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ABSTRACT 

 

This article is the eighth part of the scientific project under the general title "Geometrized Vacuum Physics Based on the 

Algebra of Signature" [1,2,3,4,5,6,7]. In this article, are proposed metric-dynamic models of "electron" and "positron", which 

move with constant speed relative to vacuum, stable curvatures of which they themselves are. It is shown that the obtained 

results are applicable to all "baryons" and "mesons" included in the Standard Model of elementary particles. Model concepts 

of induction of toroidal-helical vortices around the direction of motion of "particles" and "antiparticles" made it possible to 

give a completely geometrized explanation of such phenomena as the motion of atomic bodies by inertia (without involving 

the concept of mass), inertial electric current and inertial electromagnetic field. Like the entire project, this research is aimed 

at a partial implementation of the Clifford-Einstein-Wheeler program of complete geometrization of physics. 
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BACKGROUND AND INTRODUCTION 

 

This paper is the eighth in a series of articles under the general title "Geometrized Vacuum Physics (GVPh) Based on the 

Algebra of Signature (SA)". The previous seven articles are listed in the references [1,2,3,4,5,6,7]. 

 

The paper [7] presented metric-dynamic models of a free resting "electron" and a free resting "positron" and considered the 

quasi-stationary interaction between them. 

 

By quasi-stationary interaction was meant the evaluation of the averaged effect of the outer shell of one stationary "particle" 

(in particular, an "electron" or "positron") on the core of another stationary "particle" depending on the distance between their 

centers. In this case, the cause of such an effect are accelerated intra-vacuum currents (i.e., subcont and antisubcont flows 

twisted into spirals) (see §10 in [7]). 

 

Let’s remind once again that within the framework of Geometrical Vacuum Physics (GVPh) we do not know whether intra-

vacuum subcont-antisubcont currents exist in reality, or whether these accelerated subcont and antisubcont flows are a fig-

ment of the imagination, inspired by the mathematical apparatus. However, if we do not connect the zero components of 

metric tensors with local flows of various layers of -12,-15-vacuum, then it is practically impossible to verbally describe the 

processes under study. This is not the first time in science, for example, we do not know whether harmonic additive compo-

nents (i.e. sinusoids and cosine waves) exist inside complex electrical signals, but this does not prevent the successful appli-

cation of spectral analysis in many branches of radio engineering. 

 

We note another important circumstance: the GVPh does not have the concept of mass (m). Therefore, within the framework 

of a fully geometrized theory, it is impossible to formulate the concept of force F in the Newtonian sense, i.e. as the product 

of mass and acceleration (F = ma). In the theory proposed here, if the core of a "particle" moves with acceleration, it is implied 
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that it is not acted upon by some abstract force, but either by an accelerated vacuum flow, or by a gradient of intra-vacuum 

tension or pressure from the cores of other moving "particles". 

 

This article examines a moving free valence "electron" and a moving free valence "positron". In the previous article [7] it was 

noted that there are no separately existing "electrons" and "positrons", since they can only arise from a vacuum together and 

are in constant interaction. However, for simplicity, in this article the motion of these "particles" is examined separately. First, 

the moving "electron" is studied, and then, by analogy, the moving "positron" is investigated. 

 

Two cases should be distinguished: 

 

1)  The motion of an "electron" (or "positron") relative to an outside observer together with a moving vacuum region, of which 

it is a deformation. In this case, a moving coordinate system must be used, while the shape of the "electron" and the 

processes inside it must remain unchanged. In other words, in this situation, the metric-dynamic model of the "electron" 

(or "positron") continues to be determined by the set of metrics-solutions (1) or (11) in [7], but the coordinate system        

ct, r, θ, ϕ must move relative to a stationary observer. A separate study of such a motion of the "electron" (or "positron") 

is required to assess whether it leads to any physical consequences. However, in this article we will focus on the second 

case. 

 

2) The movement of an "electron" (or "positron") relative to a vacuum region, of which it is a stable curvature. In this case, 

the shape of the "electron" (or "positron") and the processes inside it change, since in this situation the rapidly moving 

"electron" (or "positron") experiences resistance from the surrounding stationary vacuum. 

 

Before reading this work, it is most productive to first familiarize yourself with the previous articles of this project 

[1,2,3,4,5,6,7], since the GVPh uses a number of terms and axioms that were introduced in this theory for the first time. 

Without a full understanding of these concepts, the content of this article will be incomprehensible. To facilitate reading this 

article, a glossary of the main terms and definitions first introduced in previous articles is provided below.    

 

Glossary 

 

"Vacuum" – see §1 in [1]. By vacuum in the GVPh we mean the Einstein vacuum, i.e. emptiness in which local material 

objects are absent. We know nothing about the substantiality of emptiness (i.e. the Einstein vacuum), however, some of its 

properties are reliably known to us: infinity (possibly closed), bottomlessness (there is no limit to deepening), elastic-plasticity 

(i.e. the ability to bend and return to the original state), constant and ubiquitous variability (i.e. infinite energy saturation), 

fractality (repeatability of properties and qualities at different levels), continuous-discreteness (i.e. continuity alternates with 

distinct phase and/or topological transitions), the speed of propagation of wave disturbances in the Einstein vacuum is equal 

to the speed of light. 

 

“The vacuum balance condition” – (see §1 in [1]) states that if something appears from a vacuum (i.e. emptiness), it is 

necessarily in a mutually opposite form (for example, convexity-concavity, wave-antiwave, particle-antiparticle, etc.) so that 

the opposites, on average, completely compensate for each other’s manifestations.  
 

“m,n-vacuum” – (see §1 [1]) from the above it is clear that “vacuum” (emptiness) is an infinitely complex entity that is 

extremely difficult to sense and define. Therefore, within the framework of the GVPh it is proposed: on the one hand, to apply 

analysis as a philosophical method of cognition, i.e. to break down the vacuum, as an infinitely complex entity, into an infinite 

number of less complex components, and to study them separately; on the other hand, to objectify the subject of study, i.e. to 

study what can be observed at an acceptable level of reliability. The application of these two general scientific methodological 

techniques is realized through the introduction of the concept of m,n-vacuum. If we simultaneously probe a certain area of 

vacuum from three mutually perpendicular directions with monochromatic light beams with a wavelength m,n from the wave-

length range Δ =10m – 10n cm (in particular, laser beams, see Figure 1a in [1]), we will obtain a light cubic lattice, which can 

be interpreted as a 3-dimensional light landscape. This 3D light landscape in the GPV is conventionally called the m,n-

vacuum. Thus, the m,n-vacuum is a 3-dimensional space that is illuminated from the void by mutually perpendicular light 

beams with a wavelength of m,n. If the vacuum in a given region is distorted, with curvatures approximately an order of 

magnitude greater than the wavelength of the probing beams, then the 3-dimensional landscape (i.e. the m,n-vacuum) will 
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also be curved (see Figure 4 in [1]). In this case, the light rays are geodesics of this curved 3-dimensional landscape. It may 

be objected that light rays are not visible in a vacuum, so no 3D landscape (i.e., m,n-vacuum) is visible. However, the vacuum 

region under study can be filled with a sol (i.e., a suspension of particles approximately an order of magnitude smaller than 

the wavelength m,n of the probing rays), then the 3D light landscape becomes visible (see Figure 1a in [1]). One could object 

to this that a void filled with sol is not a vacuum. Yes, but if the sol particles are significantly smaller than the curvatures of 

the void, then the distortions introduced by the particles will be insignificant, while larger-scale curvatures of the vacuum are 

clearly visible as m,n-vacuum. In addition, specialists know that using the radar method, it is possible to determine the curva-

ture of a local section of vacuum without injecting sol. There are also other ways of measuring the curvature of light rays in 

distorted space. For example, during the eclipse of 1919, the Eddington expedition observed the deflection of a light ray from 

a star located on the limb of the Sun. If we probe the same area of emptiness with rays of other wavelengths m+i,n+j, in this 

way, we will obtain an infinite number of m,n-vacuums nested one inside the other (see Figs. 2 and 4 in [1]). All these m,n-

vacuums are obey the same laws, but at the same time they all highlight different 3D landscapes, since the diameter of the 

light rays (i.e. eikonals) depends on their wavelength m,n (see Fig. 3 in [1]), and the vacuum fluctuations are averaged within 

the thickness of the probing beam. The decomposition of the "vacuum" into an infinite number of m,n-vacuums in the GPV 

is called its longitudinal stratification. At the same time, each m,n-vacuum splits into an infinite number of metric spaces and 

subspaces with 16 types of signatures (i.e. with 16 types of topologies). The description of one of the m,n-vacuums is devoted 

to the articles [1,2,3,4]. Such a splitting of each m,n-vacuum in the GVPh is called a transverse bundle of the "vacuum". Thus, 

the "vacuum" is an extremely complex structure consisting of an infinite number of intertwined transverse and longitudinal 

layers. 

 

"-12,-15-вакуум" is a 3D-12,-15-landscape illuminated from a "vacuum" by mutually perpendicular light beams with a wave-

length of -12,-15 from the range Δ = 10–12 10–15 cm. In articles [5,6,7] and in this article, the greatest attention is paid to this 

-12,-15-vacuum, since in such a curved 3D-12,-15-landscape, the averaged contours of elementary "particles" are clearly visible: 

"quarks", "leptons", "baryons", "mesons", "atoms", etc. (see articles [6,7]). This longitudinal layer of "vacuum" has been 

studied most fully, therefore GVPh begins demonstrating the possibilities of stochastic differential geometry and the Algebra 

of signature precisely with the consideration of metric-dynamic models of elementary "particles". However, as shown in the 

article [6], in the infinite thickness of "vacuum" there are discrete levels that are fractally similar to each other. Therefore, 

studying on average stable spherical formations in -12,-15-vacuum, we, in addition, obtain certain knowledge about the average 

structure of stable spherical vacuum formations in 7,10-vacuum (i.e. about "planets" and "stars") and in 17,20-vacuum (i.e. 

about "galaxies"), etc. 

 

"Subcont" and "antisubcont" (see §7 in [2] and §4 in [3]) – as already noted, each m,n-vacuum splits into an infinite number 

of metric spaces and subspaces with 16 types of signatures (i.e. with 16 types of topologies). However, in the Algebra of 

signature it is shown that these spaces are superimposed on each other (i.e. added or averaged) in such a way that at the first 

step (i.e. the zero level of consideration) they completely compensate each other's manifestations, i.e. their sum (or averaging) 

is zero (see the ranking Ex. (38) in [2]) – this is the expression of the properties of the "vacuum" (bottomless emptiness).            

At the second step (i.e. at the two-sided level of consideration) the metric spaces are summed (or averaged) in such a way (see 

§7 in [2]) that from the “vacuum” a 23-m,n-vacuum is revealed, which has two adjacent sides: 1) the Minkowski 4-space with 

the signature (+ – – –), conventionally called the outer side of the m,n-vacuum (or, for brevity and clarity, subcont); 2) the 

Minkowski 4-antispace with the opposite signature (– + + +), conventionally called the inner side of the m,n-vacuum (or, for 

brevity and clarity, antisubcont). The concepts of subcont (short for “substantial continuum”) and antisubcont (short for “an-

tisubstantial continuum”) are speculative and auxiliary. They create the illusion of intertwined elastic-plastic continuous me-

dia (conditionally white and black, §4 in [3]) and are intended mainly to visualize and verbally describe the studied intra-

vacuum processes at the second level of consideration. 

 

The "substrate" of a stable vacuum formation is a model of the metric-dynamic state of one of the sides of the m,n-vacuum 

before deformations arose in this region. That is, the substrate is a kind of memory of the "vacuum" about the initial state of 

some of its regions, with which the deformed state of the same region is compared. 

 

Valence "particle" (in particular, valence "electron" or "positron") - the concept, for example, valence "electron" was 

introduced in §5 in [7]. In the framework of the GVPh, the "electron" is an infinitely complex stable spherical vacuum for-

mation. However, this is a stepwise complexity that can be regulated by averaging and fixing the level of consideration. The 



4 

 

simplest of all possible levels of consideration is called the valence "electron" (or "positron", or "quark", or "proton", or 

"neutron", etc.). 

 

The principle of "Fair distribution" - this fundamental principle is introduced in §1.5 in [5]. This principle, as applied to 

the GPhV in a broad sense, means that it is necessary to take into account all solutions of mathematical equations. In a narrow 

sense, this principle says that it is necessary to take into account all possible metric solutions of the Einstein vacuum equations 

obtained under the same conditions. The GVPh proposes two main methods for taking into account all similar metric solutions: 

1) arithmetic averaging of the components of the metric tensor with the same indices when determining local deformations of 

the "vacuum"; 2) root-mean-square averaging when determining the acceleration of intertwined intra-vacuum currents (flows) 

of the "vacuum". 

 

Atomistic body – as noted in §4.13 in [6], an atomistic body in the GVPh is understood to be a dense mixed union of “parti-

cles” and “antiparticles” (in particular, “electrons” and “positrons”, “protons” and “antiprotons”, “neutrons”, etc.). Baryon 

asymmetry of matter is absent in this hypothesis. The reason that “particles” and “antiparticles” in an atomistic body do not 

annihilate is presumably related to their complex (topological, or nodal) interweaving, mixing, and constant participation in 

thermal (chaotic) motion (i.e. the presence of conserved inertia of motion and rotation). 

 

 

MATERIALS AND METHOD 

 

1 Uniform and rectilinear motion of a free “electron” relative to a stationary vacuum 

 

The motion of stable local disturbances in liquid and gaseous media, of which they 

themselves consist, is of two types (Figure 1): 

1) self-consistent solitons; 

2) toroidal vortices. 

 

A moving "electron" has a combination of properties of a soliton and a rotating 

toroid. Firstly, a stationary "electron" is a self-consistent soliton in which the de-

formations of the -12,-15-vacuum are maintained by accelerated subcont flows [7]. 

Secondly, by analogy with similar natural processes, the motion of the "electron" 

core should entrain the surrounding -12,-15-vacuum into a toroidal rotational mo-

tion (Figure 2). 

                                          
Fig. 2. Schematic representation of the motion of an “electron” in a -12,-15- vacuum,                           

of which it is a deformation 

 

That is, it is expected that with the rectilinear uniform motion of a free "electron", relative to the -12,-15-vacuum of which it 

itself consists, its outer shell and core should rotate around an axis that itself precesses (rotates) around the direction of motion. 

In this case, it is expected that the outer shell of the "electron" takes the form of a toroidal vortex (toroid), moving in the 

direction of the Z axis, and the core should take the form of an elongated ellipsoid (see Figure 2) 

 
                                                           

 

 
  

Fig. 1. Schematic representation of a sol-

iton and the translational motion of a to-

roidal vortex (toroid) in a gaseous me-

dium 
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 𝑥2

𝑟𝑞
2(1− 𝑉𝑧

2/𝑉max 
2 )

+
𝑦2

𝑟𝑞
2(1− 𝑉𝑧

2/𝑉max 
2 )

+
𝑧2

𝑟𝑞
2 = 1,

                                                                                                                                                                                             (1)    

 

where 

rq   is the radius of the initial sphere, 

Vz  is the velocity of the ellipsoid in the direction of the Z axis, 

Vmax is the velocity of propagation of disturbances in the medium of which this toroid consists. In particular, for a vacuum 

this velocity is equal to the speed of light (Vmax = c). 

 

 

2 Outer shell of a moving free "electron" 

 

2.1 Ellipticity parameter 

 

Let’s consider a simplified case where the outer shell of a uniformly and rectilinearly moving "electron" rotates around an 

axis that does not precess around the direction of its motion. We assume that in this model representation the outer shell of a 

moving "electron" is described not by the Schwarzschild metrics (24) and (25) in [7], but by the corresponding Kerr metrics 

in Boyer-Lindquist coordinates 

 

for the a-subcont: 

                                                                                                                                                                                            (2)   

𝑑𝑠1
(+𝑎)2

= (1 −
𝑟6𝑟

𝜌(+𝑎)
) 𝑐2𝑑𝑡2 −

𝜌(+𝑎)2𝑑𝑟2

Δ(+𝑎)
− 𝜌(+𝑎)𝑑𝜃2 − (𝑟2 + 𝑎𝑎

2 +
𝑟6𝑟𝑎𝑎

2

𝜌(+𝑎)
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎𝑎

𝜌(+𝑎)
𝑠𝑖𝑛2 𝜃 𝑐𝑑𝑡𝑑𝜙,    

 

where   (+a) = 𝑟2 + 𝑎𝑎
2𝑐𝑜𝑠2,    (+a) = r 2 + аa

2 – r6 r;                                                                                                                    

 

for the b -subcont: 

                                                                                                                                                                                            (3)     

𝑑𝑠2
(+𝑏)2

= (1 +
𝑟6𝑟

𝜌(+𝑏)
) 𝑐2𝑑𝑡2 −

𝜌(+𝑏)2𝑑𝑟2

Δ(+𝑏)
− 𝜌(+𝑏)𝑑𝜃2 − (𝑟2 + 𝑎𝑏

2 −
𝑟6𝑟𝑎𝑏

2

𝜌(+𝑏)
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎𝑏

𝜌(+𝑏)
𝑠𝑖𝑛2 𝜃 𝑐𝑑𝑡𝑑𝜙,          

                                                                                                             

where    (+b) = r2 + аb
2cos2 ,    (+b) = r 2 + аb

2 + r6 r, 

 

аa is the ellipticity parameter for the a-subcont (see below), 

аb is the ellipticity parameter for the b-subcont. 

 

Metrics (2) and (3) are exact solutions of the Einstein vacuum equation (42) in [5] (𝑅𝑖𝑘 = 0) for the case of a constantly 

rotating stable spherical vacuum formation. These metrics-solutions were discovered by Roy Kerr in 1963 [4], but in the form 

(2) they were first given by Boyer and Lindquist in 1967. 

 

The metric (3), defining the metric-dynamic state of the b-subcont, is obtained by replacing all r6  with – r6  in the metric (2), 

defining the metric-dynamic state of the a-subcont (just as the metric (25) in [7] is obtained from the metric (24) in [7]). 

 

The radius r6 is taken from the discrete hierarchy of radii (44a) in [6]. 

For ellipticity parameters аa = аb = 0, the Kerr metrics (2) and (3) transform into the Schwarzschild metrics (24) and (25) in 

[7], respectively, and for r6 = 0, these metrics become Galilean: 

 

𝑑𝑠1
(+𝑎)2

= 𝑐2𝑑𝑡2 −
𝜌(+𝑎)𝑑𝑟2

𝑟2+𝑎𝑎
2 − 𝜌(+𝑎)𝑑𝜃2 − (𝑟2 + 𝑎𝑎

2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                   (4)  

 

𝑑𝑠2
(+𝑏)2

= 𝑐2𝑑𝑡2 −
𝜌(−𝑏)𝑑𝑟2

𝑟2+𝑎𝑏
2 − 𝜌(+𝑏)𝑑𝜃2 − (𝑟2 + 𝑎𝑏

2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                   (5)    

 

Let’s demonstrate this using the metric as an example. For example, the metric (4) is indeed Galilean 
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ds2 = с2dt2  – dx2 – dy2 – dz2,                                                                                                                                               (6)    

 

in spatially flattened coordinates. To demonstrate this, we introduce the coordinates 

 

𝑥 = √𝑟2 + 𝑎𝑎
2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙,                                                                                                                                                 (7)                                                                                                                                             

𝑦 = √𝑟2 + 𝑎𝑎
2 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙, 

𝑧 = 𝑟 𝑐𝑜𝑠 𝜃.         
 

In these coordinates, the metric (4) takes the form of the Galilean metric (6). In this case, the surfaces r = const 

are oblate ellipsoids of revolution, described by the equation 

 
𝑥2

𝑟2+𝑎𝑎
2 +

𝑦2

𝑟2+𝑎𝑎
2 +

𝑧2

𝑟2
= 1.                                                                                                                                   (8) 

 

Comparing Exs. (1) and (8), we find that the parameter aa, which determines the degree of ellipticity of a moving stable 

subcont formation, can be determined as follows: 

                 

𝑎𝑎 = ±𝑟𝑞
𝑉𝑧

𝑐
 ,                                                                                                                                                                       (9)     

 

let's call it the a-subcont ellipticity parameter. 

 

Similarly, for the metric (3), which describes the behavior of the b-subcont, we obtain the b-subcont ellipticity parameter 

 

𝑎𝑏 = ∓𝑟𝑞
𝑉𝑧

𝑐
 .                                                                                                                                                                     (11)    

 

On the other hand, the ellipticity parameters aa and ab can be determined from the following considerations. 

 

The component 𝑔11, for example, of the metric (2) becomes infinite at  (+a) = r2 + 𝑎𝑎
2  – r6 r = 0, from which we find the radius 

of the a-subcont horizon [8] 

       

𝑟0 =
𝑟6

2
± √(

𝑟6

2
)
2

− 𝑎𝑎
2 .                                                                                                                                                     (12)    

 

In turn, the component 𝑔00 of the same metric (2) vanishes at  (+a) 2 = r2 + аa
2cos2 = r6 r, from this expression we can 

determine the radius of the surface of infinite redshift [8] 

 

𝑟𝑠 =
𝑟6

2
± √(

𝑟6

2
)
2

− 𝑎𝑎
2 𝑐𝑜𝑠2 𝜃.                                                                                                                                          (13)    

 

From Exs. (12) and (13) it follows that the subcont ellipticity parameter 𝑎𝑎  cannot exceed the limiting value [8] 

 

  𝑎𝑎 𝑚𝑎𝑥 =  
𝑟6

2
.                                                                                                                                                                    (14) 

 

According to Ex. (9), the maximum value of the parameter 𝑎𝑎 is achieved at Vz = с. In this case, when comparing Exs. (9) and 

(14), we obtain the correspondence 𝑟𝑞 ≡
𝑟6

2
 . This allows us to finally determine the values of the ellipticity parameters 

 

𝑎𝑎 = ±
𝑟6𝑉𝑧

2𝑐
= ±

𝑟6
2𝜔𝑧

2𝑐
      –  for the a-subcont,                                                                                                                  (15)        

 

𝑎𝑏 = ∓
𝑟6𝑉𝑧

2𝑐
= ∓

𝑟6
2𝜔𝑧

2𝑐
       –  for the b-subcont,                                                                                                                 (16) 
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where 𝜔𝑧 =
𝑉𝑧

𝑟6
  is the angular velocity of rotation of a sphere with radius r6.                                                                  (17) 

 

The quantity 𝐿𝑒 =
𝑟6
2𝜔𝑧

2
 is an analogue of the angular momentum of a solid disk of radius r6 rotating with an angular velocity 

𝜔𝑧. Therefore, the parameters of a-subcont and b-subcont ellipticity can be represented as 

 

𝑎𝑎 = ±
𝐿𝑒

𝑐
   and  𝑎𝑏 = ∓

𝐿𝑒

𝑐
 .         

      

 

2.2 Metric-dynamic model of the outer shell of a moving free "electron" 

 

The above analysis, taking into account the principle of "Fair distribution" (see §1.5 in [5]), allows us to propose the following 

most complete set of Kerr metrics-solutions to the Einstein vacuum equation for constructing a metric-dynamic model of the 

outer shell of a free valence "electron" that moves rectilinearly and uniformly (i.e. with a constant velocity 𝑉𝑧) in a -12,-15- 

vacuum, of which it is a stable curvature.      

 

 

"ELECTRON" 

moving rectilinearly and uniformly with velocity 𝑉𝑧 in the direction of the Z axis 

 

The outer shell of a free valence "electron", 

                                                       moving rectilinearly and uniformly (Figure 2)                                               (20) 
in the interval [r4, r6], signature (+ – – –) 

 

  I     𝑑𝑠1
(+𝑎1)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         (21)   

  H    𝑑𝑠2
(+𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑎) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,        (22)    

  V    𝑑𝑠3
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         (23) 

  H′   𝑑𝑠4
(+𝑏2)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑏) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;         (24)     

The substrate of "electron" 
uniformly and rectilinearly moving, see metrics (4) and (5), 

r  [0, ], signature (+ – – –) 

    i                                                  𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 −
𝜌𝑑𝑟2

𝑟2+𝑎2
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                       (25)  

 

 

where   𝜌 = 𝑟2 + 𝑎2𝑐𝑜𝑠2 ,       (a) = r2 – r6 r + a2,         (b) = r2 + r6 r + a2; 

 

           𝑎 =
𝑟6𝑉𝑧

2𝑐
   is the ellipticity parameter.                                                                                                                (25′) 

 

Similarly, we obtain the following completely opposite set of Kerr metric solutions for the metric-dynamic model of the outer 

shell of a free valence “positron” moving rectilinearly and uniformly with velocity 𝑉𝑧 in the direction of the Z axis 
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"POSITRON"  

moving rectilinearly and uniformly with velocity 𝑉𝑧 in the direction of the Z axis 

 

The outer shell of a free valence "positron", 

                                                       moving rectilinearly and uniformly (negative Figure 2)                                       (26) 

in the interval [r4, r6], signature (– + + +)  

H′      𝑑𝑠1
(−𝑎1)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,    (27)   

V       𝑑𝑠2
(−𝑎2)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,    (28)    

H       𝑑𝑠3
(−𝑏1)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,    (29) 

 I        𝑑𝑠4
(−𝑏2)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;    (30) 

The substrate of "positron" 
uniformly and rectilinearly moving, 

in the interval r  [0, ], signature (– + + +)  

  i                                                𝑑𝑠5
(−)2

= −𝑐2𝑑𝑡2 +
𝜌𝑑𝑟2

𝑟2+𝑎2
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                        (31) 

 

The sets of metrics (20) and (26) when added (or averaged) completely compensate each other's manifestation 

 
1

10
(𝑑𝑠1

(+𝑎1)2
+ 𝑑𝑠2

(+𝑎2)2
+  𝑑𝑠3

(+𝑏1)2
+ 𝑑𝑠4

(+𝑏2)2
+ 𝑑𝑠5

(+)2
+ 𝑑𝑠1

(−𝑎1)2
+ 𝑑𝑠2

(−𝑎2)2
+  𝑑𝑠3

(−𝑏1)2
+ 𝑑𝑠4

(−𝑏2)2
+ 𝑑𝑠5

(−)2
) = 0,                                                                              

                                                                                                                                                                                          (32) 

which corresponds to the vacuum balance condition (see the glossary in the Introduction or §1 in [1]). 

 

All metrics (21) – (25) and (27) – (31) are solutions of the Einstein vacuum equation (i.e., satisfy the conservation condition, 

see §1 in [5]), which essentially means (as has been noted more than once in [1,2,3,4,5,6,7]) that these solutions describe, on 

average, stable vacuum formations. Only in this case, on average, stable vacuum formations are not at rest, but move rectilin-

early and uniformly with a constant velocity relative to the -12,-15-vacuum of which they themselves consist (i.e., of which 

they are stable curvatures). 

 

3 Deformations of the outer shell of a free “electron” moving at a constant speed 

 

When constructing metric-dynamic models of the outer shell of a moving "electron" and a moving "positron" based on sets 

of metrics (21) – (25) and (27) – (31), we use the method described in §2.8 in [5] and applied in §2 in [7]. First, we will 

consider a moving free "electron", and then apply the obtained results by analogy to the description of a moving free "positron". 

 

We average the metrics (21) – (24), as a result we obtain 

                                                                                                                                                                                     (33) 

𝑑𝑠12
(+)2

=
1

4
(𝑑𝑠1

(+𝑎1)2
+ 𝑑𝑠2

(+𝑎2)2
+  𝑑𝑠3

(+𝑏1)2
+ 𝑑𝑠4

(+𝑏2)2
) = 𝑔00

(+)
𝑐2𝑑𝑡2 + 𝑔11

(+)
𝑑𝑟2 + 𝑔22

(+)
𝑑𝜃2 + 𝑔33

(+)
𝑠𝑖𝑛2 𝜃 𝑑𝜙2 + 𝑔03

(+)
𝑑𝜙𝑐𝑑𝑡,                                                                                                                            

where 

𝑔00
(+)
=
1

4
(𝑔00

(+𝑎1)
+ 𝑔00

(+𝑎2)
+ 𝑔00

(+𝑏1)
+ 𝑔00

(+𝑏2)
) =

1

2
(1 −

𝑟6𝑟

𝜌
+ 1 −

𝑟6𝑟

𝜌
+ 1 +

𝑟6𝑟

𝜌
+ 1 +

𝑟6𝑟

𝜌
) = 1,                                  (34) 

𝑔11
(+)
= −

1

4
(
𝜌

Δ
(𝑎) +

𝜌

Δ
(𝑎) +

𝜌

Δ
(𝑏) +

𝜌

Δ
(𝑏)) = −

(𝑟2+𝑎2𝑐𝑜𝑠2 )(𝑟2+𝑎2)

(𝑟2−𝑟6𝑟+𝑎
2)(𝑟2+𝑟6𝑟+𝑎

2)
 ,  

𝑔22
(+)
= −

1

4
(𝜌 + 𝜌 + 𝜌 + 𝜌) = −𝜌 = − (𝑟2 + 𝑎2𝑐𝑜𝑠2) ,  

𝑔33
(+)
= −

1

4
[2 (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

𝜌
) + 2 (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

𝜌
)] 𝑠𝑖𝑛2 𝜃 = −(𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃,   

𝑔03
(+)
=
1

4
(
2𝑟6𝑟𝑎

𝜌
−
2𝑟6𝑟𝑎

𝜌
+
2𝑟6𝑟𝑎

𝜌
−
2𝑟6𝑟𝑎

𝜌
) 𝑠𝑖𝑛2 𝜃 = 0,  

other components  𝑔𝑖𝑗
(+)
= 0.  
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Components of the metric tensor 𝑔𝑖𝑗0
(+)   from the metric of the moving "electron" substrate (25): 

                                                                                                                                                                                    (35) 

𝑔000
(+) = 1,      𝑔110

(+) = −
𝜌(+)

𝑟2+𝑎2
= −

𝑟2+𝑎2𝑐𝑜𝑠2

𝑟2+𝑎2
,      𝑔220

(+) = −𝜌(+) = − (𝑟2 + 𝑎2𝑐𝑜𝑠2) ,       𝑔330
(+) = −(𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃.                                                

 

Let’s consider the deformations of the outer side of the -12,-15-vacuum 

(i.e. the subcont) arising in the outer shell of a free “electron” moving with 

a constant velocity Vz in the direction of the Z axis. 

 

We will judge the deformations of the subcont by the relative elongation 

(47) in [3] 

 

𝑙𝑖
(+)
= √1 +

𝑔
𝑖𝑖
(+)
−𝑔𝑖𝑖0

(+)

𝑔𝑖𝑖0
(+) − 1 = √

𝑔
𝑖𝑖
(+)

𝑔𝑖𝑖0
(+) − 1.                                           (36) 

 

Let’s substitute components (34) and (35) into the expression for relative 

elongation (36), and as a result, for three spatial directions we obtain   

 

𝑙𝑟
(+)
=

𝑟

𝑟
= √

(𝑟2+𝑎2)2

(𝑟2−𝑟6𝑟+𝑎
2)(𝑟2+𝑟6𝑟+𝑎

2)
− 1,      𝑙𝜃

(+) = 0,     𝑙𝜙
(+) = 0,    (37)   

 

where 𝑎 =
𝑟6𝑉𝑧

2𝑐
  is the ellipticity parameter. 

 

The graph of the relative elongation function of the subcont in the radial 

direction 𝑙𝑟
(+)
= 𝑟/𝑟 (37) with the conventionally accepted r6 = 1 and     

Vz /с = 0.007, Vz /с = 0.0007 and Vz /с = 0.00007 is shown in Figure 3. 

From which it is clear that with a change in the ratio Vz /с (i.e. with a 

change in the speed of rectilinear and uniform motion of a stable vacuum 

formation), the deformation of the outer shell relative to its curved sub-

strate does not change. 

 

However, with an increase in the speed Vz, the substrate of the moving 

“electron”, according to Exs. (4) – (11), acquires the shape of an increas-

ingly flattened ellipsoid of revolution (Figure 4). 

 

 

4 Flows in the outer shell of an “electron” and a “positron” moving rectilinearly and uniformly 

 

4.1 Estimation of the velocity of movement of a subcont in the outer shell of a moving “electron” 

 

Let’s consider the radial component of the velocity of the a1-subcont in the outer shell of a moving "electron". To do this, 

similar to how this was done for the outer shell of a stationary "electron" (see §2.2.1 in [7]), we compare the dynamic metric 

(38) and the kinematic metric (96) in [3] 

 

𝑑𝑠(+)2 = (1 −
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 + 2𝑣𝑟𝑑𝑟𝑑𝑡 − 𝑑𝑟

2 − 𝑟2𝑑𝜃2−𝑟2𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                        (38) 

 

this is more suitable for this case. 

 

 

 

 

 
Fig. 3. Graph of the function of relative elonga-

tion of the outer side of the -12,-15-vacuum (i.e. 

subcont) in the outer shell of a moving “electron” 

in the radial direction (37) 𝑙𝑟
(+)
= 𝑟/𝑟 at r6 = 1 

and  Vz /с =0.007, Vz /с =0.0007,  Vz /с =0.00007 

 

     
 

                   a)                                  b)                 

Fig. 4. As the velocity Vz of the rectilinear motion 

of the "electron" increases, the geodesic lines of 

the "electron" substrate take the form of an in-

creasingly flattened ellipsoid (spheroid) of rota-

tion. 
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We identically equate the zero components 𝑔00
(+𝑎1)

 of the metric (38) and 𝑔00 of the metric (41), assuming that 𝑣𝑥 = 𝑣𝑟
(+𝑎1)

 

(1 −
𝑣𝑟
(+𝑎1)2

с2
) ≡ (1 −

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
).                                                                                                                                                                                                       

 

From where we find the heuristic relation 

𝑣𝑟
(+𝑎1)2

𝑐2
≡

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                                                                                                                         (39) 

 

From which follows the estimated expression for the velocity of the a1-subcont in the outer shell of the moving "electron" 

𝑣𝑟
(+𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                                                                                                                   (43) 

 

Let’s consider the tangential component of the velocity of the a1-subcont in the outer shell of the moving "electron". 

 

In §6.2 in [3] it is shown that if the front and back of the subcont rotate around the Z axis in the same direction with the angular 

velocity of rotation , then this kinematic case is described by the metric (99) in [3] in cylindrical coordinates 

 

сt =сt ,     r 2= х2 + у2,    z = z,      = arctg(y/x) –  t,                                          

 

this metric takes the form 

𝑑𝑠(+)2 =  (1 − 
𝑟22

𝑐2
) 𝑐2𝑑𝑡2 −  𝑑𝑟2 − 𝑟2𝑑2 − 𝑑𝑧2 + 

2𝑟22

с
𝑑с𝑑𝑡.                                                                        (41)                                                                     

 

Comparing the component 𝑔03
(+𝑎1)

 in the metric (21) and 𝑔03 in the metric (41), we find a correspondence 

 

2𝑟2𝛺

𝑐
=
2𝑟𝑣𝜙

(+𝑎1)

𝑐
≡

𝑟6𝑟𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      where    𝛺 =

𝑣𝜙
(+𝑎1)

𝑟
 ,                                                                                        (42)   

 

from which we can obtain an estimate of the tangential component of the motion of the a1-subcont 

in the outer shell of the moving “electron” moving with velocity Vz in the direction of the Z axis   

                                                                                                                            

𝑣𝜙
(+𝑎1)

≡
𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃.                                                                                                       (43) 

 

In the metric (21) there are no components of the metric tensor 𝑔02  (i.e.  

𝑔02 = 𝑔20 = 0) therefore 

 

𝑣𝜃
(+𝑎1)

≡ 0.                                                                                         (44) 

 

Thus, we will assume that the velocity vector �⃗�(+𝑎1) of the a1-subcont in 

each local region in the outer shell of the “electron” moving with velocity 

Vz in the direction of the Z axis has components (40), (43), (44) 
 

𝑣𝑟
(+𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑎1)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(+𝑎1)
≡ 0.     (45) 

 

The velocity component 𝑣𝑟
(+𝑎1)

 of the a1-subcont is associated with the 

electrical interaction, and it is very large compared to the velocity com-

ponent 𝑣𝜙
(+𝑎1)

 associated with the magnetic interaction. Therefore, it is 

not possible to show the total velocity field of the a1-subcont in one figure. 

Because of this, Figure 5.1 shows one of the sections of only the velocity 

field 𝑣𝜙
(+𝑎1)

. 

 

 
Fig. 5.1. The cross-section of the field of the 

velocity component 𝑣𝜙
(+𝑏1)

. of the a1-subcont. 

Calculations were performed using the Math-

lotlib library 
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The graphs of the functions 𝑣𝑟
(+𝑎1)

(r) and  𝑣𝜙
(+𝑎1)

(𝑟)  (45) depending on the distance r are shown in Figure 6.1. 

 

 
 

Fig. 6.1. Graphs of functions 𝑣𝑟
(+𝑎1)(𝑟)  and  𝑣𝜙

(+𝑎1)(𝑟) (45) 

 

Graphs of functions 𝑣𝑟
(+𝑎1)(𝜃) and  𝑣𝜙

(+𝑎1)
 (𝜃) (45) on angle θ for different values of 𝑟, 𝑉𝑧 are shown in Figure 6.2. 

 

 

 
                                           a)                                                       b)                                                       c) 

 

Fig. 6.2. Graphs of functions 𝑣𝑟
(+𝑎1)(𝜃) and  𝑣𝜙

(+𝑎1)(𝜃) (45) for different values of parameters 𝑟, 𝑉𝑧 
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By making similar comparisons of the components of the metric tensor from 

metrics (22) – (24) with the corresponding components from kinematic metrics 

(38) and (41), we obtain:  
 

- components of the velocity vector �⃗�(+𝑎1)  of the a1-subcont 

𝑣𝑟
(+𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,         𝑣𝜙

(+𝑎1)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,         𝑣𝜃

(+𝑎1)
≡ 0;     (46) 

                                                                                                                  

- components of the velocity vector �⃗�(+𝑎2)  of the a2-subcont 

𝑣𝑟
(+𝑎2)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,        𝑣𝜙

(+𝑎2)
≡ −

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,       𝑣𝜃

(+𝑎2)
≡ 0;     (47) 

- components of the velocity vector �⃗�(+𝑏1)  of the b1-subcont 

𝑣𝑟
(+𝑏1)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑏1)
≡  

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,        𝑣𝜃

(+𝑏1)
≡ 0;       (48) 

 

- components of the velocity vector �⃗�(+𝑏2)  of the b2-subcon 

𝑣𝑟
(+𝑏2)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑏2)
≡ −

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,        𝑣𝜃

(+𝑏2)
≡ 0.      (49) 

 

According to [4], for example, 

𝑣𝜙
(+𝑎,𝑏1)

= 𝑣𝜙
(+𝑎1)

+ i𝑣𝜙
(+𝑏1)

 ,       |𝑣𝜙
(+𝑎,𝑏1)

| = √𝑣𝜙
(+𝑎1)2

+ 𝑣𝜙
(+𝑏1)2

  

 

This means that the components of the velocity vectors 𝑣𝜙
(+𝑎1)

 and  𝑣𝜙
(+𝑏1)

 are mutually perpendicular. Therefore, the field of 

the velocity component of the b1-subcontact 𝑣𝜙
(+𝑏1)

 (see Figure 5.2) is perpendicular (i.e. rotated by 90o around the Z axis) 

with respect to the field of the velocity component of the a1-subcontact 𝑣𝜙
(+𝑎1)

 (Figure 5.1). 

 

An analysis of all four vector fields �⃗�(+𝑎1) (46), �⃗�(+𝑎2) (47),  �⃗�(+𝑏1) (48),  �⃗�(+𝑏2) (49) based on [4] shows that in the outer 

shell of the moving “electron” in the vicinity of its core, four toroidal-helical vortices are induced, which on average are 

reduced to two counter vortices (see Figure 7a,b). These counter toroidal-helical vortices compensate each other’s manifes-

tations, and therefore are not observed (see Figure 7c). In addition, in the outer shell of the moving “electron”, subcont currents 

remain flowing away from its core and flowing toward this core (see §2.2 in [7]), which also on average compensate each 

other’s manifestations. 

 

 
                                                        a)                                                       b)                                                     c) 

Fig. 7. In the outer shell (more precisely in the vicinity of the core) of an “electron” moving at a constant speed Vz on average, two counter 

toroidal-helical subcont vortices and two counter (inflowing and outflowing) subcont laminar currents are induced, which compensate for 

each other’s manifestations 

 

The model of an electron in the form of a spiral toroid was considered in the following works [13 – 21]. 

 

 
Fig. 5.2. The cross-section of the field of the 

velocity component 𝑣𝜙
(+𝑏1)

of the b1-subcon-

tact is rotated by 90o around the Z axis 
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4.2 Estimation of the velocity of the antisubcont in the outer shell of the moving “positron” 

 

Let’s compare the zero components of the metric tensor from metrics (27) – (30) with the corresponding components from 

kinematic metrics (38) and (41), but with opposite signatures (– + + +) 

 

𝑑𝑠(−)2 = − (1 −
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 − 2𝑣𝑟𝑑𝑟𝑑𝑡 + 𝑑𝑟

2 + 𝑟2𝑑𝜃2+𝑟2𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                    (50)                                                                                                             

𝑑𝑠(−)2 =  − (1 − 
𝑟22

𝑐2
) 𝑐2𝑑𝑡2 +  𝑑𝑟2 + 𝑟2𝑑2 + 𝑑𝑧2 − 

2𝑟22

с
𝑑с𝑑𝑡.                                                                     (51) 

As a result, we obtain: 

 

- components of the velocity vector �⃗�(−𝑎1) of the a1-antisubcont 

𝑣𝑟
(−𝑎1)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑎1)
≡ −

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(−𝑎1)
≡ 0;                                                                    (52) 

 

- components of the velocity vector �⃗�(−𝑎2) of the a2-antisubcont 

𝑣𝑟
(−𝑎2)

≡ с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑎2)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(−𝑎2)
≡ 0;                                                                       (53) 

 

- components of the velocity vector �⃗�(−𝑏1) of the b1-antisubcont 

𝑣𝑟
(−𝑏1)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑏1)
≡ − 

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,        𝑣𝜃

(−𝑏1)
≡ 0;                                                               (54) 

 

- components of the velocity vector �⃗�(−𝑏2) of the b2-antisubcont 

𝑣𝑟
(−𝑏2)

≡ 𝑖с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(−𝑏2)
≡

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,       𝑣𝜃

(−𝑏2)
≡ 0.                                                                     (55) 

 

A similar analysis of the four vector fields �⃗�(−𝑎1) (52), �⃗�(−𝑎2) (53),  �⃗�(−𝑏1) (54),  �⃗�(−𝑏2) (55) shows that in the outer shell of 

the moving "positron" in the vicinity of its core, four toroidal-helical vortices are induced, which on average are reduced to 

two counter vortices (see Figure 8a,b). These counter toroidal-helical vortices compensate each other's manifestations, and 

therefore are not observed (see Figure 8c). In addition, in the outer shell of the moving "positron" there are antisubcont currents 

flowing from its core and flowing to this core (see §2.2 in [7]), which also on average compensate each other's manifestations. 

 

 
                                                 a)                                                                b)                                                            c) 

 

Fig. 8. In the outer shell (more precisely in the vicinity of the core) of a “positron” moving at a constant speed Vz, on average, two counter 

toroidal-helical antisubcont vortices and two counter (inflowing and outflowing) antisubcont laminar currents are induced, which 

compensate for each other’s manifestations 



14 

 

"Electron" and "positron", moving with the same speed Vz, in the same direction, are identical to each other. Only in the 

moving "positron" (i.e. in the conditional stable concavity of the -12,-15-vacuum) all processes proceed in the opposite direc-

tion to the processes that proceed in the moving "electron" (i.e. in the conditional stable convexity of the -12,-15-vacuum). 

 

 

5 Acceleration of the subcont in the outer shell of a moving "electron" 

 

5.1 Contravariant components of the metric tensor 

 

We write out the expanded form of the Kerr metric (21), which describes the averaged behavior of the a1-subcont in the 

outer shell of a moving “electron” 

 

𝑠1
(+𝑎1)2 = (1 −

𝑟6𝑟

𝑟2+𝑎2𝑐𝑜𝑠2 
) 𝑐2𝑑𝑡2 −

𝑟2+𝑎2𝑐𝑜𝑠2 

𝑟2+𝑎2−𝑟𝑟6
𝑑𝑟2 − (𝑟2 + 𝑎2𝑐𝑜𝑠2 )𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

𝑟2+𝑎2𝑐𝑜𝑠2 
) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

+ 
2𝑟6𝑟𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡.                                                                                                                                             (56) 

 

The contravariant components of the metric tensor 𝑔𝑖𝑗  are equal to [8] 

 

𝑔𝑖𝑗 =
Δ𝑖𝑗

𝑔
 ,                                                                                                                                                                         (57)      

 

where is the algebraic complement of the corresponding element of the matrix (𝑔𝑖𝑗), 

 

𝑔 = ‖𝑔𝑖𝑗‖ = −(𝑟
2 + 𝑎2 𝑐𝑜𝑠2 𝜃)2 𝑠𝑖𝑛2 𝜃  is the determinant of the matrix (𝑔𝑖𝑗).                                                          (58) 

 

Calculations using Ex. (57) and the components of the metric tensor 𝑔𝑖𝑗 from the metric (56) resulted in the following com-

ponents of the contravariant metric tensor [8] 

                                                                       

𝑔𝑖𝑗(+𝑎1) =

(

 
 
 
 

(𝑟2+𝑎2)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)+𝑟6𝑟𝑎
2 𝑠𝑖𝑛2 𝜃

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃)

0 0
𝑟6𝑟𝑎

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃)

0 −
(𝑟2+𝑎2−𝑟𝑟6)

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
0 0

0 0 −
1

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
0

𝑟6𝑟𝑎

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃)

0 0 −
(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟𝑟6)

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃) 𝑠𝑖𝑛2 𝜃)

 
 
 
 

.        (59) 

 

 

5.2 Geometrized vectors of the a1-subcont electric field strength and magnetic induction 

 

The acceleration vector of the a1-subcont for the stationary case, which is the outer shell of the “electron” moving uni-

formly and rectilinearly, is determined by expressions of the form (95) in [4] 

 

�⃗�(+𝑎1) =
𝑐2

√1−
𝑣𝑟
(+𝑎1)2

𝑐2

{−𝑔𝑟𝑎𝑑(𝑙𝑛 √𝑔00
(+𝑎1)

) + √𝑔00
(+𝑎1)

[
�⃗⃗�(+𝑎1)

𝑐
× 𝑟𝑜𝑡�⃗�(+𝑎1)]},                                                                 (60) 

where  �⃗�(+𝑎1)(𝑔1
(+𝑎1)

, 𝑔2
(+𝑎1)

, 𝑔3
(+𝑎1)

)
 
 is 3-dimensional vector with components 𝑔𝛼

(+𝑎1)
= −

𝑔0𝛼
(+𝑎1)

𝑔00
(+𝑎1) , 

                        

  (61) 

or in component form (95) in [4] 

 

𝑎𝛼
(+𝑎1)

=
𝑐2

√1−
𝑣𝑟
(+𝑎1)2

𝑐2

{−
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝑥𝑎
+ √𝑔00

(+𝑎1)
(
𝜕𝑔𝛽

(+𝑎1)

𝜕𝑥𝑎
−
𝜕𝑔𝛼

(+𝑎1)

𝜕𝑥𝛽
)
𝑣𝛽
(+𝑎1)

𝑐
},                                                                       (62) 
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where 𝑣𝛽
(+𝑎1)

 are the components of the 3-dimensional velocity vector �⃗�(+𝑎1) of the local section of the a1-subcont, for the 

considered case of a moving “electron” according to (45) 

 

𝑣𝑟
(+𝑎1)

= с√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑣𝜙

(+𝑎1)
=

𝑐𝑟6𝑎

𝑟2+𝑎2𝑐𝑜𝑠2 
𝑠𝑖𝑛2 𝜃,      𝑣𝜃

(+𝑎1)
= 0.                                                                        (63) 

 

According to Ex. (39) 

 

𝑣𝑟
(+𝑎1)2

=
𝑐2𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                                                                                                                      (64) 

 

In §5 in [4] it was shown that Ex. (60) can be represented in the following form (see Ex. (114) in [4]) 

 

a(+α1) = Eо
(+α1)

 + [v (+α1)  Во
(+α1)],                                                                                                                                     (65) 

 

where aE
(+α1) = Eо

(+α1 is the vector of the laminar (rectilinear) component of the acceleration of the a1-subcontact (aE
(+α1)), its 

other name (in connection with the established tradition) is the geometrized vector of the a1-subcont electrical intensity (Eо
(+α1)) 

with components 

𝑎𝐸𝑟
(+𝑎1)

= 𝐸о𝑟
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝑟∗
 ,                                                                                                                                  (66) 

𝑎𝐸𝜃
(+𝑎1)

= 𝐸о𝜃
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜃∗
 ,     

𝑎𝐸𝜙
(+𝑎1)

= 𝐸о𝜙
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜙∗
 ,         

 

where  𝛾 =
𝑐2

√1− 
𝑣𝑟
(+𝑎)2

𝑐2

 ,                                                                                                                                                      (67) 

 

  
𝜕

𝜕𝑟∗
= 𝑔11(+𝑎1)

𝜕

𝜕𝑟
,      

𝜕

𝜕𝜃∗
= 𝑔22(+𝑎1)

𝜕

𝜕𝜃
,        

𝜕

𝜕𝜙∗
= 𝑔33(+𝑎1)

𝜕

𝜕𝜙
 ,                                                                                  (68) 

 

since the gradient of the scalar function 𝑔𝑟𝑎𝑑 𝐺(𝑥, 𝑦, 𝑧) =
𝜕𝐺

𝑑𝑥
𝑖 +

𝜕𝐺

𝑑𝑦
𝑗 +

𝜕𝐺

𝑑𝑧
𝑘  in curved coordinates of the Riemannian space 

has the form [9] ∇𝐺 = 𝑒𝑖𝑔
𝑗𝑖 𝜕𝐺

𝑑х𝑗
 . 

 

In turn, the curl of the vector F 

 

𝑟𝑜𝑡�⃗� = (
𝜕𝐹𝑧

𝜕𝑦
−
𝜕𝐹𝑦

𝜕𝑧
) 𝑖 + (

𝜕𝐹𝑥

𝜕𝑧
−
𝜕𝐹𝑧

𝜕𝑥
) 𝑗 + (

𝜕𝐹𝑦

𝜕𝑥
−
𝜕𝐹𝑥

𝜕𝑦
) 𝑘  

 

in curved coordinates of Riemannian spaces has the form [9] 

 
1

√|𝑔|

𝐷𝐹𝑗

𝜕𝑥𝑖
𝑒𝑖𝑗𝑘 =

1

2√|𝑔|
(
𝜕𝐹𝑗

𝜕𝑥𝑖
−
𝜕𝐹𝑖

𝜕𝑥𝑗
) 𝑒𝑖𝑗𝑘 ,     

 

where 𝑒𝑖𝑗𝑘 is the Levi-Civita symbol. 
 

Therefore, the turbulent (rotational) acceleration of the a1-subcont [v (+α1)  Во
(+α1)] from Ex. (65) in the component represen-

tation has the form: 

 



16 

 

𝑎𝐵𝑟
(+𝑎1)

= (𝑣𝜃
(+𝑎1)

𝐵0𝜙
(+𝑎1)

− 𝑣𝜙
(+𝑎1)

𝐵0𝜃
(+𝑎1)

) =
𝛾√𝑔00

(+𝑎1)

𝑐
{𝑣𝜃

(+𝑎1)
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
) − 𝑣𝜙

(+𝑎1)
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
)},         (69) 

 

𝑎𝐵𝜃
(+𝑎1) = (𝑣𝜙

(+𝑎1)
𝐵0𝑟
(+𝑎1) − 𝑣𝑟

(+𝑎1)
𝐵0𝜙
(+𝑎1)) =

𝛾√𝑔00
(+𝑎1)

𝑐
{𝑣𝜙

(+𝑎1)
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
) − 𝑣𝑟

(+𝑎1)
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
)},  

  

𝑎𝐵𝜙
(+𝑎1)

= (𝑣𝑟
(+𝑎1)

𝐵0𝜃
(+𝑎1)

− 𝑣𝜃
(+𝑎1)

𝐵0𝑟
(+𝑎1)

) =
𝛾√𝑔00

(+𝑎1)

𝑐
{𝑣𝑟

(+𝑎1)
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
) − 𝑣𝜃

(+𝑎1)
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
)},  

                                                                                                                  

where    
𝜕

𝜕𝑟+
=

1

2√|𝑔|

𝜕

𝜕𝑟
 ,          

𝜕

𝜕𝜃+
=

1

2√|𝑔|

𝜕

𝜕𝜃
 ,            

𝜕

𝜕𝜙+
=

1

2√|𝑔|

𝜕

𝜕𝜙
 .   

 

Here Во
(+α1)  is the geometrized vector of a1-subcontact magnetic induction with components 

 

𝐵о𝑟
(−𝑎)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
),   𝐵о𝜃

(−𝑎)
=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
),    𝐵о𝜙

(−𝑎)
=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
).   (70) 

 

The geometrized Ex. (65) is similar to the Lorentz force in classical electrodynamics. However, within the framework of 

Geometrized vacuum physics (GVPh), the cause of electromagnetism is not some phenomenological electromagnetic field, 

but accelerated laminar and turbulent flows (currents), in particular, the a1-subcontact, which are described by geometrized 

vectors Eо
(+α1) and Во

(+α1) with components 

 

                                               (71) 

 

 

 

 

 

 

 

 

 

 

 

5.2 Acceleration of the a1-subcontact in the outer shell of a moving “electron” 

 

We write out the zero components of the metric tensor from the metric (56) 

 

𝑔00
(+𝑎1)

= 1 −
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃 
,        𝑔01

(+𝑎1)
= 𝑔02

(+𝑎1)
= 0,         𝑔03

(+𝑎1)
=

2𝑟6𝑟𝑎 𝑠𝑖𝑛
2 𝜃

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 .                                                           (72) 

. 

       

. 

In this case, according to Ex. (61)  𝑔𝛼
(+𝑎1)

= −
𝑔0𝛼
(+𝑎1)

𝑔00
(+𝑎1), we have 

 

𝑔𝑟
(+𝑎1)

= −
𝑔01
(+𝑎1)

𝑔00
(+𝑎1) = 0,       𝑔𝜃

(+𝑎1)
= −

𝑔02
(+𝑎1)

𝑔00
(+𝑎1) = 0,      𝑔𝜙

(+𝑎1)
= −

𝑔03
(+𝑎1)

𝑔00
(+𝑎1) = −

2𝑟6𝑟𝑎 𝑠𝑖𝑛
2 𝜃

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟
 ,                                     (73) 

  

also for the case under consideration, according to Exs. (64) and (67) 

 

 

𝐸о𝑟
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝑟∗
 ,  

 

𝐸о𝜃
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜃∗
 ,  

 

𝐸о𝜙
(+𝑎1)

= −𝛾
𝜕 𝑙𝑛√𝑔00

(+𝑎1)

𝜕𝜙∗
;  

𝐵о𝑟
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃+
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙+
) ,  

 

𝐵о𝜃
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙+
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟+
) ,   

 

 𝐵о𝜙
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

с
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟+
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃+
) .                                                         
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𝛾 =
𝑐2

√1− 
𝑣𝑟
(+𝑎1)2

𝑐2

=
𝑐2

√1− 
𝑟6𝑟

𝜌

=
𝑐2

√𝑔00
(+𝛼1)

 .                                                                                                                                 (74)    

 

Let’s write out the contravariant components (59) of the metric (56) 

 

𝑔11(+𝑎1) = −
(𝑟2+𝑎2−𝑟𝑟6)

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑔22(+𝑎1) = − 

1

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 ,      𝑔33(+𝑎1) = −

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟𝑟6)

(𝑟2+𝑎2−𝑟𝑟6)(𝑟
2+𝑎2 𝑐𝑜𝑠2 𝜃) 𝑠𝑖𝑛2 𝜃 

 .                  (75) 

 

We find the components of the vector of the geometrized subcont electrical intensity Eо
(+α1) 

(i.e. the components of the 

acceleration vector that determines the laminar component of the acceleration of the a1-subcontact) (66). Taking into account 

Exs. (72) – (75), we obtain 

 

𝑎𝐸𝑟
(+𝑎1)

= 𝐸о𝑟
(+𝑎1)

= −
𝑐2

√𝑔
00
(+𝛼1)

𝑔11(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝑟
= −

с2𝑟6(𝑟
2+𝑎2−𝑟𝑟6)(𝑟

2−𝑎2 𝑐𝑜𝑠2)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 ,                                              (76) 

 

𝑎𝐸𝜃
(+𝑎1)

= 𝐸о𝜃
(+𝑎1)

= −
𝑐2

√𝑔
00
(+𝛼1)

𝑔22(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝜃
=

с2𝑟𝑟6𝑎
2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 ,                                                    (77) 

 

 𝑎𝐸𝜙
(+𝑎1)

= 𝐸о𝜙
(+𝑎1)

= −
𝑐2

√𝑔
00
(+𝛼1)

𝑔33(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝜙
= 0.                                                                                                 (78) 

 

где согласно (25′)  𝑎 =
𝑟6𝑉𝑧

2𝑐
  – параметр эллиптичности.          

 

Attention! The dimension of the component 𝐸о𝜃
(+𝑎1)

 (77) 1/sec2 differs from the dimension of acceleration m/sec2 of the com-

ponent  𝐸о𝜃
(+𝑎1)

 (76). The dimension 1/sec2 corresponds to the dimension of acceleration of the angular velocity of rotation 

dΩ⁄dt. The angular velocity is related to the linear velocity by the relation v = rΩ, Differentiate this relation with respect to 

time, then dv⁄dt= rdΩ⁄dt. Therefore, we multiply Ex. (77) by r 

 

𝑎𝐸𝜃
(+𝑎1)

= 𝑟𝐸о𝜃
(+𝑎1)

= −
𝑟𝑐2

√𝑔
00
(+𝛼1)

𝑔22(+𝑎1)
𝜕 𝑙𝑛 √𝑔00

(+𝑎1)

𝜕𝜃
=

с2𝑟2𝑟6𝑎
2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 .                                                 (77′) 

 

This situation requires rechecking and additional understanding. 

 

At a = 0, the components of the vector of the geometrized electrical intensity of the a1-subcont 𝐸о𝑟
(+𝑎1)

= 𝑎𝐸𝑟
(+𝑎1)

  (76) – (78) 

are reduced to the form of Exs. (55) in [7]  

 

𝐸𝑣𝑟
(+𝑎1)

= 𝑎𝐸𝑟
(+𝑎1)

= − 
𝑐2𝑟6

2𝑟2√(1− 
𝑟6
𝑟
)
,       Е𝜃

(+𝑎1) = 0,      Е𝜙
(+𝑎1) = 0,    with the dimension m/sec2.                                  (79) 

 

This confirms the correctness of the obtained results. 

 

The graphs of functions (76) and (77′) for the conventionally accepted values: 𝑐 = 1 ,  𝑟6 = 10
−14,  𝑟 = 10−13  and                        

Vz = 0,00001 are shown in Figure 9.                                
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Fig. 9. Graphs of functions (76) and (77′) for the conventionally accepted values: 

𝑐 = 1,  𝑟6 = 10
−14,  𝑟 = 10−13,  and  Vz = 0,00001 

 

When substituting Exs. (58), (72) – (75) into (70) for the components of the vector a1-subcont geometrized magnetic induction Bо
(+α1) in 

the outer shell of a free valence “electron” moving rectilinearly at a constant velocity, we obtain: 

 

𝐵о𝑟
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

2с√|𝑔|
(
𝜕𝑔𝜙

(+𝑎1)

𝜕𝜃
−
𝜕𝑔𝜃

(+𝑎1)

𝜕𝜙
) = −

2с𝑟𝑟6𝑎 𝑐𝑜𝑠 𝜃(𝑟
2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                                                     (80) 

 

𝐵о𝜃
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

2с√|𝑔|
(
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜙
−
𝜕𝑔𝜙

(+𝑎1)

𝜕𝑟
) =

с𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                                                         (81) 

 

𝐵о𝜙
(+𝑎1)

=
𝛾√𝑔00

(+𝑎1)

2с√|𝑔|
(
𝜕𝑔𝜃

(+𝑎1)

𝜕𝑟
−
𝜕𝑔𝑟

(+𝑎1)

𝜕𝜃
) = 0.                                                                                                                       (82) 

 

Attention! The dimension of the component 𝐵о𝑟
(+𝑎1)

 (80) is 1/sec (corresponds to the dimension of the angular velocity of 

rotation), and the dimension of the component 𝐵о𝜃
(+𝑎1)

 (82) is 1/(secm). 

 

Substituting the components of the subcont induction vector Bо
(+α1) (80) – (82) and the velocity (63) into the expressions for 

the components of the turbulent (rotational) acceleration a1-subcont of the form (69) for the outer shell of a free "electron" 

moving with a constant velocity Vz , we obtain: 

 

𝑎𝐵𝑟
(+𝑎1)

= (−𝑣𝜙
(+𝑎1)

𝐵о𝜃
(+𝑎1)

) = −
𝑣𝜙
(+𝑎1)

с𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 = −√

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,        (83) 

 

𝑎𝐵𝜃
(+𝑎1)

= (𝑣𝜙
(+𝑎1)

𝐵о𝑟
(+𝑎1)

) = −
𝑣𝜙
(+𝑎1)

2с𝑟6𝑎 𝑐𝑜𝑠 𝜃(𝑟
2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 = −

2с2𝑟6
2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                               (84) 

 

𝑎𝐵𝜙
(+𝑎1)

= (𝑣𝑟
(+𝑎1)

𝐵о𝜃
(+𝑎1)

) =
𝑣𝑟
(+𝑎1)

с𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 = √

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 .                 (85) 

 

We substitute the components of the laminar acceleration vector (76), (77′), (78) and the components of the turbulent accel-

eration vector (83) – (85) into equations (69), as a result we obtain the following components of the a1-subcont acceleration 

vector a(+а1) in the outer shell of the “electron” moving with a constant velocity 𝑉𝑧 in the direction of the Z axis 
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𝑎𝑟
(+𝑎1)

= 𝑎𝐸𝑟
(+𝑎1)

+ 𝑎𝐵𝑟
(+𝑎1)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2𝜃)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                  (86) 

 

𝑎𝜃
(+𝑎1)

= 𝑎𝐸𝜃
(+𝑎1)

+ 𝑎𝐵𝜃
(+𝑎1)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 −
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                      (87) 

 

𝑎𝜙
(+𝑎1)

= 𝑎𝐸𝜙
(+𝑎1)

+ 𝑎𝐵𝜙
(+𝑎1)

= √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                                                     (89) 

 

where according to (25′) 𝑎 =
𝑟6𝑉𝑧

2𝑐
  is the ellipticity parameter. 

 

The graph of functions (70), (71) and (72) with the conventionally accepted values: 𝑐 = 1,  𝑟6 = 10
−14,  𝑟 = 10−12  and                     

Vz
 = 0.0000001 are shown in Figure 10. 

 

 
Fig. 10. Graphs of functions (70), (71) and (72) with the conventionally accepted:  

𝑐 = 1,  𝑟6 = 10
−14,  𝑟 = 10−12 and Vz

 = 0,0000001 

 

 

5.3 Acceleration of a2-subcont, b1-subcont and b2-subcont in the outer shell of a moving “electron” 

 

Performing actions similar to (56) – (89) with the metrics-solutions of the Einstein vacuum equation (22) – (24) 

 

𝑑𝑠2
(+𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑎) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,                (22′)    

𝑑𝑠3
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,                (23′) 

𝑑𝑠4
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑏) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,                (24′)                                                                                                         

 

we obtain for the outer shell of the "electron" moving with a constant velocity 𝑉𝑧 in the direction of the Z axis: 

 

- components of the vector of a2-subcont acceleration a(+а2) 

 

𝑎𝑟
(+𝑎2)

= 𝑎𝐸𝑟
(+𝑎2)

+ 𝑎𝐵𝑟
(+𝑎2)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2 𝜃)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+ √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                  (90) 

 

𝑎𝜃
(+𝑎2)

= 𝑎𝐸𝜃
(+𝑎2)

+ 𝑎𝐵𝜃
(+𝑎2)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 +
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                       (91) 

  

𝑎𝜙
(+𝑎1)

= 𝑎𝐸𝜙
(+𝑎2)

+ 𝑎𝐵𝜙
(+𝑎2)

= −√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                                   (92) 
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- components of the vector of b1-subcont acceleration a(+b1) 

 

𝑎𝑟
(+𝑎2)

= 𝑎𝐸𝑟
(+𝑏1)

+ 𝑎𝐵𝑟
(+𝑏1)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2𝜃)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                   (93)        

 

𝑎𝜃
(+𝑏1)

= 𝑎𝐸𝜃
(+𝑏1)

+ 𝑎𝐵𝜃
(+𝑏1)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 −
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                      (94) 

  

𝑎𝜙
(+𝑏1)

= 𝑎𝐸𝜙
(+𝑏1)

+ 𝑎𝐵𝜙
(+𝑏1)

= √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                                     (95) 

 

- components of the vector of b2-subcont acceleration a(+b2) 

 

𝑎𝑟
(+𝑏2)

= 𝑎𝐸𝑟
(+𝑏2)

+ 𝑎𝐵𝑟
(+𝑏2)

=
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2 𝜃)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                 (96)         

𝑎𝜃
(+𝑏2)

= 𝑎𝐸𝜃
(+𝑏2)

+ 𝑎𝐵𝜃
(+𝑏2)

=
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

 +
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                     (97) 

𝑎𝜙
(+𝑏2) = 𝑎𝐸𝜙

(+𝑏2) + 𝑎𝐵𝜙
(+𝑏2) = −√

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 .                                                                 (98) 

 

Attention! We urge mathematicians to double-check the obtained Exs. (86) – (98). 

 

5.4 Accelerated vacuum currents in the outer shell of a moving “electron” 

 

The general vector field of accelerated vacuum currents in the outer shell of a moving “electron”, according to geometrized 

vacuum electrodynamics (see [4], especially §5 and 6 in [4]), is defined as a vector-quaternion 

 

aΣ
(+ab)  =  

1

4
 (a(+a1) + ia(+a2) + ja(+b1) + ka(+b2)),                                                                                                                      (99)                                      

where 

a(+a1) = Eо
(+a1)

 + [v(+a1)  Bо
(+a1)]   is vector field of accelerations of a1-subcont (86) – (89);                                         (100)                                    

a(+a2) = Eо
(+a2)

 + [v(+a2)  Bо
(+a2)]   is vector field of accelerations of a2-subcont (90) – (92); 

a(+b1) = Eо
(+b1)

 + [v(+b1)  Bо
(+b1)]   is vector field of accelerations of b1-subcont (93) – (95); 

a(+b2) = Eо
(+b2)

 + [v(+b2)  Bо
(+b2)]   is vector field of accelerations of b2-subcont (96) – (98). 

    

This type of notation for the general vector field of vacuum accelerations is due to the fact that the current lines of acceler-

ated ak-subcont and bk-subcont currents are intertwined into current bundles. 

 

Ex. (100) can be represented in expanded form 

                                                                                                                                                                                        (101) 

aΣ
(+ab)  = 

1

4
 (Eо

 (+a1) + iEо
(+a2) + jEо

(+b1) + k Eо
(+b2)) +  

1

4
 ([v(+a1)  Bо

(+a1)] + i[v(+a2)  Bо
(+a2)] + j[v(+b1)  Bо

(+b1)] + k [v(+b2)  Bо
(+b2)] ).   

 

or   aΣ
(+ab) = EΣ

 (+ab) + [vΣ
 (+ab)  BΣ

 (+ab)],                                                                                                                          (102) 

 

where, in the case of uniform and rectilinear motion of the “electron”, 
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EΣ
 (+ab) = 

1

4
 (Eо

 (+a1) + iEо
(+a2) + jEо

(+b1) + kEо
(+b2))                                                                                                             (103)    

 

is the total geometrized field of the vector of the laminar (rectilinear) component of the subcont acceleration in the outer shell 

of the moving “electron”, or the averaged geometrized vector of the subcont electrical field strength; 

 

BΣ
 (+ab) = 

1

4
 (Bо

 (+a1) + iBо
(+a2) + jBо

(+b1) + kBо
(+b2))                                                                                                             (104) 

 

is the total geometrized field of the vector of the turbulent (rotational) component of the subcont acceleration in the outer shell 

of the moving “electron”, or the averaged geometrized vector of the subcont magnetic induction; 

 

vΣ
 (+ab) = 

1

4
 (v (+a1) + iv(+a2) + jv(+b1) + kv(+b2))                                                                                                                     (105) 

 

is the total field of the subcont velocity vector in the outer shell of the moving “electron”. 

 

Vector quaternion (99) describes an extremely complex interweaving of subcont currents in the outer shell of an "electron" 

moving rectilinearly and uniformly with a constant velocity Vz. Recall that this article considers the simplest version of inter-

weaving only ak-subcon currents with the same topology, i.e. with one signature (+ – – –). However, it is necessary to remem-

ber that each ak-subcont current can be represented as an interweaving of seven subcurrents with different signatures (see 

[2,3,4]). Therefore, at a deeper level of consideration, the picture of intra-vacuum processes in the outer shell of a free moving 

"electron" looks even more complex, but at the same time more elegant and harmonious. In Figure 11 an attempt is made to 

illustrate the interweaving of ak-subcont currents and sub-currents, with the sub-currents labeled with one of the seven rainbow 

colors (red, orange, yellow, green, blue, indigo, violet), which correspond to the signature of their -12,-15-vacuum sub-layer 

(see (123) in [5]). 

 

 
 

Fig. 11. Illustration of the interweaving of -12,-15-vacuum sub-currents, tied into knots and twisted into spirals. 

This illusion is inspired by the mathematical apparatus of geometrized vacuum physics, 

based on the Algebra of signatures (see [2,3,4,5,6,7]) 
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We anticipate the objection that in the geometrized physics of vacuum there is no 

constructive concept of the substantiality of subcont currents, just as the substantial-

ity of the electromagnetic field is unclear in classical electrodynamics. Within the 

framework of purely geometric constructions, the subcont (i.e., a complexly woven 

pseudo-medium) forms only the illusion of concepts of intra-vacuum processes. 

Nevertheless, the logical apparatus based on the geometrized vectors Eо
(+αk) and  

Во
(+αk), associated respectively with the laminar and turbulent acceleration of one of 

the layers of the pseudo-medium (in particular, the a1-subcont), is significantly more 

subtle and understandable, in comparison with the heuristic mathematical apparatus 

of classical electrodynamics, where the concepts of electric and magnetic fields are 

introduced directly on the basis of empirical phenomenology. Moreover, in our opin-

ion, geometrized vacuum dynamics based on Signature Algebra meets the criteria of 

the Clifford-Einstein-Wheeler program, which is aimed at the complete geometriza-

tion of physics. 
 

 

5.5 Simplified schematic representation of the outer shell of a moving "electron" 

 

The vector-quaternion field of accelerations of four intertwined subcont layers in the outer shell of a moving "electron", described by                   

Ex. (99), is extremely complex. However, upon averaging and at a significant distance from the core, the following simplified schematic 

representation of the vacuum region under study can be distinguished from this complex manifold. 

 

The averaged field of the geometrized vector of subcont magnetic induction BΣ
 (+ab) describes a complex rotational-translational motion of 

the subcont layers around the direction of motion. This rotation is two counter toroidal-helical vortices, see Figure 7 (which are convention-

ally shown in Figure 13 as a single vortex, for ease of perception), induced around the core of the moving "electron" (Figure 13b). 

 

 

 
                                       a)                                                     b)                                                              c) 

 

Fig. 13. a) The electric field of a charge at rest has spherical symmetry, and the electric field of a moving charge corresponds to the shape 

of an ellipsoid of revolution. b) Simplified diagram of accelerated laminar and turbulent subcont currents in the outer shell of an "electron" 

moving rectilinearly at a constant speed in the vacuum of which it itself consists. c) Precession of the axis of rotation of the core of a moving 

"electron" in a sector limited by a solid angle Q, around the direction Z of its uniform and rectilinear motion 

 

 

 

 

 

 

 

 
Fig. 12. Drawing by Lebedev V.A. 
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The field of the averaged geometrized vector of the subcont electric intensity EΣ
 (+ab) in the outer shell of the moving "electron" is flattened 

(see Figure 13a,b). This field describes the accelerated laminar currents of various layers of the subcont, which flow in and out along spirals 

from/to the surface of the "electron" (see § 2.2.2 in [7]). But in this case, the field of the subcont electric intensity is not spherical in nature, 

as in the case of a stationary "electron" (see Figures 9 and 11 in [7]), but has the character of an ellipsoid of revolution, flattened along the 

Z axis, which coincides with the direction of motion of the "electron".  

 

These ideas of Geometrized vacuum physics (GVPh) about a moving “electron” largely coincide with the conclusions of classical electro-

dynamics, according to which the electric field of a moving electron is flattened (as a result of relativistic effects), and a magnetic field is 

induced around it [10]. 

 

From the point of view of an outside observer, the core of a moving "electron" takes the form of an elongated ellipsoid (see Figure 13b,c), 

and its rotation axis chaotically precesses in a sector limited by the solid angle Q (see Figure 9c). The greater the speed of rectilinear motion 

of the "electron" core, the more its core flattens along the X and Y axes (perpendicular to the direction of motion), and the solid angle of the 

precession sector of its rotation axis decreases. Such shape and behavior of the "electron" core are caused by strong subcont currents in the 

neck of the toroidal-helical vortex circulating in its outer shell. At a rectilinear motion speed of the "electron" Vz close to the speed of light 

(Vz ≈ c), the rotation axis of the "electron" core practically stops precessing and coincides with the direction of its motion. 

 

Nature is fractal, i.e. it is repeated many times on different scales. For example, 

the movement of an "electron" in a vacuum, of which it itself consists, is similar 

to the movement of a collared flagellate (an aquatic unicellular organism), which, 

when moving, causes a toroidal current of water (see Figure 14) [11]. The flagel-

late is analogous to the compressed core of a moving "electron", and the toroidal 

movement of water caused by it is similar to a subcont toroidal-helical vortex in 

the outer shell of a moving "electron". 

 

The rotation of the outer shell of the moving "electron" leads to the emergence of 

additional inertia of this entire –12,–16-vacuum formation. The faster the "particle" 

moves, the greater the speed of rotation of its outer shell and, accordingly, the 

greater the inertia in this rotation. Therefore, it is more difficult to accelerate a 

moving "particle" even more and it is more difficult to change the direction of its 

movement. 

 

Due to the conservation laws (which are expressed by Einstein's vacuum equa-

tions), if you accelerate the "electron" to a certain speed Vz, then it will continue 

to move in the –12,–16-vacuum with this speed in the initially given direction. 

 

6 Accelerations of the antisubcont in the outer shell of a moving “positron” 

 

If with the metrics-solutions of the Einstein vacuum equation (27) – (30) 

 

𝑑𝑠1
(−𝑎1)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (27′)   

𝑑𝑠2
(−𝑎2)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (28′)    

𝑑𝑠3
(−𝑏1)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (29′) 

𝑑𝑠4
(−𝑏2)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            (30′) 

 

perform actions similar to (56) – (89), then we obtain for the outer shell of the “positron” moving with a constant speed 𝑉𝑧 in 

the direction of the Z axis (Attention! Calculations should be double-checked): 

 

 

      
 

Fig. 14. a) Collared flagellates (aquatic 

unicellular organisms) [11]; b) Toroidal 

water current caused by the movement of 

the flagellate [11]. 
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- components of the vector a1-antisubcont acceleration a(–a1) 

 

𝑎𝑟
(−𝑎1)

= 𝑎𝐸𝑟
(−𝑎1)

+ 𝑎𝐵𝑟
(−𝑎1)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+ √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,            (106)               

 

𝑎𝜃
(−𝑎1)

= 𝑎𝐸𝜃
(−𝑎1)

+ 𝑎𝐵𝜃
(−𝑎1)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                (107) 

  

𝑎𝜙
(−𝑎1)

= 𝑎𝐸𝜙
(−𝑎1)

+ 𝑎𝐵𝜙
(−𝑎1)

= −√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                               (108) 

 

- components of the vector a2-antisubcont acceleration a(–a2) 

 

𝑎𝑟
(−𝑎2)

= 𝑎𝐸𝑟
(−𝑎2)

+ 𝑎𝐵𝑟
(−𝑎2)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2)

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,            (109)            

 

𝑎𝜃
(−𝑎2)

= 𝑎𝐸𝜃
(−𝑎2)

+ 𝑎𝐵𝜃
(−𝑎2)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1− 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

−
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                (110) 

  

𝑎𝜙
(−𝑎2)

= 𝑎𝐸𝜙
(−𝑎2)

+ 𝑎𝐵𝜙
(−𝑎2)

= √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃−𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                                   (111) 

 

 

- components of the vector b1-antisubcont acceleration a(–b1) 

 

𝑎𝑟
(−𝑏1)

= 𝑎𝐸𝑟
(−𝑏1)

+ 𝑎𝐵𝑟
(−𝑏1)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2𝜃)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+ √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,           (112)             

 

𝑎𝜃
(−𝑏1)

= 𝑎𝐸𝜃
(−𝑏1)

+ 𝑎𝐵𝜃
(−𝑏1)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

+
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                                (113) 

  

𝑎𝜙
(−𝑏1)

= 𝑎𝐸𝜙
(−𝑏1)

+ 𝑎𝐵𝜙
(−𝑏1)

= −√
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ;                                                               (114) 

 

 

- components of the vector b2-antisubcont acceleration a(–b2) 

 

𝑎𝑟
(−𝑏2)

= 𝑎𝐸𝑟
(−𝑏2)

+ 𝑎𝐵𝑟
(−𝑏2)

= −
с2𝑟6(𝑟

2+𝑎2−𝑟𝑟6)(𝑟
2−𝑎2 𝑐𝑜𝑠2)

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

− √
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,           (115)             

 

𝑎𝜃
(−𝑏2)

= 𝑎𝐸𝜃
(−𝑏2)

+ 𝑎𝐵𝜃
(−𝑏2)

= −
с2𝑟𝑟6𝑎

2 𝑠𝑖𝑛 2𝜃

2(1+ 
𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
)

3
2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)3

−
2с2𝑟6

2𝑎2 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛2 𝜃(𝑟2+𝑎2−𝑟6𝑟)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)2(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 ,                               (116) 

  

𝑎𝜙
(−𝑏2) = 𝑎𝐸𝜙

(−𝑏2) + 𝑎𝐵𝜙
(−𝑏2) = √

𝑟6𝑟

𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃
 

с2𝑟6𝑎 𝑠𝑖𝑛 𝜃(𝑎
2 𝑐𝑜𝑠2 𝜃+𝑟2)

(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃)(𝑟2+𝑎2 𝑐𝑜𝑠2 𝜃−𝑟6𝑟)
2 .                                                                 (117) 
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The general vector field of accelerated antisubcont currents in the outer shell of a “positron” moving rectilinearly and uni-

formly (i.e. with a constant velocity 𝑉𝑧) in the direction of the Z axis is determined by the vector-quaternion 

 

aΣ
 (– ab)  =   

1

4
 (a(– a1) + ia(– a2) + ja(– b1) + ka(– b2)),                                                                                                               (118)                                     

 

where   

a(–a1) = Eо
(–a1)

 + [v(–a1)  Bо
(–a1)]   is vector field of accelerations of a1-antisubcont (106) – (108);                               (119)                                    

a(–a2) = Eо
(–a2)

 + [v(–a2)  Bо
(–a2)]   is vector field of accelerations of a2-antisubcont (109) – (111); 

a(–b1) = Eо
(–b1)

 + [v(–b1)  Bо
(–b1)]   is vector field of accelerations of b1-antisubcont (112) – (114); 

a(–b2) = Eо
(–b2)

 + [v(–b2)  Bо
(–b2)]   is vector field of accelerations of b2-antisubcont (115) – (117). 

 

The components of the ak- and bk-antisubcont acceleration vectors (106) – (117) in the outer shell of the moving “positron” 

are completely opposite to the corresponding components of the ak- and bk-subcont acceleration (90) – (98) in the outer shell 

of the moving “electron”. That is, the difference between the corresponding components (90) – (98) and (106) – (117) is zero. 

 

This means that all laminar (rectilinear) and turbulent (rotational) antisubcont flows in the outer shell of the moving “positron” 

are completely opposite to the corresponding laminar and turbulent subcont flows in the outer shell of the “electron” moving 

with the same speed and in the same direction (see Figure 15). In addition, the "positron" and "electron" are rotated (or phase-

shifted) by 900 relatives to each other (see §5.2 in [3]). 

 

 
                              

                                            Moving "electron"                                               Moving "positron" 

 
Fig. 15. "Electron" and "positron" moving rectilinearly and uniformly with the same speed Vz 

in the same direction. In this case, all processes (i.e. accelerated laminar and turbulent flows) 

in their outer shells are mutually opposite 

 

 

If the "electron" and "positron" move rectilinearly and uniformly with the same speed Vz, but in opposite directions, then all 

processes (i.e. accelerated laminar and turbulent flows) in their outer shells completely coincide (see Figure 16). In this case, 

they are practically indistinguishable. 
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                                            Moving "electron"                                               Moving "positron" 

 
Fig. 16. "Electron" and "positron" moving rectilinearly and uniformly with the same speed Vz , but in opposite directions. 

In this case, all processes (i.e. accelerated laminar and turbulent flows) in their outer shells completely coincide 

 

 

7 Outer shell of the moving "proton" 

 

The motion of the "proton" and "antiproton", "neutron", hydrogen "atom" and other particles, the metric-dynamic models of 

which were considered in §4 in [6], requires a separate study. 

 

In this article, as an example, we will only present a multilayer metric-dynamic model of the outer shell of one of the possi-

ble states of the p1-"proton" (92) in [6] 

 

dr
+(+  +  +  –)                                                                             (120) 

ug
– (–  +  –  +) 

ub
– (–  –  +  +) 

р1
–(–  +  +  +) + 

 

 

which moves rectilinearly and uniformly with constant velocity 𝑉𝑧  in the vacuum of which it itself consists 

 

 

                                                                       p1
–-“PROTON”                                                                        (121) 

moving rectilinearly and uniformly. 

Outer shell with averaged signature (– + + +) 

 

Outer shell of the moving valence dr
+-“quark”, 

in the interval [r4, r6], signature (+ + + –) 

                   𝑑𝑠1
(−𝑎1)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,          (122) 

                     𝑑𝑠2
(−𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                     𝑑𝑠3
(−𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                     𝑑𝑠4
(−𝑏2)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;     
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Outer shell of the moving valence ug
–-“quark”, 

in the interval [r4, r6], signature (– + – +)  

                   𝑑𝑠5
(−𝑎3)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) − 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         (123) 

                     𝑑𝑠6
(−𝑎4)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) − 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                     𝑑𝑠7
(−𝑏3)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) − 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                     𝑑𝑠8
(−𝑏4)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) − 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;      

 

Outer shell of the moving valence ub
–-“quark” 

in the interval [r4, r6], signature (– – + +)  

                   𝑑𝑠9
(−𝑎5)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         (124) 

                     𝑑𝑠10
(−𝑎6)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                     𝑑𝑠11
(−𝑏5)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                     𝑑𝑠12
(−𝑏6)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 + (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;     

  

The substrate of p1
–-“proton” 

uniformly and rectilinearly moving, 

r  [0, ], signature (– + + +) 

                                                  𝑑𝑠13
(−)2

= −𝑐2𝑑𝑡2 +
𝜌𝑑𝑟2

𝑟2+𝑎2
+ 𝜌𝑑𝜃2 + (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                     (125) 

 

 

At 𝑉𝑧 = 0 (i.e., in the absence of motion), metrics (122) – (125) acquire the original form (93) – (95) in [6]. 

 

The methods for extracting information about the deformations, velocities, and accelerations of the subcont in the outer shell 

of a moving p1
–-“proton” are shown using the example of a moving “electron” (see §§2–5 of this article). However, the volume 

of calculations in this case increases more than threefold. 

 

8 Outer shell of a moving "quark" 

 

In this article, we have considered in detail only the metric-dynamic models of the outer shells of a moving "electron" and a 

moving "positron". However, the methods of extracting information from metrics (21) – (25) and (27) – (31) are suitable for 

describing the similar behavior of outer shells during the motion of all stable and unstable spherical vacuum formations con-

sidered in §4 in [6]: "quarks", "baryons" and "mesons". 

 

For example, the metric-dynamic model of the outer shell of a moving ur
–-"antiquark" (71) in [6] with the signature (– + + –) 

is determined by the metrics 

 

The outer shell of a moving valence ur
–-"antiquark" 

in the interval [r4, r6], signature (– + + –) 

                    𝑑𝑠1
(−𝑎1)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,        (126) 

                      𝑑𝑠2
(−𝑎2)2

= −(1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑎) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,           

                      𝑑𝑠3
(−𝑏1)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

                      𝑑𝑠4
(−𝑏2)2

= −(1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 +

𝜌𝑑𝑟2

Δ
(𝑏) + 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;     

 

The substrate of  ur
–-"antiquark" 

uniformly and rectilinearly moving, r  [0, ], signature (– + + –) 

                                                  𝑑𝑠5
(−)2

= −𝑐2𝑑𝑡2 +
𝜌𝑑𝑟2

𝑟2+𝑎2
+ 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                      (127) 
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Similarly, metric-dynamic models of the outer shells of all moving colored "quarks" given in Table 1 in [6] can be specified. 

In this case, metric-dynamic models of the outer shells of all these 16 "quarks" are determined by sets of metrics (126) - (127) 

with the corresponding signature from Table 1 in [6]. In turn, from these 16 "quarks" metric-dynamic models of all elements 

of the Standard Model of elementary "particles" moving rectilinearly and uniformly can be composed. 

 

 

9 Condition of annihilation of "particles" and "antiparticles" 

 

In the previous paragraphs it was shown that the outer shells of all moving stable spherical vacuum formations, such as: 

"electrons" and "positrons", "protons" and "antiprotons", "neutrons" and "antineutrons", "mesons" and "antimesons", etc., 

considered in §4 in [6], are described similarly. For example, despite the fact that the "proton" consists of three valence 

"quarks", during its translational motion around its core, on average, laminar and turbulent antisubcont currents are induced, 

similar to the antisubcont accelerated currents arising during the motion of the "positron". Only the metric-dynamic model of 

a moving “proton” is significantly more complex, since it does not consist of 4 Kerr metrics (27) – (30) with a signature                    

(– + + +), but of 3 × 4 = 12 similar metrics, for example, (122) – (124) with signatures from the ranking (120). 

 

In the framework of the geometrized vacuum physics (GVPh, see [1,2,3,4,5,6,7]) developed here, all bodies consist of "par-

ticles" and "antiparticles" that do not annihilate, since they are very complexly mixed, intertwined with each other and are 

constantly in thermal chaotic motion. In other words, "particles" and "antiparticles" in bodies are so complexly tied into 

topological (i.e. signature) nodes and move so complexly with the induction of toroidal-helical vacuum currents that it is 

practically impossible to untangle them. But mobile free "particles" and "antiparticles" (in particular, moving "electrons" and 

"positrons") cannot annihilate, since for mutual destruction they must completely coincide with each other. For example, if 

you tear a piece of fabric out of a tablecloth, it is almost impossible to completely restore the integrity of the tablecloth, since 

the torn piece of fabric will never perfectly fill the hole. 

 

Presumably, the annihilation of slow "particles" and "antiparticles" (in particular, 

the "electron" and "positron") is possible only when they are practically at rest. Only 

after the "particle" and "antiparticle" have practically come to a complete stop can 

the spiral-rotational approach (i.e. the dance of death, see Figure 17) begin. During 

the annihilation of a "particle" and "antiparticle", their cores circle around each other 

for so long until they emit (i.e. throw off in the form of radiation) all that is super-

fluous, and coincide with each other with absolute precision (i.e. the convexity of 

the vacuum must fill its concavity with the highest precision). Thus, the annihilation 

of "particles" and "antiparticles" inside bodies, where they are tightly packed, com-

plexly mixed and constantly participate in thermal (chaotic) motion, is practically 

impossible. 

 

Thus, it should be expected that the process of annihilation of "particles" and "antiparticles" (i.e. their dance of death) can 

begin only when they are practically at rest relative to each other and the surrounding vacuum, of which they themselves are 

stable deformations (i.e. when they shed the excess rotational inertia associated with their motion). In other words, atomic 

bodies can self-annihilate (with the release of enormous energy) at a temperature close to absolute zero. It is estimated that 

the process of self-annihilation of an atomic body can begin at its temperature of 0.08 – 0.3 K. 

 

 

10 Geometrized model of motion of bodies by inertia 

 

When an atomic body moves as a whole, the "particles" and "antiparticles" that fill it move in one direction. In this case, 

toroidal-helical vortices (geometrized magnetic fields) are induced around their cores. But these vortices are mutually opposite 

in "particles" and "antiparticles" (see Figures 15 and 18), so these vacuum rotations, on average, compensate each other's 

manifestations. As a result, a general geometrized magnetic field is not observed around the moving body. In other words, 

mutually opposite magnetic fields (i.e., rotational accelerations of the subcont and antisubcont around the direction of motion 

of the moving cores of "particles" and "antiparticles") are constantly induced when the body moves in a vacuum, but on 

average, they almost completely compensate each other's manifestations. 

 

   

Fig. 17. The dance of death 
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Fig. 18. "Particles" and "antiparticles" (in particular "electrons" and "positrons") moving 

along with the entire body rectilinearly and uniformly with the same speed Vz 

 

 

Thus, in order for the body to start moving, part of the force applied to it is spent on inducing toroidal-helical vacuum vortices 

(geometrized magnetic fields) in the direction of its motion. However, due to the fact that "particles" and "antiparticles" induce 

mutually opposite vacuum vortices, the general magnetic field around the moving body is present, but does not manifest itself, 

since the effect of counter vortices and anti-vortices is mutually compensated. 

 

The expenditure of external forces on inducing mutually opposite toroidal-helical vortices (geometrized magnetic fields) is 

the cause of the inertia of bodies, i.e. resistance to the onset of motion. However, if the body is already set in rectilinear and 

uniform motion, then the mutually opposite toroidal-helical vortices induced in this case will support the motion of the body 

in the same direction and at the same speed, since these two counter rotations are preserved, as evidenced by the stationarity 

of the Kerr metrics (21) – (24) and (27) – (30). Within the framework of the GVPh, this is the reason for the infinite motion 

of bodies in a vacuum by inertia. 

 

On the contrary, forced braking of a moving body is accompanied by resistance from the inertia of mutually opposite toroidal-

helical vacuum vortices. The preservation of mutually opposite rotation of the vacuum around a moving body does not allow 

this body to be braked instantly. For the same reason, it is not easy to change the direction of its motion. 

 

The explanation of the motion of bodies by inertia proposed by GFV due to the induction of mutually opposite toroidal-helical 

vacuum vortices (counter geometrized magnetic fields) allows one to completely get rid of the concept of the inertial mass of 

a body. In other words, the proposed mechanism for the emergence of inertia due to the induction of mutually opposite 

rotational vacuum flows around a moving body is, in essence, a geometrization of the concept of mass. In this case, the more 

interconnected "particles" and "antiparticles" participate in the collective (joint) motion (i.e. the more "particles" and "anti-

particles" in the body, see Figure 18), the more counter toroidal-helical vortices are induced around their nuclei and the greater 

the general inertia of such a body. This is equivalent to an increase in the mass of the body with an increase in the number of 

atoms and molecules. 

 

11 Inertioid (practical application of inertial metrodynamics) 

 

The metric-dynamic model of the interaction of a moving body with the surrounding 

vacuum, developed on the basis of solutions of the Einstein vacuum equation, can be 

used for the theoretical justification of the occurrence of thrust in mechanisms such 

as Tolchin's inecioids (see Figure 19). 

 

From the point of view of Geometrized vacuum physics, inertioids should be consid-

ered not as closed, but as open mechanical systems interacting with a vacuum [12]. 

That is, it is possible to push off from a vacuum during the accelerated motion of the 

inertioid flywheels. 

 

 
 

Fig. 19. Implementation of one of sev-

eral variants of constructing Tolchin 

inertioids 
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The use of inertioids on spacecraft can contribute to the development of a method for correcting the orbit of satellites in a 

vacuum that does not require a large consumption of fuel from jet engines to correct their orbit. This could lead to significant 

savings and extend the service life of spacecraft. 

 

 

12 Counter "electron" - "positron" electric current 

 

In modern physics, it is generally accepted that electric current is a directed movement of charged particles. In particular, it is 

assumed that electrons are the carriers of electric charge in metals. 

 

In Geometrized vacuum physics (GVPh) there is no asymmetry between "particles" and "antiparticles", so we are forced to 

state that electric current is a counter-directed movement of "particles" and "antiparticles". 

 

It should be noted that the counter current of particles and antiparticles is not news. For example, it is believed that electron-

hole conductivity occurs in semiconductors. It is simply due to the established scientific paradigm that "positrons" were called 

"holes". 

 

Within the framework of the GVPh, during the counter motion of, for example, “electrons” and “positrons” in a metal wire 

(see Figure 20): 

- firstly, “particles” and “antiparticles” cannot annihilate, for the reasons indicated in §9; 

- secondly, toroidal-helical vortices (i.e. geometrized magnetic fields) induced around the nuclei of “particles” and “antipar-

ticles” moving towards each other rotate in the same direction (see Figures 16 and 20a). 

 

 

                    
                                                                    a)                                                                                  b) 

 

Fig. 20. "Particles" and "antiparticles" (in particular, "electrons" and "positrons") moving in a metal wire 

rectilinearly and uniformly with the same speed Vz towards each other, i.e. in opposite directions. 

At the same time, their counter toroidal-helical vortices rotate in one direction 

 

As a result, a joint geometrized magnetic field is induced around the conductor with a counter "electron" - "positron" current 

(see Figure 20b), i.e., an averaged rotation of the vacuum. 

 

 

CONCLUSION 

 

This part of the Geometrized vacuum physics  (GVPh) proposes metric-dynamic models of the outer shells of moving "parti-

cles" (in particular, moving "electron" and moving "positron"), provided that they move rectilinearly and uniformly (i.e. with 

a constant velocity Vz ) in the direction of the Z axis relative to the vacuum, of which they themselves are stable curvatures. 

 



31 

 

These metric-dynamic models of the outer shells consist of sets of Kerr metrics with different signatures: (21) – (25) for a 

moving "electron" with the signature (+ – – –); (27) – (31) for a moving "positron" with the signature (– + + +); (122) – (125) 

for a moving "proton" with signatures (120); (126) – (127) for a moving ur-“antiquark” with the signature (– + + –). 

 

Metrics-solutions with common (or averaged) signatures (+ – – –) and (– + + +) are exact solutions of the Einstein vacuum 

equation (42) in [5] (𝑅𝑖𝑘 = 0), which is essentially a mathematical expression of conservation laws (see [5,6]). This means 

that “particles” moving relative to a vacuum at rest rectilinearly and uniformly (i.e. with a constant velocity) remain in this 

unchanged state until they are subjected to a braking effect. 

 

As a result of the analysis of the sets of metrics-solutions (21) – (25) for the moving "electron" and (27) - (31) for the moving 

"positron" using the methods of the GVPh and the Algebra of signature described in [1,2,3,4,5,6.7], the following main results 

were obtained. With rectilinear and uniform motion of the valence "electron" and valence "positron" relative to the vacuum 

of which they consist: 

 

1) the averaged outer shell of the valence "electron" takes the form of an ellipsoid of revolution, flattened along the Z axis, 

which coincides with the direction of its motion (see Figure 4); 

2) the averaged lines of force of the geometrized electric field (i.e. the field of laminar accelerations of the subcont) in the 

outer shell of the valence "electron" are compressed (see Figure 13a,b); 

3) the core of the moving valence "electron" (or "positron") is compressed along the Y and X axes, perpendicular to the 

direction of motion, and acquires the shape of an elongated spheroid (olive), the axis of rotation of which chaotically precesses 

in a limited sector (see Figure 13c); 

4) two counter toroidal-helical vortices of the subcont are induced around the moving core of the "electron" (or "positron") 

(i.e., on average, a completely compensated geometrized magnetic field, or an averaged field of turbulent accelerations of the 

subcont) (see Figure 7, or Figure 8); 

5) similar metamorphoses occur with the moving "positron" as with the moving "electron", but all processes in the outer shell 

of the "positron" proceed in the opposite direction to the processes occurring in the outer shell of the "electron". 

 

In this article we have considered in detail only the metric-dynamic models of the outer shells of the moving "electron" and 

the moving "positron". However, the methods of extracting information from the metrics (21) – (25) and (27) – (31) are 

suitable for describing the similar behavior of the outer shells during the motion of all stable and unstable spherical vacuum 

formations considered in §4 in [6]: "quarks", "baryons", "mesons".  

 

When choosing the model of a moving "electron" relative to the vacuum, of which it is a stable curvature, we proceeded from 

how stable disturbances move in atomistic media (see, for example, see Figures 1 and 10). This is based on the belief that 

similarity is one of the principles of formation of natural objects. This belief is supported by the presence of Kerr metrics – as 

exact solutions of Einstein's vacuum equations. This heuristic approach does not seem convincing, but the metric-dynamic 

models of moving “particles” and “antiparticles” proposed here allow us to describe geometrically the following fundamental 

phenomena: 

 

1) Electromagnetic fields around moving “particles” and “antiparticles” within the framework of the GVPh can be represented 

as completely geometrized vector fields of laminar (linear) and turbulent (rotational) accelerations of various layers of vacuum. 

 

2) It is possible to explain the inert properties of bodies consisting of "particles" and "antiparticles". When such a body moves 

relative to a stationary vacuum, then mutually opposite toroidal-helical vacuum vortices (i.e. geometrized magnetic fields) are 

induced around the "particles" and "antiparticles" (see Figures 15 and 18). In order for these vortices to arise, it is necessary 

to expend effort, which explains the resistance of the body to the transition from a state of rest relative to the vacuum to a 

state of its rectilinear and uniform motion. When counter toroidal-helical vacuum vortices are induced, they support the motion 

of "particles" and "antiparticles" and the entire atomic body as a whole with a constant speed, since the integral rotational 

acceleration of the vacuum is preserved. To stop a body moving relative to a vacuum, it is necessary to expend effort to stop 

the induced counter toroidal-helical vortices. At the same time, the geometrized magnetic field of a moving body does not 

manifest itself, since the toroidal-helical vortices of the "particles" are compensated by the opposite toroidal-helical vortices 

of the "antiparticles". The greater the speed of the joint translational motion Vz of the "particles" and "antiparticles" (in partic-

ular, "electrons" and "positrons") of the body, the more intensively the toroidal-helical vortices of the vacuum twist around 

the direction of motion. In addition, for example, the toroidal-helical vortices of the antisubcont, induced around the moving 
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nucleus of the "proton" are significantly more complex and more difficult to induce, since it consists not of one, but of those 

"quarks" (see §7). Taken together, all these properties of a moving body as a set of "particles" and "antiparticles" (in particular, 

"electrons" - "positrons", "protons" - "antiprotons", "neutrons" - "antineutrons", etc.) completely explain its inert properties 

in terms of counter-accelerated rotational accelerations of various vacuum layers (subcont and antisubcont) induced around 

their nuclei. In other words, it is possible to completely hermetically seal the explanation of the inert properties of atomic 

bodies without invoking the vague concept of "inert mass". 

 

3) In the framework of the GVPh, electric current is a directed counter-movement of "particles" and "antiparticles" (in partic-

ular, "electrons" and "positrons"). In this case, when stable mutually opposite vacuum formations move towards each other, 

the directions of their toroidal-helical subcont-antisubcont currents coincide (see Figure 16 and 20). As a result, the general 

(average) movement of, for example, a metal conductor is absent, and a general geometrized magnetic field is induced around 

the conductor (i.e., a looped field of rotational accelerations of the vacuum, see Figure 20b). Thus, such a phenomenon as 

electric current can be explained from the standpoint of geometrized (inert) metro-dynamics. 

 

4) In the GVPh developed here, we are forced to assume that "particles" and "antiparticles" in atomic bodies cannot annihilate 

because they are constantly in thermal motion, while counter toroidal-helical vortices are constantly induced around them, 

which support their coexistence, since the inertia of rotation of the vacuum around the moving nuclei cannot be eliminated. 

Therefore, the article suggests that the annihilation of atomic bodies consisting of "particles" and "antiparticles" is possible 

only at temperatures close to absolute zero (i.e., approximately at 0.08 – 0.3 K). Thus, if atomic bodies are completely frozen, 

then upon their disappearance, a colossal amount of accelerated motion (wave disturbances) of the vacuum will be released. 

 

This article is devoted to the geometrization of processes and phenomena at the picoscopic level of existence (i.e. at the level 

of elementary "particles"). However, as has been repeatedly noted in [1,2,3,4,5,6.7], the metrodynamics of the GVPh is uni-

versal for all scales of consideration. If in all the equations of this article instead of r6 ~ 10–13 cm (the radius of the core of an 

elementary "particle", in particular the nucleus of an "electron") we substitute any other radius from the hierarchy (44a) in [6]. 

 

r1 ~ 1039  cm  is radius commensurate with the radius of the mega-Universe;                                                             

r2 ~ 1029  cm  is radius commensurate with the radius of the observable Universe; 

r3 ~ 1019  cm  is radius commensurate with the radius of the galactic core; 

r4 ~ 108    cm  is radius commensurate with the radius of the core of a planet or star; 

r5 ~ 10–3  cm  is radius commensurate with the radius of a biological cell; 

r6 ~ 10–13 cm  is radius commensurate with the radius of an elementary particle core; 

r7 ~ 10–24 cm  is radius commensurate with the radius of a proto-quark core; 

r8 ~ 10–34 cm  is radius commensurate with the radius of a plankton core; 

r9 ~ 10–45 cm  is radius commensurate with the radius of the proto-plankton core; 

r10 ~10–55 cm  is radius commensurate with the size of the instanton core, 

 

then we get a geometrized description of the behavior of the vacuum in the outer shells of the "proto-quarks" (r7 ~ 10–24 cm), 

or "planets" (r7 ~ 10–24 см cm), or "galaxies" (r3 ~ 1019 cm), etc. 

 

All formulas presented in this article should be rechecked by mathematicians who have the skills to automate calculations 

using specialized software. I offer cooperation to specialists who are able to create an interactive model of moving "particles" 

based on the mathematical apparatus proposed here. 

 

In the author's opinion, despite possible shortcomings, this article has made another step towards completing the Clifford-

Einstein-Wheeler program for the complete geometrization of physics. 
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Appendix 1 

 

In this Appendix, contravariant components of metric tensors are obtained from metrics (21) – (24)     

     

  I     𝑑𝑠1
(+𝑎1)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         (21)   

  H    𝑑𝑠2
(+𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑎) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,        (22)    

  V    𝑑𝑠3
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,        (23) 

  H′   𝑑𝑠4
(+𝑏2)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑏) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;        (24)            

 

Calculations were performed using the Symbolic Algebra Library “Sym Py” by Alexander Bindiman. 

 

1) Consider the metric (21) 

 

𝑑𝑠1
(+𝑎1)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑎)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 +

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,          

 

The covariant components of the metric tensor from this metric are equal to 
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The contravariant components of the metric tensor 𝑔𝑖𝑗 of a given metric are determined by formulas [8] (57) and (58) 

𝑔𝑖𝑗 =
Δ𝑖𝑗

𝑔
  , where Δ𝑖𝑗  is the algebraic complement of the corresponding element of the matrix (𝑔𝑖𝑗), 

𝑔 = ‖𝑔𝑖𝑗‖ = −(𝑟
2 + 𝑎2 𝑐𝑜𝑠2 𝜃)2 𝑠𝑖𝑛2 𝜃 is the determinant of the matrix (𝑔𝑖𝑗). 

 

As a result of the calculation, we obtain 

 

 
 

 

2) Consider the metric (22) 

 

𝑑𝑠2
(+𝑎2)2

= (1 −
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑎) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 +
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,         

 

The covariant components of the metric tensor from this metric are equal to 

 

 
 

The contravariant components of the metric tensor 𝑔𝑖𝑗  of a given metric are equal to 

 

 
 

 

2) Consider the metric (23) 

 

𝑑𝑠3
(+𝑏1)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ(𝑏)
− 𝜌𝑑𝜃2 − (𝑟2 + 𝑎2 −

𝑟6𝑟𝑎
2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 +

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡,            

 

The covariant components of the metric tensor from this metric are equal to 
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The contravariant components of the metric tensor 𝑔𝑖𝑗  of a given metric are equal to 

 

 
 

2) Consider the metric (24) 

 

𝑑𝑠4
(+𝑏2)2

= (1 +
𝑟6𝑟

𝜌
) 𝑐2𝑑𝑡2 −

𝜌𝑑𝑟2

Δ
(𝑏) − 𝜌𝑑𝜃

2 − (𝑟2 + 𝑎2 −
𝑟6𝑟𝑎

2

𝜌
𝑠𝑖𝑛2 𝜃) 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 −

2𝑟6𝑟𝑎

𝜌
𝑠𝑖𝑛2 𝜃 𝑑𝜙𝑐𝑑𝑡;  

 

The covariant components of the metric tensor from this metric are equal to 

 

 
 

The contravariant components of the metric tensor 𝑔𝑖𝑗  of a given metric are equal to 

 

 
 

 

 


