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Abstract

The Standard Model is unable to determine a particle’s specific rest
mass. For an alternative theory we consider a 3-sphere intersecting
three dimensional space. The intersection is a Hopf fibration with
non Euclidean topology. Mass is due to a force jumping topologies.
Mass splitting formulae with intersection signature treat the mass of
lighter hyperons as a function of the proton, neutron and in some cases
electron. The approach is numerical. In MeV the derived values are:
Σ+ ≈ 1189.371, Σ0 ≈ 1192.655, Σ− ≈ 1197.580, Ξ0 ≈ 1314.810, Ξ−

≈ 1321.711, Ω− ≈ 1672.482. Eqs. (15, 19) bring Σ and Ξ particles
together as a single family of massive particles ensuring the individual
formulae are not ad hoc. The familial status of Ω− is less secure. To
make the case, a scaling factor SM is introduced using Ω− volume.
SM scales rest masses given in any system of units to a dimensionless
number proportional to MeV. For precise results less than one fifth of
an electron-volt is shaved from the 2022 CODATA neutron adjustment
(our value 939.565 421 76). To justify SM we consider the difference
between Gaussian and SI units. In the final count nine free parameters
reduce to two.
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The Higgs field imparts mass to fundamental particles. In the crowd analogy
the field acts like a throng impeding a celebrity as they attempt to cross a room.
[1] The stronger the interaction the slower the progress, the heavier the particle.
To dig a little bit deeper, particles that exhibit internal Lie group symmetry gain
mass when spontaneous symmetry breaking couples with the Higgs field at higher
energy states.[2, 3] The caveat is that the field interacts with quarks, leptons
and some bosons, but not photons; while the bulk of a Hadron’s mass is due
to quark confinement and not the Higgs field. Unable to predict why a particle
has the precise mass that it does, the Standard Model leaves rest mass an open
question. To address this problem we radically rethink how a particle resists a
force. Reluctance to interact with a field is due to homotopic non-equivalence.
The non-homotopy explains the entirety of a particle’s mass. In order to act on
the particle it is the force that breaks field symmetry, not the particle. Reworking
the analogy: crowd members must work harder and do something weird to elicit
a response from an aloof celebrity.

In lieu of the Higgs scalar field we consider a vector field. Ordinary space is
the set of three dimensional points R3. 3-space is ordinary space filled with forces
constrained by the Euclidean topology. For instance, a force has the connected
topology of a point when it makes contact with an object.

The theory also considers an S3 Hopf fibration.[4] S3 is the set of four dimen-
sional coordinates that form a 3-sphere. A 2-sphere is described by the set of three
dimensional points S2 (a subset of R3). A Hopf fibration continuously maps the
3-sphere to the 2-sphere. This is done with Hopf maps. A Hopf map (h : S3 → S2)
is a surjective function mapping a subset of S3 elements to a point in S2. An indi-
vidual Hopf map describes an S1 circle (Hopf circle) embedded in S3. There is one
unique Hopf circle for each point in S2. This means a single point on the 2-sphere
surface is the image (shadow) of a circle embedded in higher dimensions. Spatial
intuition is lost, but the fibration makes it mathematically possible to return to
the circle. Continuous mapping also entails an infinite number of maps for each
four dimensional point ensuring S3 space is transitive.

We consider a 3-sphere intersecting 3-space. The intersection generates a 2-
sphere image of the 3-sphere. A situation described by a Hopf fibration. The
location where 3-space force contacts the 2-sphere raises the question of homotopic
non-equivalence. The non-homotopy may be pictured with cone mapping. A point
force at the apex of a cone is unable to pass to the base circle unless its connected
topology is punctured. As S3 space is transitive a force able to make the jump is
dispersed throughout the 3-sphere. The sudden dispersal registers as resistance to
the force. To be clear, a 2-sphere with ordinary interior does not resist because it
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is part of 3-space. But where there is resistance due to non-homotopy a particle
has mass relative to 3-space.

Five equations characterise Hopf particle rest mass. Eq. (1) tells us a particle’s
mass is determined by the size of the 3-sphere.

M = 2π2r3. (1)

The Hopf mass occupies the volume of a standard ball in 3-space, as Eq. (2).

V =
4π

3
r3. (2)

If Mp ≈ 938.272 then Vp ≈ 199.108. The mass / volume disparity means the
density of the interior of the 2-sphere, Eq. (3), is a pure number > 1.

ρ =
M

V
=

3π

2
. (3)

Hypermass (H) is the difference between mass and volume, as Eq. (4).

H = M − V. (4)

Eq. (5) is the Hopf/hypermass signature (h-signature).

M = H


ρ

ρ− 1


. (5)

Σ rest mass h-signatures are functions of the proton and neutron masses, as
Eqs. (6, 7, 8). [The results shown are due to the 2022 CODATA rest mass energies
in MeV (ignoring uncertainties) for proton and neutron: Mp = 938.272 089 43,
Mn = 939.565 421 94].[5]

MΣ+ = (2Mp −Mn)


ρ

ρ− 1


≈ 1189.3712. (6)
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MΣ0 = Mn


ρ

ρ− 1


≈ 1192.6546. (7)

MΣ− = (4Mn − 3Mp)


ρ

ρ− 1


≈ 1197.5797. (8)

Eq. (6) is a match for the Particle Data Group (PDG) current fit for MΣ+

(1189.37 ±0.07).[6] The PDG fit forMΣ0 is 1192.642 ±0.024, Eq. (7) is particularly
close to Wang 1192.65 ±0.020.[7] However, Eq. (8) is over four standard deviations
adrift of the PDG fit (1197.449 ±0.030). This value draws on three results. Schmidt
(1197.43) and Gurev (1197.417) are too low to be the number derived here.[8, 9]
Schmidt is an old paper from 1965, and Gurev is a proof of method. MΣ− is within
one standard deviation of Gall (1197.532 ±0.057).[10]

We consider what it means if Eqs. (9, 10) are Ξ rest masses. (Subtracting a
volume indicates a mass is also a hypermass; a point we return to later).

MΞ0 = MΣ0


ρ

ρ− 1


− Vp ≈ 1314.8104. (9)

MΞ− = MΣ−


ρ

ρ− 1


− Vp ≈ 1321.0622. (10)

MΣ0 is within one standard deviation of the PDG fit (1314.86± 0.20) and close to
Fanti (1314.82 ±0.06)[11]. Eqs. (7, 8, 9, 10) resolve (11, 12, 13).

MΞ− −MΞ0

MΣ− −MΣ0

=
ρ

ρ− 1
. (11)

MΣ0


MΞ− −MΞ0

MΣ− −MΣ0


−MΞ0 − Vp = 0. (12)

MΣ−


MΞ− −MΞ0

MΣ0 −MΣ−


−MΞ− − Vp = 0. (13)
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Eqs. (12, 13) have import for (22) later. But first, we are about to see why Eq.
(11) is unsustainable. The present PDG fit for MΞ− (1321.71 ± 0.07) draws on
a 2006 study of 4.8k events from 1992-1995 data.[12] Faced with an unlikely nine
standard deviation downward adjustment, Eq. (14) introduces the electron rest
mass energy (Me = 0.510 998 950 69 MeV) as a fudge factor. (Hint: it is not a
fudge).

M∗
Ξ− = (MΣ− +Me)


ρ

ρ− 1


− Vp ≈ 1321.7109. (14)

Eqs. (7, 8, 9, 14) resolve (15). The equivalence ensures the individual formulae
are not ad hoc.

Me

3


M∗

Ξ−−MΞ0

MΣ−−MΣ0
− ρ

ρ−1

 = Mn −Mp. (15)

At Eq. (15) the M∗
Σ− adjustment heads off the potential threat of infinity due to

(11). Eq. (11) is revised as (16).

M∗
Ξ− −MΞ0

MΣ− −MΣ0

− Me

3Mn − 3Mp
=

ρ

ρ− 1
. (16)

If the Me adjustment is applied to the Ξ0 mass, we get Eq. (17).

M∗
Ξ0 = (MΣ0 +Me)


ρ

ρ− 1


− Vp ≈ 1315.4591. (17)

Eq. (17) entails a variation of (16) with Me
3Mn−3Mp

addended as (18) shows.

MΞ− −M∗
Ξ0

MΣ− −MΣ0

+
Me

3Mn − 3Mp
=

ρ

ρ− 1
. (18)

Eq. (19) reveals MΣ+ is also a function of the other Σ and Ξ masses.



Mp +
Me

3


MΞ−−M∗
Ξ0

MΣ−−MΣ0
− ρ

ρ−1








ρ

ρ− 1


= MΣ+ . (19)
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Eqs. (15, 19) demonstrate Σ, Ξ particles formally belong to a single family of Hopf
particles. The question is whether Ω− also belongs. For Ω− mass we take a lead
from Eq. (20).

MΣ0 =


3HΣ+ + 2HΣ−

5


ρ

ρ− 1


≈ 1192.6546 (20)

The most recent PDG fit for the Ω− mass is 1672.45± 0.29 MeV. Eq. (21) follows
the template provided by (20).

MΩ− =


3MΞ0 + 2M∗

Ξ−

5


ρ

ρ− 1


≈ 1672.4824. (21)

The 3x+2x
5 schema is indicative of two hypermasses resulting in the mass of a third

particle. Eq. (21) is the second clue suggesting Ξ particles are the hypermasses of
two heavier particles. A neutral particle 1668.9787 MeV and a negative particle
1677.7380 MeV. These masses fall within the uncertainties of a number of po-
tential candidates, i.e. N(1675), N(1680), Λ(1670), Σ(1660), Σ(1670),[6] but the
uncertainties are presently too wide to be definitive. The Ξ(1318) resonance is also
a plausible candidate for HΩ− ≈ 1317.5706 with Ω− the middle mass of a triple
{1668.9787, 1672.4824, 1677.7380} and their hypermasses the Ξ triple {1314.8104,
1317.5706, 1321.7109}.

The M∗
Ξ− adjustment necessitated by Eq. (15) replaces volume Vp at (12, 13)

with VΩ− at (22). The near equivalence is for MeV only.

MΣ0


M∗

Ξ− −MΞ0

MΣ− −MΣ0


−MΞ0 − VΩ− ≈ ρ

ρ− 1
. (22)

Helping Eq. (21) seem less ad hoc the close alignment with ρ
ρ−1 in MeV provides

a scaling factor introduced at (23, 24).

SM =


{Mx}

MΣ0


M∗

Ξ−−MΞ0

MΣ−−MΣ0


−MΞ0 − VΩ−


ρ

ρ− 1


. (23)

SM =


{Mx}

MΣ−


M∗

Ξ−−MΞ0

MΣ−−MΣ0


−M∗

Ξ− − VΩ−


ρ

ρ− 1


. (24)
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SM scales rest mass values in any system of units to a number close to mass energy
in MeV. Eq. (25), for example, returns the number ≈ 0.511 for the electron.


Me

MΣ0


M∗

Ξ−−MΞ0

MΣ−−MΣ0


−MΞ0 − VΩ−


ρ

ρ− 1


≈ 0.511. (25)

The nucleon and electron masses are more accurately known in u. Using the 2022
CODATA adjustments (ignoring uncertainties), Mn = 1.008 664 916 06, Mp =
1.007 276 466 5789, Me = 0.000 548 579 909 0441, Eq. (25) = 0.511 007 366 716.
With the kg adjustments we get 0.511 007 405 8334. The mass energy equiva-
lent in MeV is 0.511 007 615 2234. These values are marginally high for the elec-
tron but SM is sensitive to its inputs. Using the proton and electron to dial-
in the more uncertain neutron mass in u, Eq. (25) = 0.510 998 950 69 when
M ′

n = 1.008 664 915 876 394 072. The ultra precision is overdone but M ′
n represents

a downward adjustment within one standard deviation or less than one fifth of an
electron-volt. Given the uncertainties, a neutron mass energy 939.565 421 76 ±
0.000 000 06 MeV resolves Eqs. (22, 25). However, if not a coincidence, the ob-
vious question is why does SM favour millions of electron-volts? The clue is the
million. A 106 factor immediately points to the difference in scale between SI and
Gaussian systems.

Gaussian fields are part of a single mechanical framework sharing the same set
of cgs dimensions. If mass is non-homotopic, a dimension independent of classical
fields is needed. This is not available in the Gaussian single framework. The joule
and kilogramme are also field units and not suitable. Unified atomic mass units
(u) provide an independent option but the choice of the carbon 12 benchmark
is arbitrary. It is the ampere that offers a non-arbitrary independent number.
Whilst not an SI unit the electron-volt is an adjunct to the SI system due to the
ampere and volt. If mass is measured as no of elementary charge × electrical
potential where the number of charges is proportional to a magnetic force then
B, E field densities are implicit. If we ask what does nature prefer? Unbalanced
field dimensions seems the wrong answer. This leaves us to resolve non-homotopic
mass with a Gaussian / electron-volt synthesis. To rescale electrical potential with
balanced field dimensions Gaussian statV is first converted into volts, as Eq. (26).

1 statV =
299792458

106
V. (26)
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When dimensions are cancelled, reference to SI values are eliminable. (27) walks
through each step.

299792458

c
V 1

= 1 V ·m−1 · s 2

× 10−6 N−1 · s−1 3

= 10−6 V ·N−1 ·m−1 4

× 1.60219 · 10−19A · s 5

= 1.60219 · 10−25 eV ·N−1 ·m−1 6

× 6.24151 · 1018 eV 7

= 10−6 eV ·N−1 ·m−1 8

× 510998.95069 eV 9

= 0.510 998 950 69 eV ·N−1 ·m−1 10

= 0.510 998 950 69 11

(27)

At line 1 of (27) the conversion factor 299792458 is already dimensionless but one
that directly references the speed of light in SI units. Dividing by c excises this
number, though it introduces the additional dimensions m−1 · s, which have to be
cancelled later. This explains the statV to volt conversion factor 10−6 introduced
as an impulse at line 3. At line 4, line 2 dimensions are divided by newton·seconds
from line 3. Line 5 introduces elementary charge in SI units, which converts volts
to electron-volts at line 6. Line 7 leaves A · s = 1 which ensures all trace of the
SI value is erased when dimensions cancel. Line 8 is the conversion factor for
mass energy that gives a number in reduced electron-volts. Line 9 introduces the
electron mass energy but this could be any mass energy. The reduced number at
line 10 is parsed in its base dimensions as follows.





no of charges
moved for 1 sec

= 1
A · s

×

electrical potential
difference
≈ 0.511

m2 · kg · s−3 ·A−1



m−2 · kg−1 · s2. (28)

(28) quantifies the work needed to move the electron per unit of mass energy. At
line 11 dimensions are allowed to cancel. If this line of reasoning is correct SM
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scales rest mass to a dimensionless magnitude for a generic system with balanced
fields and an independent elementary charge.

There is one more particle we should at least mention in passing. The octet
n, p, Λ0, Σ+, Σ0, Σ−, Ξ0, Ξ− forms the baryon eightfold way. This leaves Λ0 still
to be considered. Unfortunately an h-signature within one standard deviation has
proved elusive. Eq. (29) is a simple relationship that gets close, and accords with
the intuition Λ0 is primarily related to other neutral particles.

MΞ0 − Vp = 1115.7029 (29)

The octet might still be neatly tied together if Eq. (29) were the Λ0 mass but
the present PDG fit is 1115.683 MeV ±0.006; a precise measurement based on
38k events.[13] This leaves a future PDG adjustment of 1115.7029 highly unlikely.
However, we get within one standard deviation using Mn as the base.

Mn +
MΩ− − (VΞ0 +H∗

Ξ−)

2
≈ 1115.68334. (30)

As we lack an additional feature like a scaling factor to motivate Eq. (30) it
remains ad hoc, leaving Λ0 still to be convincingly combined with the Σ, Ξ family;
so we close our limited survey of hyperon mass on a disappointing note.

In conclusion: evidence for a non-homotopic cause of mass is provided by rest
mass energies for Σ, Ξ, Ω particles derived from h-signatures. The derived values
are in the majority of cases exceptionally close to observation. It is anticipated
future CODATA and PDG adjustments will favour the values derived here. The
added possibility of reducing nine free parameters to two is further evidence for
non-homotopy. The SM scaling factor is a novel development that stakes its claim
as the dimensionless and natural scale for particle rest mass.
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[4] Heinz Hopf. Über die abbildungen der dreidimensionalen sphäre auf die
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