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Segmented Spacetime and the Natural Boundary of Black Holes: 

Implications for the Cosmic Censorship Conjecture 

Carmen N. Wrede, Lino P. Casu 

 

In this paper, we explore the interplay between the fundamental constants Pi and the golden 

ratio (ϕ) and their relationship to the maximal mass and spin of black holes. Our investigation 

begins by modeling a hypothetical clock with an initial radius of 1 in a gravitationally neutral 

environment. As gravitational forces increase, the radius of this clock expands, revealing an 

unexpected relationship between Pi, ϕ, and the segmented structure of spacetime. This 

connection allows us to propose a new framework that explains the observed bounds on black 

hole spin and mass. 

Our analysis demonstrates that as the spin parameter a approaches the speed of light, it 

represents a state of maximal rotation in black holes, marked by a unique equilibrium of 

mass, radius, and segment density. These insights not only provide a deeper understanding of 

black hole properties but also support the Cosmic Censorship Conjecture by illustrating how 

spacetime segmentation naturally prevents “naked” singularities. Overall, our findings 

underscore the importance of Pi and ϕ in the structure and behavior of black holes, offering a 

new perspective on the complex dynamics governing the universe. 

 

 

The normal clock, phi and pi 

Our model assumes a normal clock with an initial radius of 1 in the absence of gravitational 

forces. As gravitation increases, the radius of the clock expands proportionally. In physics, a 

normal clock is an ideal timepiece that measures time precisely, unaffected by external factors 

like gravity or acceleration. Its constant operation makes it a useful reference in experiments 

and theories. 

 

In this analysis, we consider a clock with a growth factor based on the golden ratio (ϕ), which 

leads to a spiral structure. When the radius equals 1, the spiral's structure almost aligns with 

the circle's circumference. At this point, we observe an interesting relationship between ϕ, Pi 

(π), and the circle's circumference: 

Since ϕ is approximately half of Pi, it represents one-quarter of the circle's circumference 

(
1

4
2π). By adding twice ϕ (2 ϕ), we obtain half of the circumference, which equals Pi. This 

relationship can be represented as follows: 

 

2ϕ = 2 ⋅
1

4
⋅ 2π =

1

2
⋅ 2π = π 

In the context of our spiral structure, ϕ represents a quarter of the circular motion, meaning it 

divides the circular circumference into four equal segments. This division provides a new 
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perspective in which ϕ acts as a segmentation factor, while π describes the overall structure of 

the circular motion. 

This observation highlights a fascinating connection between the golden ratio, Pi, and the 

mathematics of spiral structures. In the context of physical systems, such as black holes, this 

relationship could provide valuable insights if similar patterns emerge in their properties or 

behavior. 

 
 

The first result depicts a circle. 

 

In our model, the exponential function describes how radius scales with angular displacement, 

governed by the logarithmic growth factor k. This factor allows the spiral’s radius to grow 

continuously and harmonically with each segment, maintaining a stable structural foundation 

and preventing unbounded growth. 

 

The gravitational spiral describes the growth of the normal clock as gravitation increases 

while moving outward. This leads to a slowdown of time, as gravitation becomes stronger 

with the increasing radius of the spiral. The spiral thus captures the effect of gravitational time 

dilation in an expanding structure. 

This logarithmic growth reflects the natural tendency of the gravitational field to diminish 

gradually with distance, preserving harmony as the radius grows. It defines the consistent 

scaling of space and gravitational influence, supported by the growth factor  

𝑘 =
ln(𝜙)

π
 

 , which stabilizes spatial segmentation. 

Time dilation becomes more pronounced the further one moves outward, similar to the 

gravitational field in the theory of relativity. 

Phi serves two functions in this context: Firstly, Phi continues to represent the radius, as the 

radius of the circle is determined by the gravitational spiral. Therefore, the radius remains a 

multiple of Phi. 
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Secondly, the number of ϕ -segments is determined by the multiple of r, meaning that space 

is subdivided into increasingly finer segments as r grows larger. As r grows, space divides 

into finer ϕ-segments, reflecting the compounded influence of gravitational time dilation as 

the spiral expands. This increasing segmentation aligns with the clock’s expanding path, 

making time appear to slow down under higher gravitational influence. 

 

So it makes a difference whether there are 60 equal segments or whether gravitation creates 

even more segments because the clock grows larger and the second hand has to pass more 

segments. Although we do not see these segments, they exist in space-time. 

The increasing segmentation described by Phi plays a central role in the slowdown of time 

due to increasing gravitation. 

It is indeed comparable to a cake that is cut into smaller and smaller pieces as gravitation 

increases and the normal clock grows. 

And this is why clocks run slower under higher gravitation, because the more segmented 

space is, the slower time passes. 

At point 1, Phi equals 1/4 and divides the circle into 4 segments. Therefore, ϕ =1/4. 

2 ϕ corresponds to 2 segments that describe the radius of the circle, and in this case, the 

radius is equal to 1. 

If we double the radius, we get 4 Phi, which means that the circle is divided into 4 Phi 

segments. 

With each multiple of ϕ, the circle grows, and more segments are created, while the radius 

grows proportionally to the Phi segments. 

So, if Phi divides a circle with a radius of 1 (normal circle) into 4 segments (represented by 

the areas in the Fibonacci spiral, where the areas that give 1 and 1 in the Fibonacci sequence 

must be counted as 1 area), then a circle with a radius of 2 would be divided into 8 segments. 
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Consequently, every expanded circle of the normal clock has this exact segmentation, since 

the radius and volume are dependent on Phi. 

In the case of the normal clock, the clock expands with increasing gravitation, leading to an 

increase in volume. This means that it spreads over a larger area of space while segmentation 

also increases. 

The normal clock expands, leading to an increase in volume. But in real objects and in our 

model, gravitational forces increase the segmentation density of the space around an object 

without changing its intrinsic mass or volume. The object's mass remains constant, but as the 

space becomes more finely segmented, this creates a higher density of spatial segments 

around the object. This denser segmentation enhances the gravitational effect, increasing the 

object's gravitational pull without altering its actual mass. Thus, gravity is intensified through 

the increased segmentation density of the surrounding space rather than by any intrinsic 

change in the object's mass. 

Even with atomic clocks, which are based on the vibration of atoms, one can imagine that the 

vibrating particles in the space-time context have to pass through a similar segmentation. The 

stronger the gravitation or the more segmented the space is, the more 'segments' the particles 

have to overcome per vibration, which also leads to a slowdown of time. 

This concept can therefore be transferred not only to mechanical clocks but also to atomic 

clocks, which run slower in a gravitational field because the particles have to 'pass through' 

more space segments in order to perform their oscillations. 

The atoms that have to perform the vibrations must also pass through more space-time points. 

Atomic clocks are based on extremely precise vibrations (e.g. of caesium atoms) that occur in 

a fixed cycle. 

If additional segments are inserted into space by gravitation, the atoms have to travel a longer 

distance (on a microscopic level) for each vibration, which means that they perform fewer 

vibrations per unit of time. This leads to a slowdown of time measurement in the atomic 

clock. 

Through this model, we have shown that Pi acts as a natural constant because it describes the 

segmentation of space and is thus directly related to the space-time structure and time dilation 

due to gravitation. Pi remains constant in every growing circle or spiral structure, thus 

describing fundamental geometric relationships that also affect time measurement. 

In systems such as atomic clocks or vibrations, Pi describes the cyclical nature of vibrations. 

Each vibration of an atom can be viewed as a segment of a circle, where Pi describes the 

rhythm and periodicity of these vibrations. The more space is segmented by gravitation, the 

slower the atoms vibrate (resulting in a time delay). 

Pi segments space by setting the ratio of circumference to diameter and dividing space into 

proportional circular segments. This segmentation remains constant, regardless of the size of 

the circle, and plays a fundamental role in the space-time structure and in processes such as 

vibrations or time dilation due to gravitation. 
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The theory of relativity understands it like this: Pi ensures that space is divided into 

proportional arcs, which makes time slower as space and gravitation increase. In the theory of 

relativity, Pi plays an important role because it is related to the geometric structure of circles 

and spheres. These structures are central in describing the curvature of space-time around 

massive objects such as stars or black holes. Time dilation caused by gravitation is a direct 

result of this curvature, in which the 'path length' in space becomes larger when space is more 

curved. 

The statement that Phi represents half of Pi and 2π= ϕ + ϕ holds is a specific relationship that 

is valid in the gravitational spiral model, where Phi serves as a segmentation and growth 

factor. However, in a normal circle there is no direct connection between Pi and Phi in this 

sense. 

In a normal circle there is no growing or exponential structure as in the spiral. Therefore, Pi 

remains purely related to the circumference and radius in a circle. There is no connection 

between Phi and Pi in classical circle geometry. 

In the gravitational spiral, however, space expands, and Phi describes the growth and 

segmentation of the spiral, leading to the relationship 2 ϕ =π. 

In our model, the spiral grows with each quarter turn, using Phi as a segmentation factor that 

describes time dilation. 

At the point of 1, each 'half' of the spiral is summed up by two ϕ to Pi. This type of division 

applies to our model. 

Here we have introduced Phi as a geometric constant that relates to the spiral structure and the 

segmentation of space. Therefore, π as the sum of two Phi (i.e., 2π=π+π=φ+φ) is a special 

relationship that holds. 

In the case of a circle, the classical relationship remains: 

 

P=2πr 

 

If the radius r=1, then the circumference of the circle becomes: 

 

P=2π 

 

This means that the circumference of the circle is exactly 2π at a radius of 1. In a circle, there 

is no direct relationship where Phi (ϕ) can be considered as the 'half of Pi', because in 

classical geometry Phi (the Golden Ratio) and Pi (the ratio of circumference to diameter) are 

different constants with different meanings. 
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Topological meaning 

Our consideration therefore has a topological component, in particular in the sense that we not 

only look at the classical geometry of circles, but also at the structure and growth of the spiral 

in space, which changes through space-time distortion or transformation. 

The gravitational spiral grows continuously, and the radius expands with each quarter turn. 

This change in structure is a topological transformation because the space in which the spiral 

is located grows and changes without destroying the fundamental shape of the spiral itself. 

Phi and Pi are not only geometric quantities, but also topological invariants that describe the 

growth and segmentation of the spiral. The fact that Phi doubles with each quarter turn of the 

spiral shows that the structure of the spiral is considered from a topological perspective, in 

which the segmentation changes continuously. 

In this process, Pi describes the basic structure of space as it is segmented into circles, and Phi 

describes the growth rate of this structure. 

When the spiral segments the space further and further as it grows, the geometry of the space 

changes, but the topological structure remains preserved. Therefore, the way in which Phi 

doubles with each turn describes a topological transformation where space is continuously 

distorted without the spiral as a whole losing its structure. 

Gravity changes the space-time structure by curving and segmenting space without 

completely destroying it. 

Under gravity, the space-time structure undergoes a topological transformation in which the 

number of segments (described by Phi and Pi) changes while the basic shape of the spiral and 

the circle remains intact. 

The notion of time dilation arising from spiral growth and increasing gravity can also be 

viewed as a topological transformation. Here, the time structure is segmented while space 

expands. Phi describes how space-time segments increase, while Pi sets the basic structure of 

the segmentation. 

There are some considerations as to whether Pi and Phi are linked at a deeper level in modern 

physics. Both constants appear in quantum physics, cosmology, and the general theory of 

relativity: 

 

- Pi is central in space-time curvature and in the description of black holes, where the 

structure of space is defined by Pi. 

 

- Phi may play a role in self-similar structures such as fractals or in the distribution of 

galaxies in the universe. 

 

Whether there is a direct connection in these areas is still a subject of research, but the fact 

that both constants appear in different areas of mathematics and physics is remarkable. 

In our model, we have created an interesting connection between Pi and Phi by using Phi as 

the segmentation of space and considering Pi as the structural guide for space. This 
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connection between Pi and Phi through the growth of the spiral shows a new possibility of 

how both constants could be universally linked, especially when it comes to space-time 

structure and gravity. 

 

 

While Pi and Phi are different constants with different applications in classical mathematics, 

there are indications that they may be universally linked at a deeper level. They appear in 

geometry, nature, and physics, and there are both algebraic and geometric connections 

between them. In our model, we have found an interesting way to link them through the 

segmentation of space and time dilation. 

It is quite possible that Pi and Phi are connected in a universal way that we do not yet fully 

understand, but offers potential for further research and discoveries. 

 

Phi is sometimes used as an argument of a trigonometric function, where Phi represents an 

angle in radians. 

There are some interesting algebraic connections between Pi and Phi. One remarkable 

equation linking both constants is the so-called connection of Pi and Phi by trigonometry: 

π = 5 ⋅ arccos ⋅ 
ϕ

2
 

 

Here Phi is linked to Pi through the inverse function of the cosine. This shows that there are 

mathematical ways in which Pi and Phi can be connected to each other through trigonometry. 

The function arccos(x) returns the angle whose cosine is equal to x. In other words, it is the 

inverse of the cosine function that tells which angle corresponds to a certain cosine value. 

ϕ is the golden ratio, which has the value ϕ ≈1.618. If we calculate 
ϕ

2
 , we get: 

ϕ

2
 ≈ 0.809 

 

Meaning of the equation: 

The equation states that π is five times the inverse cosine of 
ϕ

2
. This means we are asking: 

What angle has a cosine of 0.809? The value of the angle that has this cosine is then the 

inverse cosine of 0.809. 

If we calculate the inverse cosine of 0.809: 

arccos(0.809)≈0.6283 Rad 

Multiplying this value by 5 yields: 

5⋅0.6283 ≈ 3.14165 

This is an approximation of π, showing that the formula works. 
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In geometric space, Phi refers to the fixed segmentation of space, as in the case of a circle, 

which is divided into 5 parts symmetrically. The symmetry and fixed distances result in a 

repeated occurrence of Phi. 

In the topological space of the spiral, Phi is a growth factor that describes the continuous 

expansion of space. Phi only appears twice because space is segmented into two halves in our 

model, which has more to do with the change of space than with static geometry. 

 

Phi in Geometry (Number 5) 

In geometric space, Phi often appears in relation to the number 5 due to the symmetry of 

shapes like the pentagon or pentagram. These symmetric structures result in Phi occurring in 

exactly 5 segments, creating a fixed relationship with Pi. 

Phi in Topological Space (Number 2) 

In the topological space of the normal clock, Phi occurs more frequently with increasing 

gravity, since more segments are created with increasing gravity. Topologically, the number 1 

leads to the result that π = 2 ϕ, since here Phi acts directly as a growth factor of space (or the 

spiral), and the segmentation is only divided into two halves. 

More segments with increasing gravity 

With greater gravity and a correspondingly larger spiral, Phi appears more frequently as space 

is increasingly divided into more segments. This increasing number of segments corresponds 

to a similar pattern as the fixed symmetry in geometric space, where Phi plays a role in 

dividing into 5 equal parts. 

In our model, the segmentation increases proportionally with gravity, meaning that Phi 

contributes more and more to the structure of space as gravity becomes stronger. 

Thus, an interesting connection between Pi and Phi emerges, showing that in certain cases 

(with the number 1 in topological space), Pi equals 2 ϕ. This occurs because space is 

segmented in this way, with only two Phi segments appearing. 

Geometrically, however, Phi appears in fixed 5-segments, reflecting a different kind of 

symmetry, but both cases (geometric and topological) show that Phi and Pi are closely 

connected, depending on the type of segmentation. 

 

In our model, Phi becomes more frequent with greater gravity, similar to the number 5 in 

geometric space, while topologically only the number 1 leads to the relationship that 

 π  = 2 ϕ. This shows a very exciting link between geometric symmetries and topological 

transformations through gravity, in which Phi and Pi interact to describe the structure of 

space. 

The transition point could be described mathematically as a kind of invariance, where both 

spaces possess the same structure. 

In our case, covering equivalence could mean that Pi is a common constant that connects both 

spaces and remains invariant whether we are in geometric or topological space. 
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For Pi, invariance could mean that Pi remains constant under certain transformations (such as 

the transition from geometric to topological space). This would mean that there is a 

fundamental agreement between the two spaces, which is described by Pi. 

 

Real clocks, weight and gravity 

In reality, the clock itself is usually not stretched or altered, but only gravity changes, 

affecting time dilation. The structure of the clock remains unchanged, but the altered gravity 

affects time measurement by slowing down the passage of time without changing the physical 

shape of the clock. 

This means that in our model, the spiral more accurately describes the effect of gravity and its 

effects on time, while the actual shape of the clock remains stable. 

The segmentation of space by gravity affects the weight of an object, while the mass of the 

object remains unchanged. The weight reflects how strongly the gravitational force acts on the 

object, which in turn depends on the segmentation of space by gravity. 

This means that the changes in spacetime dilation are not manifested in the mass of an object 

itself, but in its weight and the way it responds to gravity. Mass remains an intrinsic property, 

while weight reflects the gravitational influence and the resulting segmentation within 

spacetime. Gravity introduces a new dimension of segmentation, structuring spacetime in a 

way that affects weight and alters how objects interact with gravitational fields. This 

segmentation impacts the density of spacetime intervals, leading to variations in time dilation 

and spatial responsiveness under different gravitational conditions. 

The atoms in the clock have to traverse more space segments in a stronger gravitational field, 

which means they have to do more 'work' to perform their oscillations or vibrations. This 

slows down time and simultaneously makes the clock heavier because the gravitational field 

exerts more force on it. 

It is a double effect: 

- The segmentation of space slows down the oscillations of the atoms, causing the clock 

to tick more slowly. 

- The weight of the clock increases because gravity is acting more strongly, while the 

mass remains unchanged. 

This leads to a fascinating combination of time dilation and weight change, both of which can 

be explained by the segmentation of space in the gravitational field. A truly profound insight 

into the connection between space, gravity, and time! 

In Einstein's General Theory of Relativity, stronger gravity not only leads to time dilation but 

also affects the motion of objects. The space-time curvature due to gravity influences how 

objects move through space. The stronger the gravity, the slower objects move relative to an 

external observer. 

This leads to an effect similar to inertia, as objects in a gravitational field have "more 

difficulty" maintaining their motion. This distortion of space-time affects movement and can 

be interpreted as a kind of "resistance" or inertia due to gravity. 
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In a strong gravitational field, it becomes increasingly difficult for an object to accelerate or 

maintain a certain speed, as if it were experiencing additional inertia due to its mass. In this 

model, gravity’s segmentation of spacetime creates a finely structured environment that 

resists rapid motion, slowing down movement and bending the trajectories of objects. Just as 

mass causes inertia, the gravitational segmentation of spacetime introduces a resistance that 

mirrors inertia, influencing not only spatial movement but also the temporal progression of 

objects in such fields.Gravity and inertia are closely linked, through the equivalence principle 

of the General Theory of Relativity. This principle states that there is no difference between 

the effects of gravity and those of acceleration (which is associated with inertia). That is, the 

effects experienced due to gravity are identical to those caused by acceleration. 

In our model, inertia arises through the segmentation of space. This means that the more space 

is segmented by gravity, the more "resistance" or inertia arises. 

This is a really exciting approach because, in our model, the segmentation of space-time 

corresponds to the "parts" of space that an object must overcome in order to move. The 

stronger the gravity, the more segments are created, which means that objects experience 

more "obstacles" or resistance through these segments on their way through space. 

In this respect, the segmentation of space could slow down movement, similar to inertia in 

classical physics. The more segments, the more time an object needs to overcome these 

segments - which then leads to time dilation and apparently makes the object "slower". 

Our model thus expresses a deeper connection between segmentation, gravity, and inertia by 

showing how space itself is divided into ever smaller segments by gravity and how this slows 

down movement in space. 

Please keep this in mind! Because this will be later on very important! 

 

Light and Gravity (General Theory of Relativity): 

In Einstein's General Theory of Relativity, we know that light is influenced by strong 

gravitational fields. Gravity can deflect light or even change its frequency and wavelength. 

This is demonstrated, for example, in the gravitational lens effect, where light rays are curved 

by the gravity of massive objects (e.g., galaxies). Another example is the gravitational redshift 

phenomenon, in which light emanating from a massive object is stretched (to longer 

wavelengths, i.e., shifted toward red), representing a kind of "slowing down" of light by 

gravity. 

 

Segmentation of Space and Light: 

In our model, where inertia arises from the segmentation of space, one could imagine that 

light is influenced by this segmentation: 

The stronger the gravity, the more space segments are created. These additional segments 

could affect the movement of light through space, similar to how they slow down the 

movement of massive objects. 
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If light travels through an increasingly segmented space, it could take longer to overcome 

these segments, which would be equivalent to slowing down or stretching the light. 

 

Time Dilation and Light: 

In the space-time curvature of the General Theory of Relativity, time slows down with 

stronger gravity. If light travels in a highly curved space (such as near a massive object), it 

also experiences a slowdown, but in a different way than material objects. 

Since light always moves at the speed of light (in a vacuum), the "slowdown" could rather 

appear as a change in wavelength or frequency. This corresponds to gravitational redshift: 

Light becomes "slower" in the sense of longer wavelengths (less energy). 

 

Inertia and Light in Segmented Space: 

In our model, the effects of gravity on light and the movement of material objects are 

connected to the segmentation of space. The stronger the gravity, the greater the segmentation 

of space. In relation to light, segmentation can be considered equivalent to a change in 

wavelength, which arises from the curvature of space-time. 

In material objects, segmentation leads to an apparent slowing down of movement, similar to 

inertia. While light always travels at a constant speed, the segmentation of space acts on the 

wavelength, which is in line with the effects of gravity on light in the General Theory of 

Relativity. 

 

So in our model, the inertia created by the segmentation of space could affect light by 

changing its frequency and wavelength, similar to the gravitational redshift in the theory of 

relativity. Light would have to overcome more "space segments," which could lead to an 

elongation of the wavelength and a decrease in energy. Although light does not lose its speed, 

it could appear "slower" because it has to traverse more space. 

This shows that even light is influenced by the segmentation of space, which leads to an 

interesting extension of the classical theory of relativity in our model. 

This approach links classical relativity theory with our idea of space segmentation and could 

offer a new perspective on the behavior of light in gravitational fields. 

We have discovered here another deep connection: The segmentation of space could be 

measured by the change in the wavelength of light. Since Phi plays a central role in our model 

in segmentation and the growth of space, Phi would also be crucial in this context. 
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Wave Motion and Phi 

If we imagine that light travels in a spiral through space-time in a segmented space, then Phi 

describes the ratio of segmentation. Since light travels in waveform and wave motion can also 

often be interpreted as spiral (in quantum mechanics or electrodynamics as "phase waves"), 

Phi could be directly linked to the wavelength and its change due to gravity. 

So in our model, light travels in a spiral through space-time in segmented space. Phi serves as 

a measure of segmentation and thus describes the structure of space through which light 

moves. The wave motion of light can be described as spiral phase waves in certain areas of 

physics, which supports our hypothesis. Phi is directly related to the wavelength of light and 

its change in the gravitational field, establishing a connection between our model of space 

segmentation and the observations in the General Theory of Relativity. 

As we have already established that Phi doubles with each quarter turn of a spiral, it could be 

that Phi directly influences the distortion or change in wavelength. If the wave moves spirally 

through space, Phi could act as a kind of growth and segmentation factor that determines the 

wavelength and phase of light. 

This notion supports our hypothesis that Phi plays a crucial role in describing the relationship 

between light, gravity, and inertia. 

If we could precisely measure the change in the wavelength of light, we could conclude from 

this how strongly space is segmented by gravity. 

 

Black Holes, pi and phi 

We investigate the possible existence of a connection between the spin-mass limits of 

astrophysical black holes and the universal fundamental constants π and ϕ (the golden ratio).  

The aforementioned addition connects the discussed role of Phi in space segmentation to the 

topic of black holes. It emphasizes that Phi, as a segmentation factor in gravitational fields, 

could play a crucial role and thus have an influence on the spins and mass limits of black 

holes. This connection supports the idea of a deeper connection between black holes and 

fundamental constants, as previously mentioned. 

For an extremal rotating black hole (with spin parameter a=1), the event horizon is located at 

the smallest possible distance from the singularity, at a distance of r+ = GM/c2. This distance 

represents the theoretical minimum radius of the event horizon for a given mass M. 

This scenario is significant because it illustrates the extreme conditions that can arise in the 

context of black holes. The closeness of the event horizon to the singularity at the center of 

the black hole highlights the powerful gravitational forces at play, as well as the unique and 

fascinating properties of these cosmic entities. 

The formula r+ =
GM

𝑐2  was originally derived for maximally rotating black hole with "a = 1". 

This formula gives the minimum distance of the event horizon from the singularity, and this 

minimum distance is always achieved when the spin parameter "a" attains its maximum value 

of a = 1. 
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In this case, the black hole continues to rotate, but the event horizon is located as close as 

possible to the singularity, which can lead to some interesting effects. These effects include, 

for instance, the maximum rotational speed and the extreme density of the black hole. 

 

As with our normal clock model, we set the radius r equal to 1. In the following, we will 

consider the relationships between the various quantities in our system in a dimensionless 

manner. 

This approach allows us to focus on the fundamental aspects of the system without being 

constrained by specific units or scales. By normalizing the radius to 1, we can more easily 

analyze and compare the different properties and characteristics of the black hole within our 

model. 

The dimensionless treatment of these quantities provides a more universal understanding of 

the underlying physics and allows for the exploration of general principles and patterns that 

can be applied to various scenarios involving black holes. 

We set the radius r = 1, the mass M = 1, and the speed of light c2 = 1. Now we can rearrange 

the formula for the radius as follows to calculate the gravitational constant G: 

 

 

r = 
𝐺𝑀

𝐶2 = 1 

 

1 = 𝐺
1

1
 

 

G = 1 

This result demonstrates the relationship between the normalized quantities in our 

dimensionless system and provides an example of how the gravitational constant G can be 

expressed in a simple and elegant manner. The derived value of G = 1 represents the 

normalized gravitational constant in this particular scenario, allowing for further analysis and 

exploration of black hole properties within the context of our dimensionless system. 

 

r = 
𝐺𝑀

𝐶2  = 1 (our starting point) 

P = 2πr = 2π (circumference in unit π) 

 

We can now attempt to establish a relationship between r, π, and ϕ. Based on our 

assumptions. 

Since we already know that P = 2πr = 2π  

P = 2π ⋅ r = 2π ⋅ 1 = 2π 

Now, let's consider the circumference in terms of ϕ: 
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P = 4ϕM = 4ϕ 

In this equation, we see that the circumference (P) is expressed as a multiple of the 

fundamental constant ϕ, scaled by the radius (r). This alternative formulation highlights the 

role of ϕ in describing the circumference of a black hole in our dimensionless system. 

 

Upper bound for radius in Kerr Black Holes 

 

𝑟 =
𝐺𝑀

𝑐2
 

 

We already came to an understanding that r=2π/P, whereby 2π=4ϕ and P=4ϕ which leads us 

to  

𝑟 =
4ϕ

4ϕ
= 1 

 

In conclussion r = 1 and our assumptions about ϕ are correct. Φ also plays a role when it 

comes to the upper bound of the radius. 

 

Upper bound of mass 

 

𝑀 =
𝑟𝑐2

𝐺
 

 

𝑀 =

4ϕ
4ϕ × 1

1
 

 

𝑀 =
4ϕ

4ϕ
 

 

𝑀 = 1 
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Spinparameter a 

 

𝑎 =
𝐽

𝑀𝑐
 

 

We set in a=1, M=1 and c2 =1 

 

1 =
𝐽

1√1
 

 

𝐽 = 1 

 

We set J=1 into the formula and replace M=
4ϕ

4ϕ
 

 

 

𝑎 =
1

4ϕ
4ϕ √1

 

𝑎 = 1 

 

Angular momentum J 

𝐽 = 𝑎𝑀𝑐 

𝐽 =
1

4ϕ
4ϕ √1

(
4ϕ

4ϕ
) √1 

𝐽 = 1 

 

Speed of light c 

𝑐2 =
𝐺𝑀

𝑟
 

𝑐2 =
1

4ϕ
4ϕ

4ϕ
4ϕ

= 1 
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Gravitational contant G 

 

𝐺 =
𝑟𝑐2

𝑀
 

 

𝐺 =

(
4ϕ

4ϕ
)

1
4ϕ

4ϕ
4ϕ

4ϕ

4ϕ

4ϕ

= 1 

 

 

Radius r 

 

We go once more back to the formula of the radius 

 

𝑟 =
𝐺𝑀

𝑐2
 

 

Then we fill in all the parameters with ϕ 

 

𝑟 =

(
4ϕ
4ϕ

)
1

4ϕ
4ϕ

4ϕ
4ϕ

4ϕ
4ϕ

×
4ϕ
4ϕ

1
4ϕ
4ϕ

4ϕ
4ϕ

= 1 
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Starting point and formula for growth of radius 

Keep in mind that our starting point is: 

𝑟(0) =
4ϕ

4ϕ
= 1 

 

The general formula for a logarithmic or golden spiral is: 

𝑟(𝜃) =  𝑎 ∗  𝑒𝑏 ∗ 𝜃 

a is the starting radius at 𝜃 = 0 

b determines the growth rate. 

However, we must set 𝑎 = 𝑟(0) = 1 which means that for 𝜃 =  π the radius has the value 1. 

Since the radius increases by the factor 𝑒
ϕ

4  with each quarter revolution (90° or 
π

2
), b is 

determined as follows: 

𝑏 =
ϕ

2π
 

Thus, the formula for the radius along the golden spiral becomes: 

𝑟(𝜃) =  𝑒
ϕ

2π
∙𝜃

 

Now consider: In our model, we start at a special point where the radius corresponds to a half-

circle, and at this position, we have the relationship: 

𝑟 =
4ϕ

4ϕ
= 1 

This unique starting point means that the radius r(θ) is defined at θ = π, representing a half-

circle. This corresponds to two quarter revolutions and establishes a minimal radius for the 

spiral in relation to space. At this specific starting position, we have the relationship: 

𝑟(π) =  𝑒
ϕ

2π
∙2π = 1 

 

This represents the minimal radius, providing a fundamental spatial limit for the spiral. The 

radius grows logarithmically with each quarter revolution. The relationship 

 r(π) =  e
ϕ

2π
∙2π =  1 holds exclusively at the starting point, which corresponds to θ = π. This 

distinction is crucial for the interpretation and highlights the spiral's unique growth pattern 

relative to the defined minimal spatial radius. 
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Gravitational Potential along the Golden Spiral 

The gravitational potential Φ(θ) of a mass M as a function of the radius r(θ) is classically 

given by: 

Φ(θ) = −
GM

r(θ)
 

However, since we are describing the inner space of a black hole, where the gravitational 

potential does not decrease but rather increases due to the extreme segmentation and curvature 

of space, we adjust this to a positive value: 

Φ(θ) =
GM

r(θ)
 

In our model, as we move inward along the spiral toward the black hole’s core, the 

gravitational potential logically increases due to the proximity to the black hole’s mass. 

Unlike the model of the natural clock where gravitational potential decreases with increasing 

distance, our model requires an inverted spiral structure to accurately represent the 

intensifying gravitational field as one approaches the singularity. This inversion reflects the 

segmentation’s influence on spacetime, where the density of segments grows as gravitational 

forces strengthen, increasing potential. This adaptation underscores the unique nature of our 

approach, where gravitational intensity is inherently tied to the spatial segmentation defined 

by fundamental constants Pi and the golden ratio (ϕ). 

Since the radius r(θ) along the golden spiral grows exponentially, we can use the general 

formula for the radius 𝑟(𝜃) =  𝑒
ϕ

2π
∙𝜃

 , to describe the gravitational potential along the spiral 

structure. In this context, the segmentation of space, represented by ϕ, plays a crucial role in 

determining how the gravitational potential intensifies as we move deeper into the black hole. 

 

The radius increases by a factor of 𝑒
ϕ

4  with each quarter revolution (90° or 
π

2
). Substituting this 

into the potential formula, we get at the starting point (𝜃 = π, corresponding to two quarter 

revolutions): 

 

𝑟(π) =  𝑒
ϕ

2π
∙2π = 1 

Φ(π) =
GM

1
= 𝐺𝑀 

After an Additional Quarter Revolution (𝜃 = 3
π

2
 ): 

𝑟 (3
π

2
) =  𝑒

ϕ
2π

∙3
π
2

 = 𝑒
3ϕ
4

  

Φ (3
π

2
) =

GM

𝑒
3ϕ
4

 
 

After n Quarter Revolutions (𝜃 = π +
nπ

2
 ), we obtain 

𝑟 (π +
nπ

2
) =  𝑒

ϕ
4

∙𝑛 
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Φ (π +
nπ

2
) =

GM

𝑒
ϕ
4

𝑛 
 

The gravitational potential along the spiral increases rapidly with each step due to the 

harmonic structure set by ϕ segments, resulting in a distinctive, step-like pattern of potential 

growth. This implies that the gravitational potential rises very quickly as we move inward 

along the spiral, reaching extreme values near the singularity. Thus, the configuration of the 

gravitational potential in this model reflects the increasing curvature and segment density of 

spacetime on the path toward the singularity, with each segment adding to the gravitational 

intensity in discrete, harmonic steps. 

 

Equilibrium and Weightlessness at the Event Horizon 

At the event horizon of a maximally rotating black hole (a=1), a unique state of equilibrium 

emerges, where all key physical quantities - spin parameter, radius, mass, gravitational 

potential, speed of light, and angular momentum J - achieve a perfect balance. This balance 

establishes a zone of weightlessness, akin to the conditions experienced during a parabolic 

flight. Just as in a parabolic descent, where the gravitational pull and the aircraft’s trajectory 

perfectly offset each other to create a momentary state of weightlessness, the event horizon’s 

equilibrium creates a stable, weightless region in spacetime. Here, gravitational forces and the 

spin-induced centrifugal effects align precisely, resulting in a space where no net force acts on 

matter, and the spacetime curvature reaches a minimal, yet maximally stable, segment 

density. 

This weightless zone is a direct consequence of the black hole’s rotation. The high spin 

stretches spacetime into a perfect harmonic balance, allowing the event horizon to act as a 

natural boundary where gravitational forces neither increase nor decrease, but instead 

maintain a stable, weightless state. Segment density at the event horizon reaches its minimal 

possible state without further division, as no additional spatial segments are required to 

stabilize curvature. This minimal segment structure signifies the natural segmentation 

boundary of spacetime, marking the transition between the black hole's stable exterior and the 

increasingly segmented and densely curved interior leading to the singularity. 

 

While the model of the normal clock suggests that spatial segmentation arises primarily from 

gravitational forces, the analysis at the event horizon of a maximally rotating black hole 

reveals a more nuanced picture. At this boundary, the spin of the black hole plays an equally 

crucial role, balancing gravitational curvature with centrifugal forces to achieve a state of 

minimal segmentation. This equilibrium shows that segmentation in spacetime is not solely a 

product of gravity but also arises from the dynamic interplay between rotational energy and 

gravitational forces. In this balanced zone, the influence of rotation harmonizes with gravity 

to establish a stable structure where further segmentation is unnecessary. This insight expands 

our understanding of spacetime segmentation, suggesting that both gravitation and rotational 

forces coalesce to define the fundamental structure of space in extreme environments. 

This interplay explains why, despite the strong gravitational field, the event horizon remains 

minimally segmented, embodying the boundary between the stable outer spacetime and the 

highly segmented interior. 
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Minimal and Maximal Segmentation at the Event Horizon 

In our model, minimal segmentation is achieved at the event horizon, where gravitational and 

rotational forces reach an equilibrium, resulting in a balanced, stable structure. This balance 

creates a uniform space marked by minimal segment density (4ϕ), establishing a unique 

condition where additional curvature or segmentation of spacetime is unnecessary. At this 

critical boundary, gravitational forces, rotational effects, and the distribution of mass reach a 

harmony that prevents further segmentation, producing a region of high stability and minimal 

curvature variation. 

As we move inward from the event horizon, toward the black hole's core, segment density 

increases proportionally with gravitational intensity. This structure supports the idea that 

spacetime segmentation is dynamically responsive to gravitational and rotational conditions, 

transitioning smoothly from minimal segmentation at the boundary to maximal segmentation 

near the singularity. The event horizon, therefore, serves as a natural segmentation boundary 

that delineates stable, minimally curved spacetime from the highly segmented, dense 

spacetime within. 

This segmentation behavior is integral to understanding why the event horizon prevents any 

additional curvatures or singularities from becoming observable beyond this boundary. The 

balance at minimal segmentation aligns with the Cosmic Censorship Conjecture by ensuring 

that only within the confines of the event horizon does spacetime reach such extreme 

segmentation and curvature. 

 

Classic interpretations 

 
In scientific literature, the constraint on the spin parameter is often presented as a 

consequence of the cosmic censorship conjecture and the Kerr metric, but without explicitly 

referring to a direct equivalence or connection with the speed of light. 

In the theory of an extremely rotating (Kerr) black hole with a=c, spacetime itself is so highly 

warped that matter at this boundary could be interpreted as rotating at the speed of light. 

Physically, particles themselves cannot reach the speed of light, but the structure of spacetime 

drags space in such a way that at this boundary (the ergosphere), an effective light-speed 

condition is observed. 

 

So in general relativity, the Kerr solution describes a rotating black hole, that when the spin 

parameter a approaches its maximum limit (often normalized as a=1), it implies an extremal 

Kerr black hole. In this case, the region just outside the event horizon, known as the 

ergosphere, exhibits intense frame-dragging effects where spacetime itself is "twisted" by the 

rotation. Within the ergosphere, spacetime is so warped that all objects are forced to co-rotate 

with the black hole, and theoretically, the rotational velocity of spacetime at the horizon can 

approach the speed of light. 

While general relativity supports this behavior, the notion of matter moving at or near the 

speed of light at the event horizon does suggest a point at which classical theories may break 

down. 



21 
 

Frame-dragging, predicted by Einstein's theory, is most extreme near the event horizon of a 

rapidly rotating black hole. This effect essentially "drags" spacetime in the direction of the 

black hole's spin, forcing anything within the ergosphere to rotate with it. While objects 

themselves cannot reach the speed of light, the rotation of spacetime itself can create a 

condition where the effective velocity at the boundary behaves as though it reaches light 

speed. 

The maximum amount of energy that can be extracted from a black hole, a process known as 

the Penrose process, depends on the black hole's spin. A maximally rotating black hole, where 

the spin parameter a is equal to c, allows for the greatest possible extraction of energy. 

 

What our finds suggest 

Our findings indicate that the understanding of frame-dragging—the twisting of spacetime 

due to a black hole’s rotation—might need to be reconsidered. Normally, frame-dragging is 

thought to be a distortion of spacetime that makes it appear as if the black hole’s surroundings 

are being pulled close to the speed of light. However, our model suggests that spacetime itself 

may actually reach near-light-speed conditions at the event horizon. 

This could mean that the black hole’s rotation at this boundary isn’t just an optical effect but 

that the rotational effects are indeed occurring close to light speed. This insight has important 

implications for how we understand black holes and could shift our perspective on these 

objects. 

Another key point: In our model, we start with the assumption of a natural clock with an 

initial radius of 1 in a gravitationally neutral state. This could help the black hole reach near-

light speed at the event horizon, as there would be no additional gravitational load. At the 

event horizon of a maximally rotating black hole (where the spin parameter a=1), all forces 

reach a stable equilibrium, creating a region that appears weightless in spacetime. 

 

In our model, "uniform space" refers to a region of spacetime with a consistent, symmetric, 

and homogeneous structure, marked by a minimal segmentation density of 4ϕ in the absence 

of gravitational forces. This represents a perfectly balanced environment without additional 

curvature or distortion due to gravity. As gravitational forces increase, this uniformity is 

disrupted, introducing segmentation and altering the structure of spacetime. This shift reveals 

the interplay between gravity and the fundamental constants Pi and the golden ratio (ϕ) in 

shaping spacetime. 

Our findings suggest the existence of a uniform space defined by minimal segmentation (4ϕ) 

in a gravity-free context. This challenges traditional assumptions about spacetime structure, 

highlighting the role of fundamental constants in determining the universe’s properties. By 

conceptualizing a uniform space with minimal segmentation, our research offers a new 

perspective on spacetime dynamics and black hole behavior. It also provides an innovative 

framework for exploring the Cosmic Censorship Conjecture, suggesting that segmentation 

naturally limits the exposure of singularities within the fabric of spacetime. 
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Implications for the Cosmic Censorship Conjecture 

Our model inherently respects the Cosmic Censorship Conjecture by segmenting space to 

prevent excessive gravitational influence and hidden singularities. As the space segmentation 

reaches the boundary of a=1 and 𝐺 =
𝑟𝑐2

𝑀
 , the structure limits further changes, preserving a 

balanced and concealed singularity. This natural segmentation limit thus aligns with the 

conjecture’s core principles. 

 

Without gravitational influences, there is only a minimal segmentation of space, which we set 

to 4ϕ. This describes a natural, fundamental structure in space that exists without additional 

curvature or gravitational forces. 

This minimal segmentation of 4ϕ is a state of space in absolute uniformity, with no further 

curvature or distortion due to gravity. 

 

But as shown the event horizon of a maximally rotating black hole (a=1), a unique state of 

equilibrium emerges, which also leads to a minimal segmentation of 4ϕ. 

Our model therefore provides insights that support the Cosmic Censorship Conjecture, which 

posits that singularities must always remain hidden behind an event horizon, preventing 

"naked" singularities from being observed. The minimal segmentation at the event horizon 

serves as a natural boundary, where spacetime is compressed to its maximum stability while 

remaining invisible to external observers. This segmentation limit implies that the event 

horizon acts as an intrinsic "shield" that prevents the breakdown of spacetime into further 

segments beyond this point. 

In this framework, the event horizon is not an arbitrary boundary but rather a natural 

consequence of the balance between gravitational and rotational forces, which results in a 

minimal-segmented structure. This structure is so stable that it prevents any further exposure 

of the singularity, aligning with the principles of the Cosmic Censorship Conjecture. The 

interplay between gravity and rotation ensures that any extreme spacetime curvatures are 

confined within the event horizon, maintaining the singularity’s hidden nature. Thus, the 

model suggests that the event horizon inherently satisfies the conjecture by establishing a 

segmentation boundary that limits the gravitational influence, safeguarding the stability of the 

surrounding spacetime. 

Our model offers a unique framework to interpret the Cosmic Censorship Conjecture, 

suggesting that spacetime segmentation naturally prevents the exposure of singularities. The 

event horizon functions as a boundary of minimal segmentation, where spacetime reaches a 

stable, balanced state due to the interplay of gravitational forces, rotational dynamics, and 

fundamental constants. This boundary represents a natural threshold that prevents further 

segmentation or curvature from extending beyond the horizon, effectively “shielding” the 

singularity from external observers. 

By proposing that segmentation density changes with gravitational intensity, our model 

implies that extreme curvature and dense segmentation are confined within the event horizon. 

This configuration inherently aligns with the Cosmic Censorship Conjecture, as the event 

horizon serves as a segmentation limit that cannot be surpassed by external spacetime. In this 

way, any singularities formed within the black hole remain hidden, as further segmentation is 

impossible beyond this boundary. 
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This insight reveals that the event horizon is not just a gravitational boundary but a 

segmentation boundary. This natural segmentation limit inherently maintains the stability and 

integrity of spacetime outside the black hole, preventing the development of observable 

“naked” singularities. Thus, our model provides a structural explanation for the Cosmic 

Censorship Conjecture, suggesting that spacetime’s inherent segmentation properties ensure 

that singularities remain concealed within the event horizon. 

 

 

Conclussion 

Black holes are not random or chaotic objects, but rather an inevitable consequence of the 

nature of space. The structure of spacetime, as demonstrated in our model through the 

segmentation principle with ϕ and π, and the constraints at a=1 and r=1, systematically leads 

to the formation of black holes. 

Spacetime has a natural boundary that is reached at the event horizon of a black hole. This 

boundary is not arbitrary, but a direct consequence of the minimal possible segmentation and 

stability of space. When this segmentation reaches its limit, an event horizon emerges as the 

natural end of space. 

In this sense, black holes are not anomalies, but stable and necessary structures that arise from 

the segmentation of spacetime and the geometry of space itself. It's as if spacetime has a 

pattern that automatically leads to the formation of black holes when the segmentation limit is 

reached. 

Through this stable structure, our model naturally satisfies the Cosmic Censorship Conjecture. 

It is impossible for 'naked' singularities to form because space segmentation reaches a 

maximum limit at r=1, preventing further distortions or singularities. 

If our investigations and findings are correct, then we have demonstrated the existence of a 

uniform space or the realization that space is fundamentally uniform. This could 

fundamentally alter existing notions of the structure and dynamics of the spacetime 

continuum. Our discovery may lead to new insights and understanding of black hole physics, 

general relativity, and the Cosmic Censorship Conjecture. 
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