
Group Theory: Problems and Solutions (Part 2)

Harry Willow

Abstract. There is nothing new about group theory in this paper. It presents group
theory problems at undergraduate level and their solutions. In presenting the solu-
tions, we avoid using advanced theorems from group theory but we try to discuss the
solutions using elementary facts in group theory.

Let P ∈ Sylp(G) and assume N⊴G. Use conjugacy part of Sylow’s Theorem
to prove that P ∩ N is a Sylow p-subgroup of N.

Let Q ∈ Sylp(N). Since P ∈ Sylp(G) and Q is a p-subgroup of G,
there exists g ∈ G such that

Q ≤ gPg−1.(1)

Clearly, Q ≤ N and N ≤ gNg−1 by the normality of N in G; so

Q ≤ gNg−1.(2)

From (1) and (2),

Q ≤ gPg−1 ∩ gNg−1 ≤ g(P ∩ N)g−1.(3)

Since Q ∈ Sylp(N) and P ∩ N is a p-subgroup of N, there exists n ∈ N such
that

P ∩ N ≤ nQn−1.(4)

To show |P ∩ N| = |Q|. From (4), |P ∩ N| ≤ |nQn−1| and |nQn−1| = |Q|; so

|P ∩ N| ≤ |Q|.(5)

From (3), |Q| ≤ |g(P ∩ N)g−1| and |g(P ∩ N)g−1| = |P ∩ N|; so

|Q| ≤ |P ∩ N|.(6)

From (5) and (6), |P ∩ N| = |Q| and thus P ∩ N ∈ Sylp(N).

Reference:
D. S. Dummit, R. M. Foote, Abstract Algebra, John Wiley and Sons, Inc.,
1990.

Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G.
Prove that P ∩H is the unique Sylow p-subgroup of H.

Let Q ∈ Sylp(H). Since Q ∈ Sylp(H) and P ∩ H is a p-subgroup of
H, there exists h ∈ H such that P ∩H ≤ hQh−1 and thus

|P ∩H| ≤ |hQh−1|.(7)
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From (7),

|P ∩H| ≤ |Q|.(8)

Since P ∈ Sylp(G) and Q is a p-subgroup of G, there exists g ∈ G such that
Q ≤ gPg−1. Since Q ≤ gPg−1 and gPg−1 ≤ P , Q ≤ P . Moreover, since
Q ≤ P and Q ≤ H, Q ≤ P ∩H and thus

|Q| ≤ |P ∩H|.(9)

From (8) and (9), |P ∩H| = |Q| and thus P ∩H∈ Sylp(H). Since P ∩H⊴H,
P ∩H is the unique Sylow p-subgroup of H.

Reference:
D. S. Dummit, R. M. Foote, Abstract Algebra, John Wiley and Sons, Inc.,
1990.

Let P ∈ Sylp(G) and let H ≤ G. Prove that gPg−1∩H is a Sylow p-subgroup
of H for some g ∈ G.

Let Q ∈ Sylp(H). Then there exists g ∈ G such that Q ≤ gPg−1.
Since Q = Q ∩H and Q ∩H ≤ gPg−1 ∩H, Q ≤ gPg−1 ∩H and thus

|Q| ≤ |gPg−1 ∩H|.(10)

Since Q∈ Sylp(H) and gPg−1 ∩ H is a p-subgroup of H, there exists h ∈ H
such that gPg−1 ∩H ≤ hQh−1 and thus

|gPg−1 ∩H| ≤ |hQh−1| = |Q|.(11)

From (10) and (11), |Q| = |gPg−1 ∩ H| and hence gPg−1 ∩ H is a Sylow
p-subgroup of H.

Reference:
D. S. Dummit, R. M. Foote, Abstract Algebra, John Wiley and Sons, Inc.,
1990.

Suppose G is a group of order 385. Prove that G has exactly one subgroup
of order 77.

By Sylow’s theorems, G has a normal Sylow 7-subgroup H and a normal
Sylow 11-subgroup K. So HK is a subgroup of G and |HK| = |H||K|

|H ∩K| = 77.

Let A and B be subgroups of G of order 77. Notice that |A ∩ B| divides
|A| and hence |A ∩ B| ∈ {1, 7, 11, 77}. Suppose |A ∩ B| = 1. Then
|AB| = |A||B|

|A∩B| =
77·77
1 = 5929, a contradiction since AB is a subset

of G. Suppose |A ∩ B| = 7. Then |AB| = |A||B|
|A∩B| =

77·77
7 = 847, a

contradiction since AB is a subset of G. Suppose |A ∩ B| = 11. Then
|AB| = |A||B|

|A∩B| =
77·77
11 = 539, a contradiction since AB is a subset of G.
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Thus |A ∩ B| = 77. Since A ∩ B ≤ A and |A ∩ B| = |A|, A ∩ B = A. Since
A∩B ≤ B and |A∩B| = |B|, A∩B = B. To conclude that A = A∩B = B.

A group of order 7 · 5 · 232 has a normal Sylow 5-subgroup.

Let |G| = 7 · 5 · 232 . So G has a normal Sylow 23-subgroup N. Let
G = G/N. Its order is 35 and G has a normal Sylow 5-subgroup H. Let
H = {x ∈ G | xN ∈H}. Then H is a subgroup of G and H∼= H/N; thus

5 = |H | =
|H|
|N| =

|H|
232
.

So |H| = 5 ·232 and H has a Sylow 5-subgroup Q. Let ϕ be an automorphism
of H. Then ϕ(Q) is a Sylow 5-subgroup of H. H has exactly one Sylow
5-subgroup and thus ϕ(Q) = Q. Since H is normal in G, H is normal in G.
Since Q is a characteristic subgroup of H and H is normal in G, Q is normal
in G.

Show that a group G of order 108 has a normal subgroup of order 9 or 27.

By Sylow’s theorem, n3(G) ∈ {1, 4}. If n3(G) = 1, then there is one
and only one Sylow 3-subgroup of G and it is normal in G. Suppose
n3(G) = 4. Let S and T be two distinct Sylow 3-subgroups of G. Since
ST ⊆ G,

|ST | =
|S||T |
|S ∩ T | =

729

|S ∩ T | ≤ 108.

Thus |S∩T | = {9, 27}. If |S∩T | = 27, then S = S∩T = T , a contradiction.
Thus |S ∩ T | = 9. Since |S ∩ T | = 32 and |S| = 33 , S ∩ T is a normal
subgroup of S and hence S ≤ NG(S ∩ T ). Similarly, T ≤ NG(S ∩ T ). So
ST ⊆ NG(S ∩ T ). Since |ST | = |S||T |

|S∩T | =
729
9 = 81,

(1) 81 ≤ |NG(S ∩ T )|.
Moreover, |S| divides |NG(S ∩ T )| and so

(2) 27 divides |NG(S ∩ T )|.

By Lagrange’s theorem,

(3) |NG(S ∩ T )| divides 108.

By (1), (2), (3), |NG(S ∩ T )| = 108. Thus NG(S ∩ T ) = G and so S ∩ T is a
normal subgroup of G.
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Let α be an automorphism of a finite group G which fixes only the unit of G
(α(a) = a⇒ a = 1). Assume α2 = 1. Then G is abelian of odd order.

Let T : G → G be T (a) = α(a)a−1. Suppose T (a) = T (b). Then
α(b−1a) = b−1a and hence b−1a = 1. So T is injective. Since T : G → G
is injective and G is finite, T is also surjective. Let g ∈ G. Then
g = α(a)a−1 for some a ∈ G and α(g) = α(α(a)a−1) = α(α(a))α(a−1) =
α2(a)α(a−1) = aα(a)−1 = (α(a)a−1)−1 = g−1. Let a, b ∈ G. So
ab = (b−1a−1)−1 = α(b−1a−1) = α(b−1)α(a−1) = (b−1)−1(a−1)−1 = ba.

Thus G is abelian. Let a ∈ G. Then T (a) = α(a)a−1 = a−2. Suppose G
is a finite group of even order. Then G contains an element x ̸= 1 such
that x2 = 1. So T (x) = x−2 = 1. Since x ̸= 1 but T (x) = T (1), T is not
injective, a contradiction.

For x, y ∈ G, define
[x, y ] = x−1y−1xy

and the commutator of two subgroups H and K of G is

[H,K] = ⟨ [h, k ] | h ∈ H, k ∈ K ⟩.

Prove that G i is a characteristic subgroup of G for all i .

For a group G, define

G0 = G, G1 = [G,G], G i+1 = [G,G i ].

Suppose the statement is true for i . Let σ be an automorphism of G. Then
σ−1 is also an automorphism of G. Let

U = {x−1y−1xy | x ∈ G, y ∈ G i}.
If u ∈ U, then u = x−1y−1xy for some x ∈ G, y ∈ G i . Since σ is surjective,
x = σ(a) for some a ∈ G. By hypothesis, G i = σ(G i) and thus y = σ(b) for
some b ∈ G i . Thus

u = x−1y−1xy = σ(a−1)σ(b−1)σ(a)σ(b) = σ(a−1b−1ab) ∈ σ(G i+1).
Note that a−1b−1ab ∈ U ⊆ G i+1. Both G i+1 and σ(G i+1) are subgroups of
G that contain U. Since G i+1 is the smallest subgroup of G that contains U,
G i+1 ≤ σ(G i+1). Moreover, G i+1 ≤ σ−1(G i+1) and thus σ(G i+1) ≤ G i+1. To
conclude

σ(G i+1) = G i+1.

For a group G, define

G(0) = G, G(1) = [G,G], G(i+1) = [G(i), G(i)].
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Then G(1) is a characteristic subgroup of G.

Let T be an automorphism of G. So T−1 is also an automorphism of
G. Let U = {xyx−1y−1|x, y ∈ G}. If u ∈ U, then u = xyx−1y−1 for
some x, y ∈ G. Since T−1 is surjective, x = T−1(a) and y = T−1(b) for
some a, b ∈ G. Thus u = xyx−1y−1 = T−1(a)T−1(b)T−1(a−1)T−1(b−1) =
T−1(aba−1b−1) ∈ T−1(G(1)) since aba−1b−1 ∈ U and G(1) contains U.
Hence T−1(G(1)) contains U. Both G(1) and T−1(G(1)) are subgroups of G
that contain U. Since G(1) is the smallest subgroup of G that contains U,
G(1) ≦ T−1(G(1)). To conclude T (G(1)) ≦ T (T−1(G(1))) = G(1).

Prove that G(i) is a characteristic subgroup of G for all i .

By previous result, G(1) is a characteristic subgroup of G. Suppose G(i) is a
characteristic subgroup of G for some integer i ≧ 1. Again by the previous
result, G(i+1) = [G(i), G(i)] = (G(i))(1) is a characteristic subgroup of G(i).
Since G(i+1) is a characteristic subgroup of G(i) and G(i) is a characteristic
subgroup of G, G(i+1) is a characteristic subgroup of G.

Prove that if H is a nontrivial normal subgroup of the solvable group G then
there is a nontrivial subgroup A of H with A ⊴ G and A abelian.

Lemma 1
If G is a group and N ◁ G such that

[a, b] ∈ N
for all a, b ∈ G, then G/N is abelian.

Since H is a subgroup of the solvable group G, H is solvable as well. Since H is
solvable, H(k) = 1 for some k ≥ 0. Then there is the smallest nonnegative n for
which H(n) = 1. Hence H(n−1) ̸= 1. Since H(n−1) is a characteristic subgroup
of H and H is normal in G, H(n−1) is normal in G. Let a, b ∈ H(n−1). Note that
[a, b] is a commutator of elements from H(n−1) and H(n) = [H(n−1), H(n−1)] is
generated by all commutators of elements from H(n−1). Then [a, b] ∈ H(n) =
1. Hence, by Lemma 1, H(n−1)/1 is abelian. Moreover, H(n−1)/1 ∼= H(n−1).
To conclude H(n−1) is abelian.

If G/Z(G) is solvable, then G is solvable.

Since Z(G) itself is an abelian group, it is solvable. Thus G is solvable
since Z(G) and G/Z(G) are solvable.
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If G is a group, A is a subgroup of G, N is a normal subgroup of G and both
A and N are solvable, then AN is also solvable.

Since A/A ∩ N is a homomorphic image of A and A is solvable, A/A ∩ N is
also solvable. Since AN/N ∼= A/A ∩ N, AN/N is a homomorphic image of
A/A ∩ N. Since AN/N is a homomorphic image of A/A ∩ N and A/A ∩ N is
solvable, AN/N is also solvable. Since both N and AN/N are solvable, AN is
also solvable.

Let C(A) denote the centralizer of the subset A of a monoid M (or a group
G). Then:
(1) C(C(A)) ⊃ A.
(2) If A ⊂ B, then C(A) ⊃ C(B).
(3) C(C(C(A))) = C(A).
(4) C(A) = C(⟨A⟩).

(3)
By replacing A with C(A) in (1), C(C(C(A))) ⊃ C(A). By (1), A ⊂ C(C(A))
and hence by (2), C(A) ⊃ C(C(C(A))). Since C(C(C(A))) ⊃ C(A) and
C(A) ⊃ C(C(C(A))), the result follows.

(4)
Let c ∈ C(A). Then {c} ⊂ C(A) and hence C(c) ⊃ C(C(A)) ⊃ A by (1) and
(2). Since C(c) is a submonoid of M (or a subgroup of G) containing A and
⟨A⟩ is the smallest submonoid ofM (or the smallest subgroup of G) containing
A, ⟨A⟩ ⊂ C(c). and hence, by (1) and (2), C(⟨A⟩) ⊃ C(C(c)) ⊃ {c}. Thus
c ∈ C(⟨A⟩) and so C(A) ⊂ C(⟨A⟩). To show the other containment, since
A ⊂ ⟨A⟩, C(A) ⊃ C(⟨A⟩) by (2). To conclude C(A) = C(⟨A⟩).

Note that C(c) means C({c}).

Let A,B be cyclic groups of order m and n, respectively. Prove that if A×B
is cyclic, then m and n are relatively prime.

Let G = A × B. Assume G is cyclic, |A| = m, |B| = n, d = (m, n).
A has a subgroup X of order d and B has a subgroup Y of order d . Let
U = {(x, 1) | x ∈ X}, V = {(1, y) | y ∈ Y }. |U| = |X| = d = |Y | = |V |.
Since G is cyclic, G can have just one subgroup of order d , and thus U = V .
Let x ∈ X. Then (x, 1) ∈ U = V . So (x, 1) = (1, y) for some y ∈ Y . Thus
x = 1. To conclude 1 = |X| = d as wanted.
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Find the maximum possible order for an element of S8.

We can write any element of S8 as a product of disjoint cycles, and
the order of a product of disjoint cycles is the least common multiple of the
orders of the cycles. How many ways can we have disjoint cycles? It just
depends on how long the cycles are. So we have to look at partitions of 8
(where each number gives the length of the cycle) and give the corresponding
LCM whenever applicable:

Cycle Type Order of Permutations
1, 1, 1, 1, 1, 1, 1, 1 1
2, 1, 1, 1, 1, 1, 1 2
2, 2, 1, 1, 1, 1 2
2, 2, 2, 1, 1 2
2, 2, 2, 2 2
3, 1, 1, 1, 1, 1 3
3, 2, 1, 1, 1 6
3, 2, 2, 1 6
3, 3, 1, 1 3
3, 3, 2 6
4, 1, 1, 1, 1 4
4, 2, 1, 1 4
4, 2, 2 4
4, 3, 1 12
4, 4 4
5, 1, 1, 1 5
5, 2, 1 10
5, 3 15
6, 1, 1 6
6, 2 6
7, 1 7
8 8

The biggest of these orders is 15.

Let G be a simple group of order 504 = 7 · 8 · 9. Then G has no elements of
order 21.

Suppose G has an element of order 21. Then G has a subgroup P of
order 21. By Cauchy’s theorem, P has a subgroup Q of order 7. Since P is
cyclic, Q is normal in P and hence |P | divides |NG(Q)| since P ≦ NG(Q).
So 21 divides |NG(Q)|. But Q is also a 7-Sylow subgroup of G. By Sylow’s
theorems, n7(G) ∈ {1, 8, 36}. Since G is simple, n7(G) ∈ {8, 36} and
|NG(Q)| ∈ {14, 63}. Since 21 divides |NG(Q)| and |NG(Q)| ∈ {14, 63},
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|NG(Q)| = 63. Thus G has a subgroup of index 8 and so G is isomorphic to a
subgroup of S8. But S8 doesn’t have an element of order 21, a contradiction.

A group of order 63 has an element of order 21.

Let G be a group of order 63. Then G has a Sylow 7-subgroup P and
a Sylow 3-subgroup Q. Moreover, n7(G) = 1 and n3(G) ∈ {1, 7}. Suppose
n3(G) = 1. Then both P and Q are normal in G. By Cauchy’s theorem, P
has an element a of order 7 and Q has an element b of order 3. Since both
P and Q are normal in G and P ∩ Q = 1, ab = ba. Thus ab is of order 21.
Now Suppose n3(G) = 7. Let Q1 and Q2 be two distinct Sylow 3-subgroups
of G. If Q = Q1 ∩Q2, |Q| divides 32. Suppose |Q| = 1. But then

|Q1Q2| =
|Q1||Q2|
|Q| = 81 > |G|,

a contradiction. Now suppose |Q| = 9. Then Q1 = Q = Q2, a contradiction.
Thus |Q| = 3 and hence Q is normal in both Q1 and Q2. So Q1 ≤ NG(Q) and
Q2 ≤ NG(Q); hence, Q1Q2 ⊆ NG(Q). Since |Q1Q2| ≤ |NG(Q)|,

27 ≤ |NG(Q)|.
Moreover,

|NG(Q)| divides 63.

Thus |NG(Q)| = 63 and so Q is normal in G. So P has an element a of order
7 and Q has an element b of order 3. Since both P and Q are normal in G
and P ∩ (Q) = 1, ab = ba. Thus ab is of order 21.

Let G be a finite group of order |G| = 504 = 23 · 32 · 7.
a. If G has a normal subgroup of order 8, show that G has at most 8 Sylow
7-subgroups, that is |Syl7(G)| ≤ 8.
b. If |Syl7(G)| ≤ 8, prove that G has an element of order 21.
c. If G is isomorphic to a subgroup of the symmetric group of degree 9, show
that G cannot have a normal subgroup of order 8.

a.
Suppose G has a normal subgroup N of order 8. Consider G = G/N. So
|G | = 32 · 7. Since n7(G ) = 1, G has a normal subgroup Q of order 7. Let
Q = {x ∈ G | xN ∈ Q}. Then Q ∼= Q/N and hence

7 = |Q | = |Q||N| =
|Q|
8
.

The result is |Q| = 7 · 8. Since Q is normal in G , Q itself is normal in G.
Notice that Q has a Sylow 7-subgroup P and P is also a Sylow 7-subgroup
of G. By Sylow’s theorem, n7(G) ∈ {1, 8, 36}. Suppose n7(G) = 36. Then
36 = |G : NG(P )| and so |NG(P )| = 14. Since Q is a normal subgroup of a
finite group G and P is a Sylow 7-subgroup of Q, by Frattini’s Argument,
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|G : Q| divides |NG(P )|, i.e., 32 divides 14, a contradiction.

b.
Suppose n7(G) = 1. Then G has a normal Sylow 7-subgroup P and a Sylow
3-subgroup Q. Since PQ is a subgroup of G of order 63, by previous result,
PQ has an element of order 21 and so does G. Now suppose n7(G) = 8. Let
P be a Sylow 7-subgroup of G. So |NG(P )| = 63 and hence NG(P ) has an
element of order 21 and so does G.

c.
By hypothesis, G is isomorphic to a subgroup H of S9. So there exists an
isomorphism ϕ : G → H. Suppose G has a normal subgroup N of order
8. Then ϕ(N) is also a normal subgroup of H. Note that |H| = 504 and
|ϕ(N)| = 8. Thus, by part (a), n7(H) ≤ 8 and hence, by part (b), H has an
element of order 21 and so does S9, a contradiction.

A reference for Frattini’s Argument :
D. S. Dummit, R. M. Foote, Abstract Algebra, John Wiley and Sons, Inc.,
1990,

Let G be an abelian group of order 10 that contains an element of order 5.
Then G must be a cyclic group.

Since |G| is even, G contains an element a ̸= 1 such that a2 = 1 and
so |a| = 2. By hypothesis, G has an element b of order 5. Thus |⟨a⟩| = 2
and |⟨b⟩| = 5. Since |⟨a⟩| and |⟨b⟩| are relatively prime, ⟨a⟩ ∩ ⟨b⟩ = 1.
Suppose (ab)n = 1. Since G is abelian, anbn = (ab)n = 1. Note that
an ∈ ⟨a⟩ and an = b−n ∈ ⟨b⟩. So an ∈ ⟨a⟩ ∩ ⟨b⟩ = 1 and hence |a| divides
n. Similarly, bn ∈ ⟨b⟩ and bn = a−n ∈ ⟨a⟩. So bn ∈ ⟨a⟩ ∩ ⟨b⟩ = 1 and hence
|b| divides n. Since both 2 and 5 divide n, 10 also divides n. Moreover,
(ab)10 = a10b10 = (a2)5(b5)2 = 1. To conclude 10 is the smallest positive
integer n such that (ab)n = 1.

Let G be a finite group. If G/Z(G) is nilpotent, then G is nilpotent.

Let p be a prime dividing |G| and P be a Sylow p-subgroup of G.
Thus PZ(G)/Z(G) is also a Sylow p-subgroup of G/Z(G). But G/Z(G) is
nilpotent. So PZ(G)/Z(G) is normal in G/Z(G) and hence PZ(G) is normal
in G. Moreover P is also a Sylow p-subgroup of PZ(G). Thus, by Frattini’s
argument, G = PZ(G)NG(P ). Note that Z(G) ≤ NG(P ) and P ≤ NG(P ).
To conclude G = PZ(G)NG(P ) = PNG(P ) = NG(P ) and thus P is normal
in G. Since every Sylow subgroup is normal in G, G is nilpotent.
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Reference:
H. E. Rose, A Course on Finite Groups, Springer, 2009.

Let G be a group of 24 · 53 · 11 and H be a group of order 53 · 11.
(a) Show H has a normal Sylow 11-subgroup.
(b) If the number of Sylow 5-subgroup of G is (strictly) less than 16, prove
that G has a proper normal subgroup of order divisible by 5.
(c) If G has exactly sixteen Sylow 5-subgroups, show that G has a normal
Sylow 11-subgroup.

(b)
Since n5(G) < 16, n5(G) ∈ {1, 11}. Suppose n5(G) = 1. Then there is one
and only one Sylow 5-subgroup of G and hence it is normal in G. Let N
be the normalizer of a Sylow 5-subgroup of G. Suppose n5(G) = 11. Then
11 = |G : N| and so |N| = 24 · 53. Since |G| does not divide |G : N|!, N must
contain a nontrivial normal subgroup P of G. Since |P | divides |N|, |P | ∈
{2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 125, 200, 250, 400, 500, 1000, 2000}.
From the list, only 2, 4, 8, 16 are not divisible by 5. Suppose |P | = 2i
for some i ∈ {1, 2, 3, 4}. Consider the quotient group G = G/P . So
|G | = 24−i · 53. Since n5(G ) = 1, G has a normal subgroup Q of order 53.
Let Q = {x ∈ G | xP ∈ Q}. Then Q ∼= Q/P and hence

53 = |Q | = |Q||P | =
|Q|
2i
.

The result is |Q| = 2i · 53. Since Q is normal in G , Q itself is normal in G.
Notice that 5 divides |Q|.

(c)
Let N be the normalizer of a Sylow 5-subgroup of G. Since n5(G) = 16,
16 = |G : N| and thus |N| = 53 · 11. By Sylow’s theorems, N has a normal
subgroup P of order 11 and hence N ≤ NG(P ). So

(1) 53 · 11 divides |NG(P )|.
Notice that P is also a Sylow 11-subgroup of G. Since n11(G) ∈ {1, 100},
(2) |NG(P )| ∈ {220, 22000}.
By (1), (2), |NG(P )| = 22000. Thus NG(P ) = G.

Prove that there are no simple groups of order 1755 = 33 · 5 · 13.

Let G be a group of order 1755. By Sylow’s theorems, n13(G) ∈ {1, 27}. Let
N be the normalizer of a Sylow 13-subgroup of G. Suppose n13(G) = 27.
Then 27 = |G : N| and so |N| = 65. By Sylow’s theorems, N has a normal
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Sylow 5-subgroup P and hence N ≤ NG(P ). So

(1) 65 divides |NG(P )|.
Notice that P is also a Sylow 5-subgroup of G. Since n5(G) ∈ {1, 351},
(2) |NG(P )| ∈ {5, 1755}.
By (1), (2), |NG(P )| = 1755. Thus NG(P ) = G.

Prove that there are no simple groups of order 9555 = 3 · 5 · 72 · 13.

Let G be a group of order 9555. By Sylow’s theorems, n7(G) ∈ {1, 15}. Let
N be the normalizer of a Sylow 7-subgroup of G. Suppose n7(G) = 15. Then
15 = |G : N| and so |N| = 637. By Sylow’s theorem, N has a normal Sylow
13-subgroup P and hence N ≤ NG(P ). So

(1) 637 divides |NG(P )|.
Notice that P is also a Sylow 13-subgroup of G. Since n13(G) ∈ {1, 105},
(2) |NG(P )| ∈ {91, 9555}.
By (1), (2), |NG(P )| = 9555. Thus NG(P ) = G.

Suppose that G is a finite group that has exactly 50 Sylow 7-subgroups. Let
P ∈ Syl7(G) and write N = NG(P ).
a. Show that N is a maximal subgroup of G.
b. If N has a normal Sylow 5-subgroup Q, prove that Q ◁ G.

a.

Lemma 1
Let G be a finite group such that P ∈ Sylp(G) and H ≥ NG(P ), then
|G : H| ≡ 1(mod p).

Reference:
W. R. Scott, Group Theory, Dover Publications, Inc., 1987.

Notice that 50 = np(G) = |G : N|. Let M be a subgroup of G such that
N ≤ M ≤ G and M ̸= N. Then

50 = |G : N| = |G : M||M : N|
and, by Lemma 1, |G : M| ≡ 1(mod 7). Since |G : M| divides 50 and
|G : M| ≡ 1(mod 7), |G : M| = 1 or 50. If |G : M| = 50, |M : N| = 1 and
thus M = N, a contradiction. Thus |G : M| = 1 and hence M = G.

b.
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Lemma 2
Let G be a finite group and P be a p-subgroup of G. Then P is a Sylow
p-subgroup of G if and only if P is a Sylow p-subgroup of NG(P ).

Since Q is normal in N, N ≤ NG(Q). By part a, N is a maximal subgroup of G.
Thus NG(Q) = N or NG(Q) = G. Suppose NG(Q) = N. Since Q is a Sylow
5-subgroup of N and N = NG(Q), it follows that Q is a Sylow 5-subgroup of
NG(Q) and, by Lemma 2, Q is a Sylow 5-subgroup of G. Since NG(Q) = N,
|NG(Q)| = |N| and thus n5(G) = |G : NG(Q)| = |G : N| = 50. By Sylow’s
theorem, n5(G) ≡ 1(mod 5), i.e., 50 ≡ 1(mod 5), a contradiction.

Suppose that a group G is the (internal) direct product of subgroups S and
T . Let H be a subgroup of G such that SH = G = TH.
a) Prove that S ∩H and T ∩H are normal subgroups of G.
b) If S ∩H = 1 = T ∩H, prove that S and T are isomorphic.
c) If S ∩H = 1 = T ∩H and H is normal in G, show that G is abelian.

The commutator of two elements x and y is x−1y−1xy . The notation
for this commutator element is [x, y ]. If X and Y are subgroups of G,
then [X, Y ] is defined to be the group generated by all [x, y ] with x in
X and y in Y .

Facts:
(1) [x, y ] = 1 if and only if xy = yx .
(2) [X, Y ] = 1 if and only if X ≤ CG(Y ) if and only if Y ≤ CG(X).
(3) [X, Y ] = [Y,X].
(4) [X, Y ] ≤ X if and only if Y ≤ NG(X).
[X, Y ] ≤ Y if and only if X ≤ NG(Y ).

(5) If X and Y normalize each other and X ∩ Y = 1, then X and Y
centralize each other.
Prove: Both X and Y normalize [X, Y ].

a)

Since G ≤ NG(T ), S ≤ NG(T ). Similarly, since G ≤ NG(S), T ≤ NG(S).
Since S and T normalize each other and S∩T = 1, by (5), S and T centralize
each other. So T ≤ CG(S) and S ≤ CG(T ).
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Since S∩H ≤ S, T ≤ CG(S) ≤ CG(S∩H) and so, by (2), [T, S∩H] =
1 ≤ S ∩ H. It is immediate, by (4), T ≤ NG(S ∩ H). Since S ∩ H is a
normal subgroup of H. H ≤ NG(S ∩ H). Since T ≤ NG(S ∩ H) and
H ≤ NG(S ∩H),

G = TH ≤ NG(S ∩H).

Since T∩H ≤ T , S ≤ CG(T ) ≤ CG(T∩H) and so, by (2), [S, T∩H] =
1 ≤ T ∩H. It is immediate, by (4), S ≤ NG(T ∩H). Since T ∩H is a
normal subgroup of H. H ≤ NG(T ∩ H). Since S ≤ NG(T ∩ H) and
H ≤ NG(T ∩H),

G = SH ≤ NG(T ∩H).

Note:
If S ∩ H is a normal subgroup of H, then NH(S ∩ H) = H, but all we
know is that H ≤ NG(S ∩H).

b)

Define ϕ : H → G/S by ϕ(h) = Sh for h ∈ H. Let h1, h2 ∈ H. Then

ϕ(h1h2) = Sh1h2 = Sh1Sh2 = ϕ(h1)ϕ(h2).

Let g ∈ G. Then g = sh for some s ∈ S and h ∈ H. Thus

Sg = Ssh = SsSh = S1Sh = Sh = ϕ(h).

Now suppose ϕ(h1) = ϕ(h2). Then Sh1 = Sh2. Since h1 ∈ Sh1 =
Sh2, h1 = sh2 for some s ∈ S and hence h1h2−1 = s ∈ S. To conclude
h1h2

−1 ∈ S ∩H = 1, i.e., h1 = h2. To conclude that G/S ∼= H.

Since G = SH, S is normal in G, and S ∩ H = 1, it follows that G/S ∼= H.
Since G = TH, T is normal in G, and T ∩ H = 1, it follows that G/T ∼= H.
Since G = ST , S is normal in G, and S ∩ T = 1, it follows that G/S ∼= T .
Since G = ST , ST is a subgroup of G and hence ST = TS. Since G = TS,
T is normal in G, and T ∩ S = 1, it follows that G/T ∼= S. To conclude that

S ∼= G/T ∼= H ∼= G/S ∼= T.
c)

Since H is normal in G, G ≤ NG(H) and so S ≤ NG(H). Since S is
normal in G, G ≤ NG(S) and so H ≤ NG(S). Since S and H normalize
each other and S ∩ H = 1, S and H centralize each other. Thus
H ≤ CG(S). Since T ≤ CG(S) and H ≤ CG(S), TH ≤ CG(S) and so
S ≤ G = TH ≤ CG(S). Thus S is abelian.
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Since H is normal in G, G ≤ NG(H) and so T ≤ NG(H). Since T
is normal in G, G ≤ NG(T ) and so H ≤ NG(T ). Since T and H
normalize each other and T ∩ H = 1, T and H centralize each other.
Thus H ≤ CG(T ). Since S ≤ CG(T ) and H ≤ CG(T ), SH ≤ CG(T )
and so T ≤ G = SH ≤ CG(T ). Thus T is abelian.

Let s ∈ S, t ∈ T . Since both S and T are normal in G and S∩T = 1, st = ts.
Since both S and T are abelian, G = ST , and st = ts for s ∈ S, t ∈ T , to
conclude that G is abelian.

Let G be a group of order 10989 = 33 · 11 · 37.
1. Compute the number, np, of Sylow p-subgroups permitted by Sylow’s
theorems for each of p = 3, 11 and 37; for each of these np give the order of
the normalizer of a Sylow p-subgroup.
2. Show that G contains either a normal Sylow 37-subgroup or a normal
Sylow 3-subgroup.
3. Explain briefly why (in all cases) G has a normal Sylow 11-subgroup.
4. Deduce that the center of G is nontrivial.

1.
By inspection, n3(G) ∈ {1, 37}, n11(G) ∈ {1, 111} and n37(G) ∈ {1, 297}.

2.
Suppose G does not have a normal Sylow 3-subgroup. Then n3(G) = 37.
Let P be a Sylow 3-subgroup of G. So |NG(P )| = 33 · 11. By Sylow’s
theorem, n11(NG(P )) = 1.and so NG(P ) has a normal Sylow 11-subgroup
Q. Since Q is normal in NG(P ), NG(P ) ≤ NG(Q). Notice that Q is also
a Sylow 11-subgroup of G and n11(G) ∈ {1, 111}. If n11(G) = 111, then
|NG(Q)| = 99. Since |NG(P )| divides |NG(Q)|, 297 divides 99, contradiction.
So n11(G) = 1 and |NG(Q)| = 10989 and thus NG(Q) = G. Let G = G/Q.
So |G | = 33 · 37. Since n37(G ) = 1, G has a normal subgroup H of order
37. Let H be the complete preimage of H in G, so |H| = 37 · 11. Since H is
normal in G , H itself is normal in G. Notice that H has a Sylow 37-subgroup
K. Let ϕ ∈ Aut(H). Then ϕ(K) is also a Sylow 37-subgroup of H. Since
n37(H) = 1, ϕ(K) = K. Since K is a characteristic subgroup of H and H is
normal in G, to conclude K is normal in G.

3.
Suppose n11(G) = 111 and n37(G) = 297. So there are 111 · 10 elements of
order 11 in G and 297 · 36 elements of order 37 in G, a contradiction since
they do not fit into G. So G contains either a normal Sylow 11-subgroup or a
normal Sylow 37-subgroup. Suppose G contains a normal Sylow 37-subgroup
Q. Let G = G/Q. So |G | = 33 · 11. Since n11(G ) = 1, G has a normal
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subgroup H of order 11. Let H be the complete preimage of H in G, so
|H| = 11 · 37. Since H is normal in G , H itself is normal in G. Notice that
H has a Sylow 11-subgroup K. Let ϕ ∈ Aut(H). Then ϕ(K) is also a Sylow
11-subgroup of H. Since n11(H) = 1, ϕ(K) = K. Since K is a characteristic
subgroup of H and H is normal in G, to conclude K is normal in G.

4.
From part 3, G has a normal Sylow 11-subgroup P and hence P is cyclic.
So |Aut(P )| = 10 and the quotient G/CG(P ) is isomorphic to a subgroup of
Aut(P ), i.e.,

(1) |G/CG(P )| ∈ {1, 2, 5, 10}.
On the other hand, since P is abelian, P ≤ CG(P ) and |CG(P )| is divisible by
11, which implies

(2) |G/CG(P )| ∈ {1, 3, 9, 27, 37, 111, 333, 999}.
From (1) and (2), |G/CG(P )| = 1, i.e., CG(P ) = G and P ≤ Z(G).

Let G be a finite group of order 4312 = 23 · 72 · 11.
(a) Show that G has a subgroup of order 77.
(b) Prove that G has a subgroup of order 7 whose normalizer in G has index
dividing 8.
(c) Conclude that G is not simple.

(a)
By Sylow’s theorems, n11(G) ∈ {1, 56}. Suppose n11(G) = 1. Then G has a
normal Sylow 11-subgroup P . By Cauchy’s theorem, G has a subgroup Q of
order 7. Thus PQ is a subgroup of G of order 77. Now suppose n11(G) = 56.
Let P be a Sylow 11-subgroup of G. Thus |NG(P )| = 77.

(b)
By part (a), G has a subgroup H of order 77 and H has a normal Sylow
7-subgroup Q. Thus H ≤ NG(Q) and so

(1) 77 divides |NG(Q)|.
Since Q is a 7-subgroup of G, there exists P ∈ Syl7(G) such that Q ≤ P.
Since |P : Q| = 7, a prime, Q is normal in P and so P ≤ NG(Q). Hence

(2) 49 divides |NG(Q)|.
By Lagrange’s theorem,

(3) |NG(Q)| divides 4312.

By (1), (2), (3), |NG(Q)| ∈ {539, 1078, 2156, 4312} and |G : NG(Q)| ∈
{1, 2, 4, 8}.
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(c)
If |G : NG(Q)| ∈ {2, 4, 8}, then |G| does not divide |G : NG(Q)|! and
hence there is a nontrivial normal subgroup of G contained in NG(Q). If
|NG(Q)| = 4312, then NG(Q) = G and so Q is a normal subgroup of G.

Let G be a finite group. A subgroup H of G is said to be subnormal in G if
there exists a chain of subgroups

H = H0 ◁ H1 ◁ ... ◁ Hn = G

where each is normal in the next. If H is a subnormal subgroup of G and
(|H|, |G : H|) = 1, show that H is normal in G.

Lemma 1
Let G be a finite group, H be a subgroup of G and N ◁ G. If |H| and
|G : N| are relatively prime, then H ≤ N.

Proof. Notice that |G : N| = |G : HN||HN : N| = |G : HN||H : H∩N|.
So |H : H ∩N| divides (|H|, |G : N|) and hence |H : H ∩N| = 1. Since
H ∩ N ≤ H and |H ∩ N| = |H|, thus H ∩ N = H and to conclude that
H ≤ H ∩ N ≤ N.

Lemma 2
If N is a normal subgroup of the finite group G and (|N|, |G : N|) = 1,
then N is the unique subgroup of G of order |N|.

Proof. Let H ≤ G with |H| = |N|. Then

(|H|, |G : N|) = (|N|, |G : N|) = 1
and thus, by Lemma 1, H ≤ N but |H| = |N|. So H = N.

Suppose H = H0 ◁ Hi for some integer 1 ≤ i < n. Consider (|H|, |Hi : H|).
Since (|H|, |Hi : H|) divides |Hi : H| and |G : H| = |G : Hi ||Hi : H|,
so (|H|, |Hi : H|) divides |G : H|. To conclude (|H|, |Hi : H|) divides
(|H|, |G : H|) and hence (|H|, |Hi : H|) = 1. So, by Lemma 2, H is the unique
subgroup of Hi of order |H|. Let ϕ ∈ Aut(Hi). Then ϕ(H) is also a subgroup
of Hi of order |H|. Since H is the only subgroup of order |H| in Hi , ϕ(H) = H
and thus H is characteristic in Hi . Since H is characteristic in Hi and Hi is
normal in Hi+1, so H is normal in Hi+1. Thus, by induction, H = H0 ◁ Hi for
i ∈ {1, ..., n}.
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Prove that there are no simple groups of order 2205 = 32 · 5 · 72.

Let G be a group of order 2205. By Sylow’s theorems, n3(G) ∈ {1, 7, 49}. Let
N be the normalizer of a Sylow 3-subgroup of G. Suppose n3(G) = 7. Then
7 = |G : N|. Since |G| does not divide |G : N|!, N must contain a nontrivial
normal subgroup of G. Now suppose n3(G) = 49. Then 49 = |G : N| and so
|N| = 45. By Sylow’s theorems, N has a normal subgroup P of order 5 and
hence N ≤ NG(P ). So

(1) 45 divides |NG(P )|.
Notice that P is also a Sylow 5-subgroup of G. Since n5(G) ∈ {1, 21, 441},
(2) |NG(P )| ∈ {5, 105, 2205}.
By (1), (2), |NG(P )| = 2205. Thus NG(P ) = G.

Prove that there are no simple groups of order 396 = 22 · 32 · 11.

Let G be a group of order 396. By Sylow’s theorems, n11(G) ∈ {1, 12}. Let
N be the normalizer of a Sylow 11-subgroup of G. Suppose n11(G) = 12.
Then 12 = |G : N| and so |N| = 33. By Sylow’s theorems, N has a normal
subgroup Q of order 3 and hence N ≤ NG(Q). So

(1) 33 divides |NG(Q)|.
Note that Q ≤ P where P is some Sylow 3-subgroup of G. Thus Q is normal
in P and hence P ≤ NG(Q). So

(2) 9 divides |NG(Q)|.
Moreover,

(3) |NG(Q)| divides 396.

By (1), (2) and (3), |NG(Q)| ∈ {99, 198, 396}. If |NG(Q)| = 99, then |G :
NG(Q)| = 4. Since |G| does not divide |G : NG(Q)|!, NG(Q) must contain a
nontrivial normal subgroup of G. If |NG(Q)| = 198, then |G : NG(Q)| = 2 and
so NG(Q) is a normal subgroup of G. If |NG(Q)| = 396, then NG(Q) = G and
so Q is a normal subgroup of G.

Prove that there are no simple groups of order 525 = 3 · 52 · 7.

Let G be a group of order 525. By Sylow’s theorems, n7(G) ∈ {1, 15}. Let
N be the normalizer of a Sylow 7-subgroup of G. Suppose n7(G) = 15.
Then 15 = |G : N| and so |N| = 35. By Sylow’s theorems, N has a normal
subgroup Q of order 5 and hence N ≤ NG(Q). So

(1) 35 divides |NG(Q)|.
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Note that Q ≤ P where P is some Sylow 5-subgroup of G. Thus Q is normal
in P and hence P ≤ NG(Q). So

(2) 25 divides |NG(Q)|.
Moreover,

(3) |NG(Q)| divides 525.

By (1), (2) and (3), |NG(Q)| ∈ {175, 525}. If |NG(Q)| = 175, then |G :
NG(Q)| = 3. Since |G| does not divide |G : NG(Q)|!, NG(Q) must contain a
nontrivial normal subgroup of G. If |NG(Q)| = 525, then NG(Q) = G and so
Q is a normal subgroup of G.

A4 has no subgroup of order 6.

|A4| = 12. By Sylow’s theorems, n3(A4) ∈ {1, 4}. Since ⟨(123)⟩ and
⟨(134)⟩ are two distinct Sylow 3-subgroups of A4, n3(A4) ̸= 1 and hence
n3(A4) = 4. Let H be a subgroup of A4 of order 6. Then H has a unique
Sylow 3-subgroup P . So P is normal in H and hence H ≤ NA4(P ). But P
is also a Sylow 3-subgroup of A4 and thus |NA4(P )| = |A4|/n3(A4) = 3, a
contradiction since H can’t fit into NA4(P ).

For other proofs, see
Michael Brennan and Des Machale,Variations on a Theme: A4 Definitely Has
No Subgroup of Order Six!, Mathematics Magazine.73 (2000), no. 1.

Prove that there are no simple groups of order 560 = 24 · 5 · 7.

Let G be a group of order 560. By Sylow’s theorems, n7(G) ∈ {1, 8}.
Let N be the normalizer of a Sylow 7-subgroup of G. Suppose n7(G) = 8.
Then 8 = |G : N| and so |N| = 70. By Sylow’s theorems, N has a normal
subgroup P of order 5 and hence N ≤ NG(P ). So

(1) 70 divides |NG(P )|.
Notice that P is also a Sylow 5-subgroup of G. Since n5(G) ∈ {1, 16, 56},
(2) |NG(P )| ∈ {10, 35, 560}.
By (1), (2), |NG(P )| = 560. Thus NG(P ) = G.

Lemma
Given a group G, Φ(G) is the Frattini subgroup of G.
(1) If G is finite, then G is nilpotent if and only if G′ ≤ Φ(G).
(2) If G is finite, H ≤ G and G = HΦ(G), then H = G.
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Reference:
H. E. Rose, A Course on Finite Groups, Springer, 2009.

Let N be a normal subgroup of a finite group G. If N and G/N ′ is nilpotent,
then G is nilpotent.

Since N ′ is a characteristic subgroup of N and N is normal in G, N ′ is
also normal in G. Let p be a prime dividing |G| and P be a Sylow p-subgroup
of G. Thus PN ′/N ′ is a Sylow p-subgroup of G/N ′. But G/N ′ is nilpotent.
So PN ′/N ′ is normal in G/N ′ and hence PN ′ is normal in G. Moreover P is
also a Sylow p-subgroup of PN ′. So, by Frattini’s argument, G = NG(P )PN ′.
Since P ≤ NG(P ) and N ′ ≤ Φ(N) ≤ Φ(G),

G = NG(P )PN ′ = NG(P )N ′ ≤ NG(P )Φ(G).
Thus G = NG(P )Φ(G) and to conclude NG(P ) = G. Since every Sylow
subgroup is normal in G, G is nilpotent.

Reference:
H. E. Rose, A Course on Finite Groups, Springer, 2009.

Let G be a finite group such that G/Φ(G) is cyclic. Then G is cyclic.

Since G/Φ(G) is cyclic, G/Φ(G) = ⟨aΦ(G)⟩ for some a ∈ G. If g ∈ G,
then gΦ(G) = (aΦ(G))m = amΦ(G). So g ∈ amΦ(G) ⊆ ⟨a⟩Φ(G) and thus
G ≤ ⟨a⟩Φ(G). Hence G = ⟨a⟩Φ(G) and to conclude G = ⟨a⟩.

Reference:
H. E. Rose, A Course on Finite Groups, Springer, 2009.

Let p be a prime and P be a p-group. If P/P ′ is cyclic, then so is P .

Since P/P ′ is cyclic, P/P ′ = ⟨aP ′⟩ for some a ∈ P . If g ∈ P , then
gP ′ = (aP ′)m = amP ′. So g ∈ amP ′ ⊆ ⟨a⟩P ′ and thus P ≤ ⟨a⟩P ′. Since P is
a p-group, P is nilpotent and hence P ′ ≤ Φ(P ). Thus P ≤ ⟨a⟩P ′ ≤ ⟨a⟩Φ(P )
and so P = ⟨a⟩Φ(P ). To conclude P = ⟨a⟩.

Reference:
H. E. Rose, A Course on Finite Groups, Springer, 2009.

Let G be a group. Suppose N is a normal subgroup of G. Let M be the set
of all maximal subgroups of G and let M ′ be the set of all maximal subgroups
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of G/N. Prove that
M ′ = {MN/N | M ∈M } .

Since every subgroup of G/N is of the form M/N for some subgroup M of G
containing N, let M/N be such a subgroup. Moreover, suppose M/N ∈ M ′.
Let H be a subgroup such that M ≤ H ≤ G but M ̸= H. Then M/N ̸=
H/N. Since M/N ∈ M ′, H/N = G/N and thus H = G. So M ∈ M . To
conclude M/N = MN/N ∈M ′. To show the other containment, let M ∈M .
Suppose MN/N ≤ H/N ≤ G/N but MN/N ̸= H/N for some subgroup H of
G containing N. Since MN/N ≤ H/N and MN/N ̸= H/N, MN ≤ H but
MN ̸= H. Claim: M ̸= H. If M = H, then MN ≥ M = H, a contradiction.
But M ∈M . So H = G and thus H/N = G/N. To conclude MN/N ∈M ′.

Let G be a group. Suppose N is a normal subgroup of G. If H and K are
subgroups of G, then H ∩ K ≤ H and so (H ∩ K)N/N ≤ HN/N. Similarly,
(H ∩K)N/N ≤ KN/N. To conclude (H ∩K)N/N ≤ HN/N ∩KN/N.

Let G be a group. Suppose N is a normal subgroup of G. Prove that

Φ(G)N/N ≤ Φ(G/N).
Let M be the set of all maximal subgroups of G. Thus, by the previous result,

Φ(G)N/N ≤
⋂
M∈M

MN/N = Φ(G/N).

Let G be a group. Suppose N is a normal subgroup of G. If N ≤ Φ(G), then
prove that Φ(G)/N = Φ(G/N).

Let n be fixed and let M = {Mi | 1 ≤ i ≤ n}. By the previous result,
Φ(G/N) =

⋂n
i=1MiN/N =

⋂n
i=1Mi/N. To show

n⋂
i=1

Mi/N ≤

(
n⋂
i=1

Mi

)
/N.

Suppose
⋂k
i=1Mi/N ≤

(⋂k
i=1Mi

)
/N for some positive integer k < n. Let

x ∈
⋂k+1
i=1 Mi/N =

(⋂k
i=1Mi/N

)⋂
Mk+1/N. Thus x ∈

⋂k
i=1Mi/N and,

by the induction hypothesis, x ∈
(⋂k

i=1Mi

)
/N and so x = Na for some

a ∈
⋂k
i=1Mi . Moreover, x ∈ Mk+1/N and so x = Nb for some b ∈ Mk+1. So

a ∈ Na = Nb and hence a ∈ Nb. Thus a = hb for some h ∈ N. To conclude
a ∈ Mk+1. Since a ∈

⋂k
i=1Mi and a ∈ Mk+1, it follows that a ∈

⋂k+1
i=1 Mi

and x = Na ∈
(⋂k+1

i=1 Mi

)
/N. To prove the other containment, note that
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Φ(G)N = Φ(G) and, by the previous result,

Φ(G)/N = Φ(G)N/N ≤ Φ(G/N).

If g is an element of a group and |g| = n, then gk , k ̸= 0, has order [n,k]k =
n
(n,k) .

Let |gk | = m. So (gk)m = 1 and hence n|km. Since n|km and k |km,
[n, k ]|km and thus nk

(n,k) |km. Hence n
(n,k) |m. To conclude m ≥ n

(n,k) . It is

obvious that (gk)
n
(n,k) = 1 and so m ≤ n

(n,k) . It follows that m = n
(n,k) .

Lemma 1
Let G be a group of order 29 · 30. If G has a normal Sylow 5-subgroup N,
then G has a normal Sylow 29-subgroup.

Let G= G/N. So |G | = 174 and G has a normal Sylow 29-subgroup H. Let
H = {x ∈ G | xN ∈H}. Then H is a subgroup of G and H∼= H/N; thus

29 = |H | =
|H|
|N| =

|H|
5
.

So |H| = 29 ·5 and H has a Sylow 29-subgroup Q. Let ϕ be an automorphism
of H. Then ϕ(Q) is a Sylow 29-subgroup of H. H has exactly one Sylow
29-subgroup and thus ϕ(Q) = Q. SinceH is normal in G, H is normal in G.
Since Q is a characteristic subgroup of H and H is normal in G, Q is normal
in G.

If G is a group of order 29 · 30, then G has a normal Sylow 29-subgroup.

By Sylow’s theorems, n5(G) ∈ {1, 6}. Suppose n5(G) = 1. So G has
a normal Sylow 5-subgroup and thus, by Lemma 1, G has a normal Sylow
29-subgroup. Suppose n5(G) = 6. Let N be the normalizer of a Sylow
5-subgroup of G. Then |G : N| = 6. Since |G| does not divide |G : N|!,
N must contain a nontrivial normal subgroup of G. Let H be the nontrivial
normal subgroup of G in N. Thus |H| ∈ {5, 29}. If |H| = 5, then, by Lemma
1, G has a normal Sylow 29-subgroup. If |H| = 29, then we are done.

In the symmetric group S12, the permutation

π = (1 4 3 2 8)(3 5 6 11 9)(2 5 12 7 10 3).

is given. Arbitrary disjoint cycles ρ1 = (i1 i2 . . . ik), ρ2 = (j1 j2 . . . jl), where
k + l ≤ n are also given.

a) Calculate the order of the permutation π and write π in the form
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of the power of a single cycle from the symmetric group S12.

b) Calculate the order of the product (i1 j1)ρ2ρ1.

c) Find such a cycle ρ ∈ S12 that the product ρπ is an element of or-
der 11.

When computing the product of two permutations in S12, one reads
the permutations from right to left.
a)
Write π as a product of disjoint cycles. So

π = (1 4 3 8)(2 6 11 9)(5 12 7 10).

It is obvious that the order of π is 4. The first numbers in the first cycle, the
second cycle, the third cycle are 1, 2, 5, respectively. The second numbers in
the first cycle, the second cycle, the third cycle are 4, 6, 12, respectively. The
third numbers in the first cycle, the second cycle, the third cycle are 3, 11, 7,
respectively. The fourth numbers in the first cycle, the second cycle, the third
cycle are 8, 9, 10, respectively. By inspection,

(1 4 3 8)(2 6 11 9)(5 12 7 10) = (1 2 5 4 6 12 3 11 7 8 9 10)3.

b)
Notice that

(i1 j1)ρ2ρ1 = (j1 j2 . . . jl i1 i2 . . . ik)

and its order is k + l .

c)
From part a,

π = (1 2 5 4 6 12 3 11 7 8 9 10)3

= (1 2 5 4 6 12 3 11 7 8 9 10)2(1 2 5 4 6 12 3 11 7 8 9 10)

and so

(1 2 5 4 6 12 3 11 7 8 9 10)−2π = (1 2 5 4 6 12 3 11 7 8 9 10).

It follows that

(1 9 7 3 6 5)(2 10 8 11 12 4)π = (1 2 5 4 6 12 3 11 7 8 9 10)

and hence

(1 2)(1 9 7 3 6 5)(2 10 8 11 12 4)π = (1 2)(1 2 5 4 6 12 3 11 7 8 9 10).

To conclude

(1 9 7 3 6 5 2 10 8 11 12 4)π = (2 5 4 6 12 3 11 7 8 9 10).

Let G be a finite group. For given n > 1, we say that G admits roots of
degree n if, for every x ∈ G, there exists y ∈ G such that yn = x .
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(a) Show that if n is coprime to |G|, G admits roots of degree n.
(b) Conversely, prove that if G admits roots of degree n, then n is coprime to
|G|.

(a) Notice that an + b|G| = 1 for some integers a and b. Thus

x = x1 = xan+b|G| = xanxb|G| = (xa)n(xb)|G| = (xa)n.

(b) Define θ : G → G by
θ(y) = yn.

Since G admits roots of degree n, θ is surjective. So θ is injective as well. Let
d = (n, |G|). Suppose d > 1. Then there is a prime p such that p divides d .
Since p divides d and d divides |G|, p divides |G|. By Cauchy’s theorem, G
has an element a ̸= 1 such that ap = 1. Since p divides d and d divides n, p
divides n. Thus n = pm for some integer m. Hence

θ(a) = an = apm = 1.

To conclude a ̸= 1 but θ(a) = θ(1), a contradiction.

Lemma 1 Let H be a subgroup of index 2 in a group G. Then g2 ∈ H for all
g ∈ G.

If g ∈ H, then g2 ∈ H. Suppose g /∈ H. Then H and gH are two distinct
left cosets of H in G. Since there are only 2 distinct left cosets of H in G,
either g2H = H or g2H = gH. If g2H = gH, then g2 = gh for some h ∈ H.
It follows that g = g−1g2 = g−1(gh) = (g−1g)h = h ∈ H, a contradiction.
To conclude that g2H = H and hence g2 ∈ g2H = H.

Lemma 2 Let G be a group of order 16 with two distinct subgroups A and B
of order 8. Then G = AB.

Note that |AB| = |A||B|
|A∩B| . Since |A ∩ B| divides |A|, |A ∩ B| ∈ {1, 2, 4, 8}.

If |A ∩ B| ∈ {1, 2}, then |AB| > |G|, a contradiction. If |A ∩ B| = 8, then
A = A ∩ B = B, a contradiction since A and B are distinct. Thus |AB| = 16
and to conclude that G = AB.

Let G be a non-abelian group of order 16 with two distinct cyclic subgroups A
and B of order 8. Let a and b be generators of A and B, respectively. Show
that bab−1 = a5.

Since |G :A | = 2, A is normal in G. Note that bab−1 ∈ bAb−1 = A
and A is cyclic. Thus bab−1 = ak where 0 < k < 8. Since |bab−1| = |a| and
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|ak |= |a|
(|a|,k) ,

8 = |a| = |bab−1| = |ak | = |a|
(|a|,k) =

8
(8,k)

and hence k ∈ {1, 3, 5, 7}. By Lemma 1, b2 ∈ A and |b2| = |b|
(|b|,2) = 8

(8,2) =

4. Note that A has only two elements of order 4, namely a2 and a6, and so
b2 ∈ {a2, a6}. Suppose b2 = a2. Then a2b = b2b = b3 = bb2 = ba2 and thus

a2 = ba2b−1 = (bab−1)2 = a2k .

It follows that a2k−2 = 1 and so |a| divides 2k −2, i.e., 4 | k −1. To conclude
k ∈ {1, 5}. Suppose k = 1. Then bab−1 = a. By Lemma 2, G = AB.
Since G = AB and ab = ba, G is abelian, a contradiction. Thus bab−1 = a5.
Suppose b2 = a6. Then a6b = b2b = b3 = bb2 = ba6 and thus

a6 = ba6b−1 = (bab−1)6 = a6k .

It follows that a6k−6 = 1 and so |a| divides 6k−6, i.e., 4 | 3k−3. To conclude
k ∈ {1, 5}. Suppose k = 1. Then bab−1 = a. By Lemma 2, G = AB. Since
G = AB and ab = ba, G is abelian, a contradiction. Thus bab−1 = a5.

Let a and b be elements of a monoid such that aba = a and ab2a = 1. Show
that a is invertible with b as inverse.

Notice that b = b · 1 = b(ab2a) = b(a(b2a)) = (ba)(b2a) and hence

ab = a((ba)(b2a)) = (a(ba))(b2a) = (aba)(b2a) = a(b2a) = ab2a = 1.

Notice that b = 1 · b = (ab2a)b = ((ab2)a)b = (ab2)(ab) and hence

ba = ((ab2)(ab))a = (ab2)((ab)a) = (ab2)(aba) = (ab2)a = ab2a = 1.

Proposition 11
Let G be a group of order p2n−1 where n ≥ 1. If m ≥ 2n−12 , then G(m) = 1,
where G(m) is the m-th derived subgroup of G and p is a prime number.

Proof by induction on n:
If n = 1, then |G| = p. Thus G is cyclic and hence abelian. It follows that
G(1) = 1 and G(m) = 1 whenever m ≥ 1

2 . Suppose the statement is true for
some integer k ≥ 1. Let |G| = p2(k+1)−1 = p2k+1. Then G has a normal
subgroup N of order p2. Notice that |G/N| = p2k−1. Since k ≥ 2k−1

2 , by
induction hypothesis,

G(k)N/N = (G/N)(k) = N/N

and hence G(k)N = N. It follows that G(k) ≤ N. Since N is abelian, N(1) = 1.
To conclude G(k+1) = (G(k))(1) ≤ N(1) = 1 and G(m) = 1 whenever m ≥
2(k+1)−1

2 = k + 12 .
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Proposition 12
Let G be a group of order p2n where n ≥ 1. If m ≥ 2n2 , then G(m) = 1, where
G(m) is the m-th derived subgroup of G and p is a prime number.

Proof by induction on n:
If n = 1, then |G| = p2. Thus G is abelian. It follows that G(1) = 1 and
G(m) = 1 whenever m ≥ 2

2 . Suppose the statement is true for some integer
k ≥ 1. Let |G| = p2(k+1) = p2k+2. Then G has a normal subgroup N of order
p2. Notice that |G/N| = p2k . Since k ≥ 2k

2 , by induction hypothesis,

G(k)N/N = (G/N)(k) = N/N

and hence G(k)N = N. It follows that G(k) ≤ N. Since N is abelian, N(1) = 1.
To conclude G(k+1) = (G(k))(1) ≤ N(1) = 1 and G(m) = 1 whenever m ≥
2(k+1)
2 = k + 1.

Corollary to Proposition 11 and Proposition 12
Let G be a group of order pk where k ≥ 1. Let m ≥ 1

2
k . Then G(m) = 1,

where G(m) is the m-th derived subgroup of G and p is a prime number.


