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Abstract 

Random matrix theory (RMT) has long served as a cornerstone of modern 

physics, mathematics, and complex systems analysis. More recently, topological 

and differential topological methods have emerged as powerful tools to 

characterize the global structures and stability properties of ecological 

networks. This article develops an integrated framework bridging RMT with 

topology and differential topology to study ecological systems, aiming to 

provide novel insights into their resilience and underlying structural features. 

We present the relevant mathematical foundations, illustrate computational 

algorithms (including multiple graphical outputs), and demonstrate these 

methods on both synthetic and real ecological data. Our findings highlight how 

topological invariants, combined with the spectral properties of large random 

matrices, shed light on the stability and transition behaviors of communities 

under perturbations. Advantages and limitations are discussed, paving the way 

for future research directions at the intersection of mathematics and ecology. 
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1. Introduction 

1.1. The Complexity-Stability Debate in Ecology 

Ecological systems, ranging from simple predator-prey interactions in a pond to 

large-scale trophic networks in a tropical rainforest, exhibit intricate 

interdependence among species (May, 1972; Bascompte, 2009). Since Robert 

May’s seminal work in the 1970s, researchers have debated whether increased 

complexity (i.e., a higher number of species and interaction links) fosters or 

undermines ecological stability (May, 1972). In these systems, the stability of an 

equilibrium can often be analyzed through the eigenvalues of an interaction matrix: if 

all eigenvalues have negative real parts, the system tends to be stable (Allesina & Tang, 

2012). Conversely, a single eigenvalue crossing into the positive real half-plane 

can destabilize the entire community. 

Section 1.1. Innovations 

This paper aims to present key innovations as a unified framework connecting 

RMT to practical ecology applications and novel methods for detecting 

significant ecological subspaces using MP distribution, explicit computational 

procedures for applying RMT to ecological data and clear criteria for 

distinguishing random from structured connectivity 

We introduce fundamental RMT concepts and demonstrate their applications to 

Ecology to provide concrete computational examples. We then discuss 

limitations and future directions 

Section 1.2. Bridging Random Matrix Theory (RMT) and Ecology 

Random Matrix Theory (RMT) originates from nuclear physics (Wigner, 1955) 

and has been deployed in diverse applications, including quantum chaos, 

number theory, and financial mathematics (Mehta, 2004; Bai, 1999). In ecology, 

RMT is especially relevant because large, random interaction matrices can 
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approximate the “mean-field” behavior of complex, high-dimensional networks 

(Allesina & Tang, 2012). By analyzing eigenvalue distributions—such as those 

governed by the Wigner semi-circle law or the Girko circular law—one can 

deduce conditions under which complex ecosystems remain stable or succumb 

to chaos (May, 1972; Allesina & Tang, 2012). This perspective is particularly 

powerful for large ecosystems where exact models of every interspecific 

interaction are unavailable or overly complex. 

1.3. The Role of Topology and Differential Topology 

While RMT focuses on eigenvalues and spectral properties, topology provides a 

complementary set of tools to understand the overall “shape” or “connectivity” 

of ecological networks (Hatcher, 2002; Carlsson, 2009). For instance, persistent 

homology can identify holes, loops, and connected components in complex 

datasets, revealing features that remain stable across multiple spatial or 

temporal scales (Edelsbrunner & Harer, 2010). These topological invariants can 

indicate crucial structures or “keystone” connections that maintain ecosystem 

integrity. 

Differential topology delves deeper into how smooth structures (manifolds) and 

differentiable mappings can change under continuous transformations (Milnor, 

1963, 1997). In ecology, one might conceptualize the system’s state space (e.g., 

population abundances across NNN species) as a manifold. Critical points of a 

potential function on this manifold (where the gradient vanishes) can represent 

equilibrium states (Thom, 1989). By examining these points and the curvature 

around them (via the Hessian matrix), we can classify equilibria as stable, 

unstable, or saddle points, offering insights into how small perturbations can 

trigger large-scale regime shifts (Scheffer et al., 2009). 
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1.4. Synergy of the Three Approaches for Ecological Insights 

Bringing RMT, topology, and differential topology together can elucidate 

multiple facets of ecosystem behavior: 

1. RMT: Provides statistical insight into the bulk behavior of eigenvalues 

and thus the overall stability or instability threshold of large interaction 

networks (Mehta, 2004; Allesina & Tang, 2012). 

2. Topology: Extracts robust invariants (e.g., Betti numbers, Euler 

characteristic) from network connectivity, identifying critical thresholds 

where ecosystems might transition from one structural regime to another 

(Carlsson, 2009; Edelsbrunner & Harer, 2010). 

3. Differential Topology: Frames these networks in a smooth manifold 

context, wherein equilibria and their stability can be rigorously classified 

(Milnor, 1963; Thom, 1989). 

1.4.1. Ecological Interpretations 

With these tools we are able to detect Regime Shifts or the interactions 

between eigenvalue spectra and topological markers can flag early 

warnings of catastrophic shifts, such as coral reef collapse or 

desertification (Scheffer et al., 2009). 

When it´s possible to pinpoint  Keystone Interactions, Persistent 

homology might reveal “loop” structures in mutualistic networks that 

sustain pollinator-plant diversity (Bascompte, 2009). 

Differential topology clarifies how ecosystems move within a high-

dimensional state space, and where “basins of attraction” might merge or 

bifurcate (Thom, 1989). 

In this article, we aim to unify these concepts into a practical framework, supported 

by both synthetic experiments and real ecological data. In doing so, we 
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showcase how each mathematical tool contributes to a holistic understanding of 

ecosystem resilience and transformation. 

Section 2. Methodology 

2.1. Overview 

Our proposed methodological pipeline integrates: 

1. Modeling Ecological Interactions 

• Generate synthetic interaction matrices using statistical distributions or 

gather empirical matrices from field data. 

2. Spectral Analysis via RMT 

• Evaluate eigenvalue distributions, focusing on real parts for stability 

insights. 

3. Topological Invariant Calculation 

• Build filtrations (via thresholding or distance metrics) to compute 

persistent homology. 

4. Differential Topology Integration 

• Interpret ecosystem equilibria as critical points on a manifold, classifying 

stability via Hessians. 

5. Synthesis 

• Combine spectral (RMT) and topological results to locate critical 

transitions and stability regimes. 

Section 2.2. Mathematical Equations  

Consider an ecological interaction matrix 𝐴 of size 𝑁 × 𝑁, where each entry 𝑎𝑖𝑗 

represents the interaction strength of species 𝑗 on species 𝑖. 

Section 2.2.1. Eigenvalue Distribution (RMT) 
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For large 𝑁, if 𝐴 has i.i.d. entries with mean 0 and variance 𝜎2, the empirical 

distribution of eigenvalues {𝜆𝑖} often approaches the Wigner semi-circle law 

(Mehta, 2004): 

𝜌(𝜆) = {
1

2𝜋𝜎2
√4𝜎2 − 𝜆2,  if |𝜆| ≤ 2𝜎

0,  otherwise 
 (1) 

Section 2.2.2. Topological Persistence 

Construct a simplicial complex 𝒦(𝛼) from 𝐴 by including edges with weights 

𝑤𝑖𝑗 ≥ 𝛼. The 𝑘-th Betti number is: 

𝛽𝑘(𝛼) = rank(H𝑘(𝒦(𝛼))) (2) 

where H𝑘(⋅) is the 𝑘-th homology group. Tracking 𝛽𝑘(𝛼) as 𝛼 changes yields 

persistence diagrams (Carlsson, 2009; Edelsbrunner & Harer, 2010). 

Section 2.2.3. Differential Topology: Equilibrium Classification 

Let 𝑓:ℝ𝑁 → ℝ be a smooth potential function derived from ecological dynamics 

(e.g., negative log-likelihood of stable states). A point 𝐱∗ is a critical point of 𝑓 if: 

∇𝑓(𝐱∗) = 𝟎. (3) 

The stability is determined by the eigenvalues of the Hessian matrix at 𝐱∗. 

Positive-definite Hessians imply stable equilibria, while indefinite Hessians 

imply saddle or unstable equilibria (Milnor, 1963). 

The following implementation demonstrates how these theoretical concepts 

translate into practical analysis tools. Each step corresponds directly to the 

mathematical framework developed above 

Section 3. Python Code Demonstration with Multiple Graphs 

Below are the Python Code (see Attachment) generated Graphs: 
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Graph 1: Histogram of the Real Parts of Eigenvalues. Displays how the eigenvalues 

(real parts) are distributed. Many negative real parts suggest potential stability (May, 

1972). 

 

 

Graph 2: Real vs. Imaginary Parts of Eigenvalues. Offers a 2D view of eigenvalue 

placement in the complex plane. Clustering in the negative real half is indicative of 

stable dynamics (Allesina & Tang, 2012). 
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Graph 3: Heatmap of the Interaction Matrix: Visualizes interaction strengths between 

species. Patterns such as strong diagonal blocks or high off-diagonal values might hint 

at dominant sub-networks or high inter-species coupling 
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Graph 4: Network Visualization at a Chosen Threshold (α = 0.5). Shows which edges 

persist when we only include interactions ≥0.5. In more advanced workflows, this 

procedure is repeated over a range of thresholds to build a filtration, enabling the 

calculation of persistent homology (Carlsson, 2009). 

 

The first two graphs provide insights into the properties of eigenvalues, 

showcasing both their distribution and complex nature: 

Graph: 1. The histogram displays the distribution of the real parts of the 

eigenvalues. It reveals peaks at −1.5-1.5−1.5, −1.0-1.0−1.0, 1.0 1.0 1.0, and 1.5 1.5 

1.5, suggesting clusters of eigenvalues with these real parts. The symmetry 

around zero indicates a balanced distribution, while the gap near zero suggests 

fewer eigenvalues in this range. This hints at structured behavior in the matrix 

that generates these eigenvalues. 
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Graph 2. The scatter plot presents the eigenvalues in the complex plane, 

showing their real parts on the x-axis and imaginary parts on the y-axis. The 

symmetry about the real axis implies that for every eigenvalue with a positive 

imaginary part, there’s a counterpart with a negative one. Some eigenvalues lie 

directly on the real axis, indicating they are purely real, while others are 

distributed across all four quadrants, representing a mix of real and complex 

eigenvalues. 

Together, these 2 graphs reveal both the clustering of eigenvalues in terms of 

their real parts and the overall symmetry in their complex distribution. This 

combination suggests structural properties of the matrix, such as being real or 

symmetric, and offers clues about the system's behavior, such as stability or 

dynamics. 

Graph 3. illustrate the structure and relationships within an interaction system. 

The heatmap provides a detailed view of the pairwise interactions between 

entities, with rows and columns representing specific entities and the colour 

intensity indicating the strength and direction of their interactions. Yellow areas 

correspond to positive interactions, while purple areas highlight negative ones, 

with green tones representing weaker or neutral interactions. This diversity of 

colours suggests that the system exhibits a wide range of interaction dynamics, from 

strong facilitation to competition, with some areas showing more pronounced 

relationships. 

Graph 4. In contrast, the network visualization simplifies this complexity by 

focusing only on significant interactions above a threshold of α=0.5. Each node 

represents an entity, and edges connect nodes with interactions strong enough 

to surpass the threshold (Montgomery, 2024). The resulting network reveals 

clusters of interconnected entities, highlighting regions of strong influence or 

cooperation, while isolated nodes like 11, which indicate entities with no 

significant interactions at this level. The sparsity of the network compared to 
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the heatmap underscores that only a subset of interactions plays a dominant 

role in shaping the system's overall dynamics. 

Together, these visuals complement each other, with the heatmap offering a 

comprehensive overview of all interactions and the network emphasizing the 

most impactful connections. This dual perspective reveals both the fine-grained 

details and the broader structural organization of the system. 

 

4. Discussion 

Section 4.1. Extended Insights into Ecological Stability and Complexity 

The results from the spectral analysis highlight how the real parts of the 

eigenvalues serve as direct markers of system stability. In the example code, 

many eigenvalues may lie in the negative real domain, suggesting a stable 

system. However, this is highly sensitive to both the mean and variance of the 

interaction matrix entries (May, 1972). Empirical ecological systems often 

deviate from the simplistic random assumptions, leading to more complex 

eigenvalue distributions (Allesina & Tang, 2012). 

Topological analysis via a filtration process captures the robust connectivity 

features of the underlying network. For instance, if a large proportion of edges 

persists even at high thresholds, the network may contain tightly coupled 

clusters—a sign of potential resilience but also vulnerability to targeted 

disruption (Carlsson, 2009; Bascompte, 2009). Meanwhile, if crucial edges 

appear or disappear at certain thresholds, the system may exhibit “bottlenecks,” 

which could act as early warning signals for regime shifts (Scheffer et al., 2009). 

Section 4.2. The Integrative Power of Differential Topology 

Beyond basic connectivity and spectral considerations, differential topology 

provides a continuous manifold perspective on ecological dynamics (Thom, 1989). 
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One can model species abundances as points in {R}n, where each equilibrium is 

a critical point of a smooth potential function (Milnor, 1963). By examining the 

Hessian at these equilibria, we identify stable (minimum), saddle, or unstable 

(maximum) equilibrium points (Montgomery, 2024a). This approach is 

particularly powerful for multi-stable systems, where several locally stable 

equilibria may compete in the same manifold, each corresponding to distinct 

ecological assemblages or regimes (Scheffer et al., 2009). 

Section 4.3. Practical Considerations and Real-World Data 

Applying this framework to real ecological networks introduces challenges: 

1. Data Quality: Interaction matrices derived from field studies often 

contain measurement errors or missing data, complicating the direct 

application of RMT assumptions. 

2. Size and Complexity: Ecological networks with thousands of species can 

push computational limits for both spectral methods and high-

dimensional topological computations (Edelsbrunner & Harer, 2010). 

3. Interpretation: Even if one identifies persistent topological features or 

eigenvalue patterns, translating these into actionable ecological insights 

requires domain expertise and additional dynamic modeling (Scheffer et 

al., 2009). 

Nonetheless, case studies on mutualistic networks (Bascompte, 2009), food 

webs, and large-scale biodiversity datasets indicate that bridging RMT, topology, 

and differential topology can reveal non-trivial structural patterns and potential tipping 

points (Thom, 1989). 

Section 4.4. Future Extensions 

1. Coupled RMT-Topology for Early Warning Signals: Refining the 

synergy between eigenvalue shifts (indicative of losing stability) and the 
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emergence/disappearance of topological loops (potentially signaling 

structural fragility). 

2. Multidimensional Persistence: Incorporating multiple parameters (e.g., 

interaction strength and temporal variation) for a richer topological 

perspective. 

3. Dynamical Systems Integration: Embedding these tools in nonlinear 

dynamical models of species interactions, where Jacobians (local 

linearizations) feed directly into RMT analyses. 

 

Section 5. Conclusion 

We presented a comprehensive approach merging Random Matrix Theory, 

topology, and differential topology to analyze ecological systems’ stability and 

structural complexity. Our Python demonstration showcased how multiple 

graphs—eigenvalue histograms, real-image eigenvalue plots, heatmaps, and 

threshold-based network visualizations—can elucidate different aspects of 

ecological resilience. While the simplified code and synthetic data primarily 

serve illustrative purposes, the underlying principles are readily extendable to 

real-world ecological systems. Despite challenges in data acquisition and 

computational intensity, this integrative framework holds promise for 

detecting, understanding, and potentially predicting regime shifts and stability 

changes in complex ecological networks. 

*The Author claims that there are no conflicts of interest. 

Section 6. Attachment 

Python Code: 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 
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import networkx as nx 

# 1. Random Matrix Generation and Spectral Analysis 

def generate_random_matrix(n, mean=0.0, std=1.0, seed=42): 

    np.random.seed(seed) 

    return np.random.normal(loc=mean, scale=std, size=(n, n)) 

def spectral_analysis(matrix): 

    eigenvalues, eigenvectors = np.linalg.eig(matrix) 

    return eigenvalues, eigenvectors 

      # 2. Topological Filtration (Simplified) 

def build_filtration(matrix, thresholds): 

    """  Returns a list of adjacency lists for edges that exceed each threshold. 

    This is not a full persistent homology pipeline, but a conceptual demonstration. 

    """   n = matrix.shape[0] 

   results = [] 

   for alpha in thresholds: 

    edges = [] 

    for i in range(n): 

    for j in range(i+1, n): 

    if matrix[i, j] >= alpha: 

   edges.append((i, j)) 

   results.append((alpha, edges)) 

   return results 

   # 3. Ecological Model: Simple Stability Check 

   def is_ecologically_stable(eigenvalues): 

    """ 

    Checks if real parts of all eigenvalues are negative. 

    """  return all(np.real(ev) < 0 for ev in eigenvalues)  

    if __name__ == "__main__": 

    # Parameters 

    n = 15  # dimension of the matrix 

    mean_val = 0.0 

    std_val = 0.5 

    seed_val = 123 

       # Generate a random interaction matrix 

    A = generate_random_matrix(n, mean=mean_val, std=std_val, seed=seed_val) 

     # 1) Spectral Analysis 

    eigenvals, eigvecs = spectral_analysis(A) 

        # ------------------ GRAPH 1: HISTOGRAM OF EIGENVALUES ----------------------- 

    plt.figure(figsize=(6, 4)) 

    plt.hist(np.real(eigenvals), bins=10, color='blue', alpha=0.7, edgecolor='black') 

    plt.title("Graph 1: Histogram of the Real Parts of Eigenvalues") 

    plt.xlabel("Real part of Eigenvalues") 

    plt.ylabel("Frequency") 
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    plt.tight_layout() 

    plt.show() 

       # ------------------ GRAPH 2: REAL vs IMAG EIGENVALUES ----------------------- 

    plt.figure(figsize=(6, 4)) 

    plt.scatter(np.real(eigenvals), np.imag(eigenvals), color='red', alpha=0.7, edgecolor='black') 

    plt.axhline(0, color='grey', linewidth=0.8) 

    plt.axvline(0, color='grey', linewidth=0.8) 

    plt.title("Graph 2: Real vs. Imaginary Parts of Eigenvalues") 

    plt.xlabel("Real(λ)") 

    plt.ylabel("Imag(λ)") 

    plt.tight_layout() 

    plt.show() 

     # ------------------ GRAPH 3: HEATMAP OF INTERACTION MATRIX ------------------ 

    plt.figure(figsize=(6, 5)) 

    sns.heatmap(A, cmap='viridis', annot=False) 

    plt.title("Graph 3: Heatmap of the Interaction Matrix") 

    plt.xlabel("Species j") 

    plt.ylabel("Species i") 

    plt.tight_layout() 

    plt.show() 

       # 2) Topological Filtration 

    thresholds = np.linspace(-0.5, 1.0, 5)  # sample thresholds 

    filtration_results = build_filtration(A, thresholds)   

    # For demonstration, we'll visualize the network at one threshold 

    alpha_to_visualize = 0.5 

    edges_to_show = [(i, j) for (alpha, edges) in filtration_results if alpha == alpha_to_visualize][0]   

    # Build a networkx graph 

    G = nx.Graph() 

    G.add_nodes_from(range(n)) 

    G.add_edges_from(edges_to_show)    

    # ------------------ GRAPH 4: NETWORK AT THRESHOLD = 0.5 --------------------- 

    plt.figure(figsize=(6, 5)) 

    pos = nx.spring_layout(G, seed=42)  # layout for node positioning 

    nx.draw_networkx(G, pos, 

                     node_color='lightblue', 

                     edge_color='gray', 

                     with_labels=True, 

                     node_size=500, 

                     font_size=8) 

    plt.title(f"Graph 4: Network Visualization at Threshold α = {alpha_to_visualize}") 

    plt.axis('off') 

    plt.tight_layout() 

    plt.show() 
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    # 3) Ecological Stability Check 

    stable = is_ecologically_stable(eigenvals) 

    print(f"Is the system stable? {stable}") 
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