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Abstract— In building emergency evacuation, the perception of
hazard can stress the crowd, arouse their competitive behaviors,
and trigger disorder and blocking as they pass through a
narrow passage (e.g., narrow exit). This is a serious concern
threatening evacuees’ survivability and egress efficiency. How
to effectively manage risk of such undesired situations is a
critical problem in evacuation planning. Based on advanced
simulation, behavioral studies and psychological findings on
crowd evacuation, this paper establishes a probabilistic
graphical model for egress risk analysis, especially considering
egress blocking effect on crowd movement. In this model, a
hazard event (e.g., fires) is the cause of crowd escape. The
undesired event of disorder and blocking is then characterized
as an outcome of excessive stress on evacuees due to
surrounding hazards, resulting in a drastic decrease of crowd
movement in a probabilistic fashion. Several unknown
parameters exist in this model, and they have clear
psychological meanings, such as the social bond of evacuees, the
stress level of crowd in a hazardous condition, etc. Based on
this probabilistic graphical model, statistical inference can be
implemented and the unknown parameters in the model can be
estimated.

E

vacuees were pushing against each other trying to get to the
front door as fast as possible, but they were trampled
underfoot and the doorway was simply blocked. This
tragedy happened in a Bangkok nightclub fire on January 1st
2009, and as the fire spread through the entire building
within 10 minutes, 61 people were killed and more than 200
injured in the horrible moments of intense heat, smoke,
pushing, shoving and crushing (Mydans, 2009).
scenes of disorder and blocking were observed in the Rhode
Island nightclub fire in February 2003 (Grosshandler et al.,
2005) and many other building emergencies. How to
effectively prevent or mitigate such disasters becomes an
important and urgent issue.

I.  INTRODUCTION

As identified by recent egress research, a fundamental
cause of such disorder and blocking is the psychological
stress that is aroused by the emergency hazard (Proulx, 1993
and 1997). Due to such stress, people move or try to move
considerately fast to escape from danger. However, if they
cannot move as desired, in particular, when a bottleneck
such as a doorway or a corridor limits their speed of motion,
they may compete with each other, and disorders and
blocking may happen. However, such an important feature
has long been ignored in traditional egress models. Over the
past decade, advanced simulation has been developed for
egress analysis where the pedestrians were microscopically
modeled with certain psychological factors captured. Such
advanced simulation well demonstrated the blocking
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phenomenon in the results, and it provides a large amount of
data for further analysis. Based on such simulation and
related pedestrian models, a probabilistic graphic model is
established in this paper for advanced egress analysis. This
graphical model critically characterizes the inter-relationship
among the hazard status, passage capacities, crowd
movement and certain psychological factors, and unknown
parameters in this model have clear psychological meanings,
such as the social bond of evacuees, the stress level of crowd,
etc. Based on this probabilistic graphical model, statistical
inference can be implemented and the unknown parameters
in the model can be estimated.

II. AN EGRESS MODEL WITH BLOCKING EFFECTS

Based on recent advances in psychology, behavioral
studies and pedestrian modeling and simulation, a
probabilistic graph is established in this section. In this
section, a key concept, the desired flow of crowd, is first
presented as the macroscopic counterpart of the desired
velocity in Helbing, Farkas, and Vicsek, 2000. It reflects the
inner drive of crowd movement in terms of flow dynamics
(Section A), and it rises as crowds are stressed by the
hazards of fire and smoke (Section B). The outcomes of
disorder and blocking are then modeled as the desired flow
rate exceeds the allowable rate as specified by the passage
capacity, resulting in a drastic decrease of crowd movement
in a nonlinear and probabilistic fashion. Through this model,
interdependencies among crowd flows, emergency events
and passage capacities are characterized, and how to guide
crowd to use the passages with proper capacities is then
identified as an important issue (subsection C).

The Blocking Effect on Crowd Movement

Existing egress research clearly indicates that disorder and
blocking occur at the bottleneck in a structural layout (e.g.,
the doorway). Thus, our study will focus on crowd
movement at such bottlenecks rather than in open areas, and
the key egress scenario to be modeled is, how crowd move
from one area to another via a bottleneck rather than how
they move within the areas. As a result, in this section, the
crowd movement will be modeled in an elementary layout as
shown in Figure 2, where two areas, v, and v,, are connected
by a passage. To model the blocking effect at a macroscopic
level, a novel concept — the desired flow rate, will be first
established based on the desired velocity concept in Helbing,
Farkas, and Vicsek, 2000.

The desired velocity in Helbing, Farkas, and Vicsek, 2000
specifies two aspects of the motion that an individual desires
to realize — the direction and speed. As a multitude of such
individuals move collectively through a passage as shown in
Figure 2, this microscopic concept will be transformed to the



macroscopic level by taking average of such individual
speeds and directions. For the average direction, as
individuals move in a passage, their desired moving
directions are almost at a tangent to the passage way because
they are passing it through. As a result, the average
direction of crowd movment can be abstracted as along with
the tangential direction of the passage. As for the desired
speed on average, it is then measured by the tangential
desired speeds averaged among all the individuals and is
denoted by |[vd|. Such averaged direction and speed are then
represented in flow dynamics, and the new concept of
desired flow rate qdis obtained based on the fluid physics: q4
is the product of the average desired speed vd, the crowd
density p, and the width / of the passage.

q'=valp. (M

Based on the fluid physics, the desired flow rate captures
the average speed of crowd movement by its magnitude, and
the average direction by its sign. Its magnitude |qd|=[v/p
denotes the average number of people who demand
immediate motion in escaping and thus desire to move
through a passage per time unit (see the blue dots in Figure
2). The sign, sgn(qd)=sgn (v9), represents the direction of
their desired movement. With the direction of a passage
specified (e.g., the arrow direction in Figure 2), q¢ is positive
if the crowd desire to move along with this direction, and
negative if they desire to move oppositely. In the
perspective of psychology, such desire of crowd motion is
due to the perceived stress in emergencies, and especially
related to the perception of hazards (e.g., fire or smoke).
Thus, q4, as an indicator for demand of crowd movement,
can be also viewed as a measure of the stress on evacuees.
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Fig. 2. Crowd Flow Dynamics at a Passage

What will happen as such demand of crowd travel keeps
on increasing in emergency egress? Existing research
indicates that, when such demand exceeds a bottleneck (exits,
doorway) capacity, a disaster may rise as disorder and
blocking in crowd movement (Kachroo, et al., 2008). Thus,
the blocking effect is modeled as the desired flow rate
exceeds the allowable rate as specified by the passage
capacity, resulting in an undesired decrease of crowd
movement. Here, the parallel to q4, which describes the
desire of movement in a psychological sense, is flow rate q,
which reflects the physical motion that the crowd is able to
realize. Similarly, the magnitude of q denotes the number of
individuals who physically pass through a passage per time
unit, and the sign of q denotes the direction of such flowing.
In particular, crowd physical movement is motivated by their
psychological desire. Thus the actual crowd flow q is
directed by the desired flow qY, and this implies sgn(q) =
sgn(qd). The capacity of a passage is c=max{|q|}, the
maximal number of people who can pass through the
passage per time unit. With the above flow-based concepts,
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the blocking effect is modeled as: when the desired flow rate
is below the passage capacity, crowd can move as fast as
desired, and q is equal to qd. If the desired flow rate exceeds
the passage capacity, the probability of disorder and
blocking will increases with the increase of the overage,
resulting in a decrease of the crowd flow rate in a nonlinear
and probabilistic fashion in Figure 3.

Compare the above curve (Figure 3) with that in
simulation of Helbing, Farkas, and Vicsek, 2000 (Figure 1),
it is clear that the two curves are in the same shape, and this
can be viewed as a justification of our macroscopic
modeling. The following probability distribution
exemplifies the curve in Figure 3.
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Fig. 3. The Egress Blocking Effect
a) If |q9| < ¢, q equals g4 with probability 1, i.e.,
Pr(q|q¢.c) = { @)

b) If |q9 > c, the probability of disorder and blocking
increases as the difference between q¢ and ¢ increases, i.e.,

1 forq=q¢,
0 otherwise.

if g =sign(q)-c,

Pr(q|q¢,c) = (3

exp if q=sign(q?)-cBe°.

o
a¢]-
Here cB¢ denotes a small magnitude of crowd flow rate in
case of disorder and blocking, and <0 is an unknown
parameter affecting the slope of the curve in Figure 3 when
|gd>c. Here the parameter o actually reflects the level of
competitiveness of crowd in their movement. As a goes to
zero, E(q|qY) tends to decrease sharply, which implies a
increased probability of disorder and blocking. In the
contrast, if a becomes a large negative number, E(q|q9) tends
to decrease slowly, implying a decreased probability of
blocking. Especially, as o— —oo, it implies that all evacuees
are ideally altruistic. As a result, no probability of disorder
and blocking will be induced.

Another point to be mentioned is, although the above flow
dynamics can be easily extended to capture the
counter-flows of crowds, this paper will not consider this
case because in an evacuation process people move toward
exits collectively and their moving directions usually
converge to be the same rather than opposite. Thus,
counter-flow seldom occurs, and it is out of the concern of
this paper.

B. The Relation of Hazard and Stress

Existing psychology findings indicate that hazardous threat
can stress people and cause their escape. For example, as
fire spreads, people may perceive the threat and be more
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stressed, and thus desire immediate motion more urgently
(Ozel, 2001; Staal, 2004). As a result, the demand of egress,
as formalized as the desired flow rate qd, is dependent on
emergency status. The following probability distribution
will exemplify such relationship between the desired flow q¢
and hazard status sF.

To model the above features at the macroscopic level, the
probability method is used where the binomial distribution is
adopted to transform an individual probability measure to a
collective probability measure. Through this distribution,
the microscopic characteristics of pedestrians will be
transformed to the macroscopic characteristics of crowd
behaviors. Here let probability pimp, denote the probability
that an individual that demand immediate motion without
waiting, and thus try to break the order of egress and move
out first. The discrete parameter piy, then is dependent on
the fire and smoke status, i.e., pimp increases as fire or smoke
get closer to people. Take the elementary layout in Figure 2

for example, the probability measure pin, can be specified as
ph, if fire/smoke propogates to

any direct adjacencies of area v, or v,, (4)
ph, otherwise.

pimp =

Then the total number of impatient individuals during the
given time period forms the desired flow |q9, i.e., the
number of those demanding immediate motion within the
time period. As a result, the desired flow |qd] is binomially
distributed, and the distribution is Bin(|w/|, Pimp)-

Pr(lqq| = k| w,sF) = CI, (Piynp) < (1= Pimp) M. (5)

Here k=[0, |w|], and |w| denotes the number of individuals
who decide to take certain path for escape. Symbol sF
denotes the fire/smoke status in a given egress layout.
Similar to q4 and q, |w| represents the magnitude, and the sign
of w represents the direction of escape that is the same of the
direction of q¢ and q.

Guidance and Way-Finding

How people select their way in escape is an importance
issue affecting how to effectively guide them to the safety.
Existing findings indicate that such way selection of people
can be viewed as a process of their fusing the external
information (i.e., guidance) with their internal processes
(e.g., their prior knowledge on the exit location). For the
external information received, people will trust more on the
personalized guidance (e.g., guidance from a group leader)
than the impersonalized ones (e.g., exit signs). For their
internal characteristics, they tend to use a path they are
familiar with rather than unfamiliar with (Proulx, 1993;
Johnson and Feinberg, 1997).

As a general framework to model the above features, the
probability method is used where the binomial distribution is
adopted to transform an individual probability measure to a
collective probability measure. In specific, given a guidance
u, each individual is supposed to follow the guidance with a
probability p.;. In the perspective of psychology, p.: reflects
the credit level of the guidance, or the level of trust that
people put on the received guidance, and it is described by

p if uis personalized instruction or
u guides people to a familiar path,
pL. otherwise.

P = (6)

Let x denote the total number of individuals in an area, and
the number of individuals following the guidance, i.e.,
denoted by |w/|, is binomially distributed, Bin(x, p).

By combining the probability distributions as given in the
above three subsections, a probabilistic graph is constructed
as shown in Figure 4. Here each node of the graph
represents a factor of our concern, e.g., the fire/smoke status,
crowd flow rate, etc, and their interdependencies are
described via the probability distributions as presented above.
To calculate the crowd flow rate g, the information on
guidance u, fire/smoke status s and passage capacities ¢ are
viewed as inputs to this graphic model, and the crowd flow
rate q is a random variable conditioned on the information of
u, c, sf, and x. As a result, the crowd flow rate can be
denoted by g=q(u, c, sF, x). Given information on u, c, sF
and x, the probability distribution of q is specified by

Pr(q|u,c,sF,x)

=>">"Pr(q| q%,0)Pr(q* | w,s ) Pr(w | u,x). (D)

In the above probabilistic model, the unknown parameters
include the social parameter ¢, the impatience parameter
Pimp» and the trust parameter p.,. Each of them has clear a
psychological meanings, and the parameter estimation can
be done by the data acquired from simulation (e.g., NIST’s
simulation) or by psychological experiments (e.g., virtual
reality experiments). In the following sections and our
numerical testing, it is generally assumed that guidance is in
good credence, and the individuals are of impatience and
tend to behave competitively in escape.
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Fig. 4. The probabilistic graph.
In sum, excessive desire in human activities can

sometimes lead to a completely undesired outcome, and this
can be seen as vital disasters in emergency egress — disorder
and blocking. The model established above focuses on this
disastrous effect. It serves as a basis to describe how the
situation information (i.e., perceived hazard or received
guidance) will affect the psychological factors (e.g., the
desired flow rate q%) and how such factors will further



determine the actual flowing of crowd movement. With this
model, interdependencies among egress capacities,
fire/smoke status, guidance, and crowd flows are
characterized in a probabilistic sense to enable predictions of
egress with potential disorder and blockings captured, and it
is the foundation for us to formulate an optimization
problem in the next section.

III. STATISTICAL INFERENCE OF MODEL PARAMETERS

The previous section establishes a probabilistic graphical
model for egress analysis. This section will develop a
method of statistical inference on unknown parameters in
this model. Three unknown parameters include: the social
bond factor o, crowd impatience indicator pim,, and trust
level parameter p,. Other model parameters are assumed
known, and they include the number of occupants X,
fire/smoke status sF, and crowd guidance u.

Because the unknown parameters are distributed in
different arcs in the graphical model, we will use the idea of
divide-and- conquer here. As a consequence, the entire
graphical model is decomposed in two parts: a sub-graph
with parameter p. and pimp, and the other sub-graph with
parameter o.. Next, we will first look at the part without
unknown parameter o as shown in Figure 5.
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Fig. 5. The probabilistic sub-graph 1.

As mentioned in Section II, given x and u, random variable
w follows binomial distribution
w ~ Bin(X, per) ®)
where p,; is the unknown parameter to be estimated. Given
w and sF, random variable qd follows binomial distribution
with parameter pimp.
qd ~ Bin(w, pimp) (9)
Then by mathematical calculation, we derive the probability
q¢ conditioning on x as
q¢ ~Bin(x, p) (10)
where p=pc: X pimp- As a result, the two unknown parameters
are combined as one. Considering the conjugate family,
Beta distribution is used as the prior of p. That is,
p ~ Beta(a,, by) (11)
Then based on the conjugate prior, given data qd it is easily
checked that the posterior distribution of p is

p | q¢ ~ Beta(a;+q4, b;+x—q9) (12)

If the squared error loss is used, the estimate of the

unknown parameter p is directly given by the posterior
mean, i.e.,

a; +q¢
a;+b, +x

p= (13)

A key question here is whether data q¢ can be obtained in
reality. The answer is yes. By using psychology
knowledges data qd can be acquired through well-designed
questionnaires. For example, consider a building where 500
people locate on weekdays. FEach person is given the
information about where they locate, where the hazard (e.g.,
fire or smoke) is probably propagating, and what kind of
guidance information (e.g., exit signs) they acquire. They
are then asked to select their route for escape. This
questionnaire clearly reflects their individual way-selection
decisions, more or less independently with each other. Such
decisions mainly reflect their desired motion in escape.
However, such a survey will not reflect their physical
movement realized in a real-world event because each
person cannot see other people’s way-selection or the actual
usage of passage capacities when answering the
questionnaire. Thus, the answers from people provide their
“virtual” decisions in evacuation, and it gives valuable data
to estimate the desired flow rate, but not the actual flow rate.
By using the data q4, the unknown parameter p can be
estimated by Bayesian statistics.

As for the parameter o, this is more challenging than p,
and pimp because estimation of o involves the actual flow
rate ¢, and q may only be acquired from the real-world
emergency. Thus it will be very difficult for us the get the
data q based on a simple questionnaire. A feasible way to
acquire data q is by jointly using psychological experiments
and computer-based simulation, and also from data acquired
in historical events.

Passage
Capacity
o

G

Desired Flow Rate ~ Crowd Flow Rate

Fig. 6. The probabilistic sub-graph II.

In this paper, we assume the availability of data q9, ¢ and q.
Then the question here is how to get the posterior
distribution of o by using the data. Based on the probability
distribution as specified in (3), it is clear that if g9 < c, then
the data does not provide any information about the
unknown parameter «. So if q¢ < ¢, then the prior (o) will
not change in this case. As a matter of fact, our model uses
a deterministic dynamics if q¢ < ¢ holds, and thus there is no
estimation problem when q¢ < c.

If q¢ > ¢, then the data can be used to update our
information on o. In specific, glo,qd,c is in binary logic.
Therefore, the Bernoulli distribution can be used to
characterize such a case, where the Bernoulli random
variable is normalized as



ifq=c

if q=cBr (14)

7="97¢ _ {0

chk —¢ |1

As Z=1 is an indicator of blocking in egress. Then it is clear
that Z follows Bernoulli distribution as,

Pr(Z||da_C): |q |_C (15)
o

whenZ=1.

An emphasis here is that q¢ and ¢ are assumed to be
condition variables, which are deterministically given in this
estimation problem. This is somewhat different from the
probabilistic view of the desired flow rate q¢ in the previous
section.

Considering the conjugate family, this paper will specify
the distribution of exp(a/(|qd]-c)) rather than o, and the prior
is thus the Beta distribution,

exp(0v/(/q%]-c))~Beta(ay, b) (16)

Based on the above variable transformation, data q, q¢ and ¢

will exclusive produce data Z, and the prior distribution of

exp(o/(|qdl-c)) can be updated by using data Z, resulting in
the posterior distribution as

exp(a/(|qd]-¢))|Z ~ Beta(a;+Z, by+1-Z)

If the squared error loss is used, the estimate of the
unknown parameter exp(o/(|qd|-c)) is the posterior mean, i.e.,

amn

A tZ
a,+b,+1

E| exp (18)

o
o] -
Then the estimate of unknown « is then simply obtained as

N a,+7
a=(qd-c)logl ———
|q | 8 a,+b,+1
Then by using the Bayesian inference in the above two
sub- graphical model, the estimate of unknown parameters
P=Dcr X Pimp and ¢, is obtained. The numerical testing is
under work now in Matlab, and the results will be added
later.

(19)

IV. CONCLUSION

Excessive desire in human activities may sometimes lead to
a completely undesired outcome, and this feature is
essentially captured in our modeling presented in this paper
— excessive crowd demand for escape can lead to the
disasters of disorder and blocking in emergency egress.
Such egress dynamics is captured in this paper as a
probabilistic graphical model. Based on the graphical model
and a decomposition method, statistical inference is
implemented in two decomposed sub- graphical models, and
the unknown parameters in the models are estimated.
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