AN INEQUALITY FOR A SLICE OF ANY COMPACT SET

JOHAN ASPEGREN

ABSTRACT. In this paper we will prove that if a compact A in \mathbb{R}^n belongs to the unit ball in \mathbb{R}^n , then A has a slice of measure greater than a calculable constant times the measure of A. Our result is sharp.

1. INTRODUCTION

In this paper we prove a very general theorem. Often these kind of questions are studied in the convex special case [1]. Our main theorem is the following.

Theorem 1.1. Let $A \subset B_n(0,1) \subset \mathbf{R}^n$ be compact. Let γ be such that

$$\mu_n(A) = \int_{B(0,1)} \gamma^n \mu$$

Then

$$\max_{e \in \mathbf{R}^n} \mu_{n-1}(K \cap H^e) \ge \gamma^n \mu_{n-1}(B_{n-1}(0,1)).$$

A sharp case is the unit ball obviously. We can state our result for compact sets $A \subset B_n(0,1)$ contained in the unit ball as

(1.1)

$$\max_{e \in \mathbf{R}^{n}} \mu_{n-1}(A \cap H^{e}) \geq \gamma^{n} \mu_{n-1}(B_{n-1}(0,1)) \\
= \frac{\mu_{n-1}(B_{n-1}(0,1))}{\mu_{n}(B_{n}(0,1))} \mu_{n}(B_{n}(0,\gamma)) \\
= \frac{\mu_{n-1}(B_{n-1}(0,1))}{\mu_{n}(B_{n}(0,1))} \mu_{n}(A).$$

If $A \subset B(0, R)$, then we have

(1.2)
$$\max_{e \in \mathbf{R}^{n}} \mu_{n-1}(A \cap H^{e}) \geq \frac{\mu_{n-1}(B_{n-1}(0,R))}{\mu_{n}(B_{n}(0,R))} \mu_{n}(A)$$
$$= \frac{1}{R} \frac{\mu_{n-1}(B_{n-1}(0,1))}{\mu_{n}(B_{n}(0,1))} \mu_{n}(A)$$

2. NOTATION

The term $B_n(0, R)$ means the origin centered ball of radius R in \mathbf{R}^n . We use the term $B_{n-1}(0, R)$ for the origin centered ball of radius R in \mathbf{R}^{n-1} . The term \mathbf{S}^{n-1} means the unit sphere. We use H^e to mean n-1-dimensional subspace orthogonal to $e \in \mathbf{S}^{n-1}$. For any set B B_{δ} means the δ -neighbourhood of B: It is the set of points in \mathbf{R}^n such that the euclidean distance to B is strictly less than δ . We use

²⁰¹⁰ Mathematics Subject Classification. 28A75,52A23.

Key words and phrases. Geometry, Bourgain's Slicing Problem, Hyperplane Conjecture, Asymptotic Convex Geometry.

 μ_n for the *n*-dimensional Lebesque-measure and μ_{n-1} for the n-1-dimensional Lebesque-measure.

3. The Proof

Now, for a small $\delta > 0$ there is the smallest number M such that

(3.1)
$$\sum_{i=1}^{M-1} \mu_n(B_n(0,1) \cap H^{e_i}_{\delta}) \le \mu_n(B(0,1)) \le \sum_{i=1}^M \mu_n(B_n(0,1) \cap H^{e_i}_{\delta}).$$

Of course, the sets $B_n(0,1) \cap H^{e_i}_{\delta}$ do not necessarily cover $B_n(0,1)$. Thus, M is the suitable natural number such that

(3.2)
$$\mu_n(A) = \gamma_{\delta}^n \sum_{i=1}^M \mu_n(B_n(0,1) \cap H_{\delta}^{e_i})$$

for some density γ_{δ}^{n} . Now, there is a density γ^{n} such that

(3.3)
$$\mu_n(A) = \int_{B(0,1)} \gamma^n \mu_n(A) = \int_{B(0,1)} \gamma^$$

and then $\gamma \geq \gamma_{\delta}$ from above and from (3.1). It follows from above and from (3.2) that

(3.4)
$$\gamma^n \mu_n(B(0,1)) = \mu_n(A) = \gamma_{\delta}^n \sum_{i=1}^M \mu_n(B_n(0,1) \cap H_{\delta}^{e_i}).$$

So in principle γ_{δ} can be solved from

(3.5)
$$\mu_n(A) = \gamma_{\delta}^n \sum_{i=1}^M \mu_n(B_n(0,1) \cap H_{\delta}^{e_i}).$$

However, we managed to state our theorem in terms of γ . Now, let us suppose towards a contradiction that for compact $A \subset B(0,1)$ it holds that

(3.6)
$$\mu_n(A \cap H^e_{\delta}) < \gamma^n_{\delta} \mu_n(B_n(0,1) \cap H^e_{\delta})$$

uniformly in $e \in \mathbf{S}^n$. Now, there is a smallest N such that

(3.7)
$$\mu_n(A) = \mu_n(\bigcup_{e_i \in \mathbf{S}^{n-1}} B_n(0,1) \cap H^{e_i}) \le \sum_{j=1}^N \mu_n(B_n(0,1) \cap H^{e_j}_{\delta}).$$

So, the above implies that $N \leq M$, because of $A \subset B_n(0,1)$. Now, from assumption (3.6), from from $N \leq M$, and from (3.5) we have that (3.8)

$$\mu_n(A) \le \sum_{j=1}^N \mu_n(A \cap H^{e_j}_{\delta}) < \sum_{j=1}^N \gamma^n_{\delta} \mu_n(A \cap H^{e_j}_{\delta}) \le \sum_{j=1}^M \gamma^n_{\delta} \mu_n(A \cap H^{e_i}_{\delta}) = \mu_n(A),$$

which is a contradiction. So we have for some $e \in \mathbf{S}^n$ that

(3.9)
$$\mu_n(A \cap H^e_{\delta}) \ge \gamma^n_{\delta} \mu_n(B_n(0,1) \cap H^e_{\delta})$$

Because A is compact we can take

$$\max_{e \in \mathbf{S}^n} \mu_n(A \cap H^e_{\delta}) = \mu_n(A \cap H^e_{\delta}).$$

We have

$$\mu_n(A \cap H^e_{\delta}) = \int_{-\delta}^{\delta} \mu_{n-1}(A \cap x + H^e) dx \le 2\delta \max_{-\delta \le x \le \delta} \mu_{n-1}(A \cap x + H^e).$$

So for a small δ we have

$$2\delta \max_{-\delta \le x \le \delta} \mu_{n-1}(A \cap x + H^e)) \ge \mu_n(A \cap H^e_{\delta})$$
$$\ge \gamma^n_{\delta} \mu_n(B_n(0,1) \cap H^e_{\delta})$$
$$\ge 2\delta \gamma_{\delta} \mu_{n-1}(B_n(0,\gamma_{\delta} - c\delta) \cap H^e),$$

where the second to last inequality follows from (3.9) and the last from the geometry of the ball. Because of the slight curvature of the ball we must include the $c\delta$ term. Thus,

$$\mu_{n-1}(A \cap H^e) \ge \liminf_{\delta \to 0} \max_{-\delta \le x \le \delta} \mu_{n-1}(A \cap x + H^e)) \ge \limsup_{\delta \to 0} \gamma_{\delta} \mu_{n-1}(B_n(0, \gamma_{\delta} - c\delta) \cap H^e).$$

From above it follows that

(3.10)
$$\mu_{n-1}(A \cap H^e)) \ge \limsup_{\delta \to 0} \gamma^n_{\delta} \mu_{n-1}(B_n(0, 1 - \frac{c\delta}{\gamma_{\delta}}) \cap H^e).$$

Next, from (3.1) and (3.5) we have that

(3.11)
$$\gamma^n \sum_{i=1}^{M-1} \mu_n B_n(0,1) \cap H^{e_i}_{\delta} \le \gamma^n \mu_n(B(0,1)) = \gamma^n_{\delta} \sum_{i=1}^M \mu_n(B_n(0,1) \cap H^{e_i}_{\delta}).$$

So that

$$\gamma^n \sum_{i=1}^M \mu_n(B_n(0,1) \cap H^{e_i}_{\delta}) \le \gamma^n_{\delta} \sum_{i=1}^M \mu_n(B_n(0,1) \cap H^{e_i}_{\delta}) + \mu_n(B_n(0,1) \cap H^{e_M}_{\delta}).$$

Because

$$\lim_{\delta \to 0} \mu_n(B_n(0,1) \cap H^{e_M}_{\delta}) = 0,$$

and because $\gamma_{\delta} \leq \gamma$, we have that

$$\lim_{\delta \to 0} \gamma_{\delta} = \gamma.$$

So the theorem 1.1 follows from (3.10).

References

 J.Bourgain, On High Dimensional Maximal Functions Associated to Convex Bodies, Amer.J.Math, Vol 108, No 6, (1986), 1467 1476.