n/2)}2

(n/2)2
(12)

(k = 3, 5, 7, 9, . . . . . . , n/2− 4, n/2− 2, n/2 n/2 : odd number)

(k = 3, 5, 7, 9, . . . . . . , n/2− 5, n/2− 3, n/2− 1 n/2 : even number)

(K = 0, 2, 4, 6, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : odd number)

(K = 1, 3, 5, 7, . . . . . . , n/2− 7, n/2− 5, n/2− 3 n/2 : even number)

We have the the following (19) from the above (12).

P (n/2 +K) ∗ P (n/2−K) ≥ 4 ∗ {π(n/2)}2

(n/2)2
(19)

From (10) and Prime number theorem we have the following (20) and (21).

P (N) =
2 ∗ π(N)

N
∼ 2 ∗N/ logN

N
=

2

logN
(n → ∞) (20)

4 ∗ {π(n/2)}2

(n/2)2
∼ 4 ∗ {(n/2)/ log(n/2)}2

(n/2)2
=

4

{log(n/2)}2
(n → ∞) (21)

If n is large enough, from the above (19), (20) and (21) we have the following (22).

log(n/2 +K) log(n/2−K) ≤ {log(n/2)}2 (22)

In order for (12) to hold true, it is sufficient for the above (22) to hold true.

Here we define the following (23) as shown in the following (Figure 3).

log n/2 = A log(n/2−K) = A−B log(n/2 +K) = A+ C (23)

log x

x
n/2+K0

log x

n/2-K n/2

A

A-B

A+C
C

B

K K

Figure 3 : Relationship among A,B, C and K
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Since log x is a monotonically increasing and districtly concave function regarding x,

the following (24) holds true.

0 < C < B (1 ≤ K) 0 = C = B (K = 0) (24)

The above (22) holds true from the following (25). ≥ in (25) is satisfied by the above

(24).

(log n/2)2 − log(n/2 +K) log(n/2−K)

= A2 − (A+ C)(A−B) = A(B − C) +BC ≥ 0 (25)

Since (22) holds true, if n is large enough, (12) is true.
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