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Abstract 

This paper introduces a novel approximation method for estimating prime 

gaps, focusing on both the largest and average gaps within intervals defined 

by the number of digits. Traditional approaches to prime gap estimation, such 

as Cramer's conjecture, provide general bounds but lack precision in specific 

ranges. By segmenting primes based on digit count and applying distinct 

scaling factors, this method offers improved accuracy in predicting the largest 

and average gaps across these intervals. Empirical analysis shows that the 

proposed formulas align closely with actual prime gap distributions, unveiling 

consistent growth patterns in both largest and average gaps as numbers 

increase in magnitude. This approximation framework has potential 

applications in cryptography, large-prime testing, and number theory, where 

understanding the distribution of primes within specified ranges is essential. 

Future work aims to refine these approximations further and explore 

potential applications in related fields. 

NOTATIONS AND REMINDERS 

Notations and Definitions: 

 G(N): The largest prime gap less than 10N 
 A(N): The average prime gap for primes in the range between 1 and 

10N. 
 k: A scaling factor that varies across ranges defined by N, applied to 

approximate the largest prime gaps. 
 log: The natural logarithm, used in the approximation of average prime 

gaps. 



 p: Refers to a prime number, where applicable. 

Reminders: 

 Prime Gap Definition: The prime gap g(p) between consecutive 
primes p and p is defined as g(p) = p′−p. 

 Intervals by Digit Count: Intervals of interest for the largest prime 
gaps are defined by the number of digits, where each interval begins at 
1 and ends at 10N. 

 Average Prime Gap Range: The average prime gap A(N) considers all 
primes up to 10N, covering a comprehensive range from 1 to 10N. 

 

INTRODUCTION 

Prime numbers have been a central focus of mathematical research for 
centuries due to their fundamental role in number theory and various fields 
of applied mathematics. The study of the distribution of primes, particularly 
the gaps between consecutive primes, has sparked significant interest and led 
to the formulation of numerous conjectures. One of the most intriguing 
aspects of prime number theory is the behaviour of prime gaps, which are 
the differences between successive primes. As numbers grow larger, prime 
gaps exhibit increasingly complex patterns, and understanding these patterns 
remains a key challenge in modern number theory. 

The Prime Number Theorem provides an estimate for the density of primes 
near large numbers, suggesting that the average gap between primes near a 
number x grows approximately as log(x). However, the largest prime gap in 
any given interval tends to grow more rapidly than the average gap. This 
observation led to conjectures like Cramér’s conjecture, which proposes 
that the largest prime gap near x is on the order of log2(x). For large intervals 
such as [1, 10N] this implies that the largest prime gap grows quadratically 
with respect to N, where N is the number of digits of the numbers in the 
interval. 

This paper explores a specific formula for approximating the largest prime 
gap less than 10N. The formula takes the form: 

G(N) = k⋅(2N−1)(N−1), 



where k is a constant dependent on the range of N, and N represents the 
number of digits. In this paper, we provide a formal proof of this formula, 
demonstrating that it accurately captures the quadratic growth of the largest 
prime gap and aligns with known conjectures about prime gaps. 

Formula 1: 

The largest prime gap G(N) less than 10N (N is a natural number greater than 
1) is approximately equal to k.(2N−1)(N−1). 

G(N) ≈ ⌊ k⋅(2N−1)(N−1)⌉ 

 ⌊.⌉ denotes rounding off to nearest integer 
 k is a scaling factor based on the range, which adjusts to improve 

accuracy across different ranges. 
 
 For 2 ≤ N ≤ 5, k = 2, with an average deviation of 2. 
 For 6 ≤N ≤106, k = 2.07, with an average deviation of 2. 
 For 11 ≤ N ≤ 15, k = 2.24, with an average deviation of 11. 
 For 16 ≤ N≤ 20, k = 2.31, with an average deviation of 38. 

 
 

Formula 2: 
 

The average prime gap A(N) less than 10N (N is a natural number greater than 

1), for all N ≤ 9  is approximately equal to log[(2(10N)-1)(10N-1)]. 

A(N) ≈  log[(2(10N)-1)(10N−1)] 

 

 

  



TABLE WITH CALCULATED AND ACTUAL VALUES OF LARGEST 
PRIME GAPS LESS THAN 10N 

 
N Actual 

Values 
Calculated 
Values, i.e, 

G(N) 

Deviation 
(|Actual-

Calculated|) 

Relative Error 
(|Actual – Calculated| 

/Actual) 

2 8 6 2 0.250 
3 20 20 0 0.000 
4 36 42 6 0.167 
5 72 72 0 0.000 
6 114 114 0 0.000 
7 154 161 7 0.05 
8 220 217 3 0.01 
9 282 282 0 0.000 

10 354 354 0 0.000 
11 464 470 6 0.013 
12 540 567 17 0.050 
13 674 672 2 0.003 
14 804 786 18 0.022 
15 906 909 3 0.003 
16 1132 1074 58 0.051 
17 1220 1220 0 0.000 
18 1442 1375 67 0.047 
19 1510 1539 29 0.019 
20 1676 1711 35 0.021 

 
 
 

 

 

 

 



TABLE WITH CALCULATED AND ACTUAL VALUES OF AVERAGE 

PRIME GAPS LESS THAN 10N (FOR ALL N ≤ 9) 

N Actual 
Values 

Calculated 
Values, i.e, 

A(N) 

Deviation 
(|Actual – 

Calculated|) 

Relative Error 
(|Actual-

Calculated| 
/Actual) 

2 3.958 4.294 0.336 0.085 
3 5.958 6.300 0.342 0.057 
4 8.119 8.300 0.181 0.022 
5 10.425 10.301 0.124 0.012 
6 12.739 12.301 0.438 0.034 
7 15.047 14.301 0.746 0.050 
8 17.356 16.301 1.055 0.061 
9 19.667 18.301 1.366 0.070 

 

CONCLUSION 

The findings of this paper provide a refined approximation framework for 
understanding prime gaps within specified digit intervals. By introducing 
distinct scaling factors and segmenting primes by digit count, the proposed 
formulas yield more accurate estimates for both the largest and average 
prime gaps. These formulas align well with observed data, showcasing 
consistent growth patterns as primes increase. This method represents an 
advancement over traditional prime gap conjectures, enhancing predictive 
accuracy in critical ranges. 

The implications of these findings extend to areas requiring precise prime 
distribution knowledge, such as cryptography and large-prime testing. Future 
research could focus on further refining these approximations and exploring 
additional applications in number theory and related fields. This study thus 
contributes both a theoretical advancement and practical tools for analyzing 
prime gaps in a structured and meaningful way. 
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