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1 Introduction

The abc-conjecture, concerning some deep connections between additive and multiplicative prop-
erties of integers, is a challenging issue in Diophantine analysis. It’s proof [1], extremely long
and hard to comprehend, is not accepted by professionals in this particular field of mathematics,
therefore it’s confirmation remains controversial [2]. We offer a completely different approach to
this problem, the first step of which is successfully accomplished.

2 Background information

2.1 Radicals and abc-conjecture

The radical of a positive integer n is the product of all distinct prime factors of n. It is the largest
square-free divisor of n and therefore is sometimes defined as the square-free kernel of n. Here
we use the notification R(n) for radical function, but frequently rad(n) can be found. Thus
R(n) ≤ n. For n = 22 · 53 · 17 = 8500 we have R(8500) = 2 · 5 · 17 = 170.

Radical R(n) is a multiplicative function – for two relatively prime integers a ⊥ b we have
R(ab) = R(a) · R(b). Comparison of n and R(n) shows how far n is from being squarefree,
therefore R(n) is mostly used for analysis of multiplicative and additive properties of integers, as
in abc-conjecture.

Assume that a, b and c are pairwise relatively prime positive integers, a < b < c and a+b = c

(they are additively related). Then generally R(abc) > c, but rarely we have R(abc) < c; there
are exactly 418 such cases for c < 100000, see [3]. These special cases are called abc-triples
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(sometimes abc-hits) and abc-conjecture postulates that R(abc) is usually not much smaller than
c. More precise formulation of abc-conjecture is the following.

Definition 2.1. For every  > 0 there exist only finitely many triples (a, b, c) of coprime positive
integers satisfying a + b = c, for which

R(abc)1+ < c. (1)

Some other formulations of abc-conjecture see [4, 5], but here we restrict ourselves by finding
new sequences of abc-triples and relations revealed by them.

There are infinitely many abc-triples, because it is possible to construct infinite sequences of
them.

Example 2.2.
26 − 1 = (23 − 1)(23 + 1) = 7 · 9 = 63,

212 − 1 = (26 − 1)(26 + 1) = 63 · (26 + 1), etc.,

and (26 − 1)|(26k − 1), k = 1, 2, 3...

So a = 1, b = 26k − 1 and c = 26k. Now b = 63N, where N is natural and

R(abc) = R(1) · R(63N) · R(26k) = 1 · R(63N) · 2 ≤ 2 · R(63) · R(N).

As maximal R(N) value is R(N) = N, we have R(abc) ≤ 42N ; c = b + 1 = 63N + 1 and
R(abc) < c for all k = 1, 2, 3, ... Therefore (1, 26k − 1, 26k) for k = 1, 2, 3, ... represents an
infinite sequence of abc-triples.

Excellent tables of known abc-triples can be found at Bart de Smit’s site [3, 6]. Their analysis
led to the following

Theorem 2.3. If a, b and c are different pairwise relatively prime positive integers forming an
abc-triple a + b = c with R(abc) < c, then components b and c are not square-free.

Proof. We arrange them traditionally a < b < c.

1. Assume that b is square-free, it can be composite (product of first powers of primes). Then
R(b) = b. We need R(a) · b · R(c) < c, so R(a) and R(c) must be small. Minimal R(a) = 1 and
minimal R(c) = 2, so minimal R(abc) = 2b > c, because a < b and c = a + b.

2. Assume that c is square-free, it can be composite. Then R(c) = c. Again minimal R(a) = 1

and minimal R(b) = 2, so minimal R(abc) = 2c > c.

3. Assume that components b and c are square-free, they can be composite. Then R(b) = b

and R(c) = c. Minimal R(a) = 1 gives minimal R(abc) = b · c, but minimal R(b) = 2, so
minimal R(abc) = 2c > c. Equally, minimal R(c) = 2 gives R(abc) = 2b > c, because a < b

and c = a + b.

In all three cases we obtain contradictions, which proves the theorem.

Theorem 2.3 allows classification of abc-equations according to their components composi-
tion. Cases with b or c as perfect squares are clearly generalized Pell’s equations x2 − Dy2 = N

with positive or negative N ; if none of b or c are perfect squares we have equation ax2−by2 = N ,
whose solution also is Pell’s type (see [7]). This induced further investigation of Pell’s equations
as simple generators for abc-triples.
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2.2 Continuants, continued fractions and Pell’s equations

In our exposition we will intensively use the concept of continuants, invented by L. Euler and
rarely used today. Therefore Chapter 13 of [8] is highly recommended. Basic theory about
continued fractions and Pell’s equations can be found in many number theory textbooks, as [9,
10]. Here we only accent without proofs some well-known facts about these items.
1. For the sequence of natural numbers a0, a1, ..., an the continuant (in Muir’s notation – simple
continuant) K(a0, a1, ..., an) is defined recursively:

• K(a0) = a0, but for empty set K() = 1;

• for all n ≥ 1 we have K(a0, a1, ..., an) = an · K(a0, a1, ..., an−1) + K(a0, a1, ..., an−2).

We allow a0 = 0 for concordance with continued fractions.
2. Continuant inversion: K(a0, a1, ..., an) = K(an, ..., a1, a0).
3. Two forms of continuant splitting.

• Between two elements al and al+1:
K(a0, a1, ..., an) = K(a0, a1, ..., al) ·K(al+1, ..., an)+K(a0, a1, ..., al−1) ·K(al+2, ..., an).

• If al = al1 + al2, then we can split at position al:
K(a0, a1, ..., an) = K(a0, a1, ..., al1) ·K(al+1, ..., an) +K(a0, a1, ..., al−1) ·K(al2, ..., an).

4. From Laplace’s theorem (or from properties of continued fractions) the following can be
derived.

K(a0, a1, ..., an) · K(a1, a2, ..., an−1)− K(a0, a1, ..., an−1) · K(a1, a2, ..., an) = (−1)n−1. (2)

5. If [a0; a1, ..., an] is a finite simple continued fraction (a0, a1, ..., an are positive integers, a0 = 0

is allowed), then

[a0; a1, ..., an] =
K(a0, a1, ..., an)

K(a1, a2, ..., an)

and K(a0, a1, ..., an) ⊥ K(a1, a2, ..., an).
6. For a non-square natural number D the representation of irrational

√
D in the form of a

simple continued fraction is periodic:
√

D = [a0; a1, a2, ..., as]. Here a0 is an integer part of
√

D,
as = 2a0, but the sequence a1, a2, ..., as−1 is palindromic. The bar above a1, a2, ..., as indicate
the period. In the following we denote this palindromic component by π, so

√
D = [a0; π, 2a0].

7. We have a non-square natural number D. If the length of the palindromic sequence π for
√

D

expression is odd (and the length of the period π2a0 is even), then:

• there are not solutions for the negative Pell’s equation x2−Dy2 = −1 for this particular D

value;

• all solutions for the corresponding positive Pell’s equation x2 − Dy2 = 1 are given by

x0

y0
=

K(a0, π)

K(π)
;

x1

y1
=

K(a0, π, 2a0, π)

K(π, 2a0, π)
; etc.
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8. We have a non-square natural number D. If the length of the palindromic sequence π for
√

D

expression is even (so the length of the period π2a0 is odd), then:

• all solutions for the negative Pell’s equation x2 − Dy2 = −1 are given by

x0

y0
=

K(a0, π)

K(π)
;

x1

y1
=

K(a0, π, 2a0, π, 2a0, π)

K(π, 2a0, π, 2a0, π)
; etc.;

• all solutions for the corresponding positive Pell’s equation x2 − Dy2 = 1 are given by

x0

y0
=

K(a0, π, 2a0, π)

K(π, 2a0, π)
;

x1

y1
=

K(a0, π, 2a0, π, 2a0, π, 2a0, π)

K(π, 2a0, π, 2a0, π, 2a0, π)
; etc.

2.3 Pell’s equations and abc-triples

A lot of items in Bart de Smit’s table of 418 smallest abc-triples [3] are formed by solutions
for some Pell’s equations – fundamental or any higher roots. The very first abc-triple (1, 23, 32)

represents fundamental solution x0 = 3 and y0 = 2 for positive Pell’s equation x2 − Dy2 = 1

with discriminant D = 2. The 3rd abc-triple (1, 24 · 3, 72) gives roots x1 = 7 and y1 = 4 for
positive Pell’s equation with D = 3. Few items in [3] correspond to roots of negative Pell’s
equation, for example, abc-triple #32 or (1, 210, 52 · 41) represents fundamental roots x0 = 32

and y0 = 5 for equation x2 − 41y2 = −1. Such examples also appear among items in files of big
abc-triples [6]. As palindrome-containing continuants constitute different roots for positive (and,
if they exist, also for negative) Pell’s equation with given non-squareD, divisibility interrelations
of these continuants were investigated.

3 Divisibility interrelations of positive/negative
Pell’s equation roots

Theorem 3.1. Continuant K(π, 2a0, π  
k-times

) is a divisor of all continuants K(π, 2a0, π  
l-times

). Here

l = k + n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ....

Proof. 1. k = 0, n = 0 and K(π)|K(π) – trivially.
k = 0, n = 1 and we must compare K(π) with K(π, 2a0, π).

K(π, 2a0, π) = K(π, a0 + a0, π) = K(π, a0) · K(π) + K(π) · K(a0, π) = 2K(π) · K(a0, π),
therefore K(π)|K(π, 2a0, π).

k = 0, n = 2, we must compare K(π) and K(π, 2a0, π, 2a0, π).
K(π, 2a0, π, 2a0, π) = K(π, 2a0, π, a0) · K(π) + K(π, 2a0, π) · K(a0, π). In view of result for
k = 0, n = 1 we obtain K(π)|K(π, 2a0, π, 2a0, π). For n = 3, 4, ... we can act analogously.

2. k = 1, n = 0 and K(π, 2a0, π)|K(π, 2a0, π) – trivially.
k = 1, n = 1 and we must compare K(π, 2a0, π) with K(π, 2a0, π, 2a0, π, 2a0, π).

K(π, 2a0, π, 2a0, π, 2a0, π) = K(π, 2a0, π, a0) · K(π, 2a0, π) + K(π, 2a0, π) · K(a0, π, 2a0, π)

= 2K(a0, π, 2a0, π) · K(π, 2a0, π), therefore K(π, 2a0, π)|K(π, 2a0, π, 2a0, π, 2a0, π).
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k = 1, n = 2 and the dividend
K(π, 2a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π)

= K(π, 2a0, π, 2a0, π, 2a0, π, a0) · K(π, 2a0, π) + K(π, 2a0, π, 2a0, π, 2a0, π) · K(a0, π, 2a0, π).
As we just obtained K(π, 2a0, π)|K(π, 2a0, π, 2a0, π, 2a0, π), the necessary
K(π, 2a0, π)|K(π, 2a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π) follows.

In each case we cut off from the dividend the corresponding divisor fragment, this inductively
proves the theorem.

Theorem 3.1 suggests that each so defined continuant with the number of palindromes speci-
fied in the left section of the Table 1 is a divisor of all continuants of the same type, specified in
the right section of the Table 1.

Table 1.
Divisor Dividends (trivial cases, as 1π|1π, are omitted)
1π 2π 3π 4π 5π ...
2π 4π 6π 8π 10π ...
3π 6π 9π 12π 15π ...
4π 8π 12π 16π 20π ...
5π 10π 15π 20π 25π ...
... ... ... ... ... ...

Roots of the negative Pell’s equation x2 − Dy2 = −1 have 1, 3, 5, ... palindromic units, so
their divisibility table is the following.

Table 2.
Divisor Dividends (trivial cases, as y0|y0, are omitted)

y0 y1 y2 y3 y4 ...
y1 y4 y7 y10 y13 ...
y2 y7 y12 y17 y22 ...
y3 y10 y17 y24 y31 ...
... ... ... ... ... ...

Roots of the positive Pell’s equation x2−Dy2 = 1 have 1, 2, 3, 4, ... palindromic units, which
are π or π, 2a0, π type. This gives the following divisibility.

Table 3.
Divisor Dividends (trivial cases, as y0|y0, are omitted)

y0 y1 y2 y3 y4 ...
y1 y3 y5 y7 y9 ...
y2 y5 y8 y11 y14 ...
y3 y7 y11 y15 y19 ...
... ... ... ... ... ...
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Theorem 3.2. Continuant K(a0, π, 2a0, π  
k-times

) is a divisor of all continuants K(a0, π, 2a0, π  
l-times

). Here

l = k + 2n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ....

Proof. 1. k = 0, n = 0 and K(a0, π)|K(a0, π) – trivially.
k = 0, n = 1 and we must compare K(a0, π) with K(a0, π, 2a0, π, 2a0, π).

K(a0, π, 2a0, π, 2a0, π) = K(a0, π, 2a0, π, a0) · K(π) + K(a0, π, 2a0, π) · K(a0, π)

= [K(a0, π, a0) · K(π, a0) + K(a0, π) · K(a0, π, a0)] · K(π) + K(a0, π, 2a0, π) · K(a0, π)

= K(a0, π)·[2K(π)·K(a0, π, a0)+K(a0, π, 2a0, π)], therefore K(a0, π)|K(a0, π, 2a0, π, 2a0, π).
k = 0, n = 2 and the dividend K(a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π)

= K(a0, π, 2a0, π, 2a0, π, 2a0, π, a0) · K(π) + K(a0, π, 2a0, π, 2a0, π, 2a0, π) · K(a0, π)

= K(a0, π, 2a0, π, 2a0, π, 2a0, π) · K(a0, π) + K(π) · [K(a0, π, 2a0, π, 2a0, π) · K(a0, π, a0)

+K((a0, π, 2a0, π, 2a0, π, a0) · K(a0, π)]. For k = 0, n = 1 we just obtained
K(a0, π)|K(a0, π, 2a0, π, 2a0, π), therefore the first summand in square brackets divides by
K(a0, π) and we obtain necessary K(a0, π)|K(a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π).

2. k = 1, n = 0 and K(a0, π, 2a0, π)|K(a0, π, 2a0, π) – trivially.
k = 1, n = 1 and the dividend K(a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π)

= K(a0, π, 2a0, π, 2a0, π, 2a0, π, a0) · K(π, 2a0, π)

+K(a0, π, 2a0, π, 2a0, π, 2a0, π) · K(a0, π, 2a0, π). The first summand gives
K(π, 2a0, π) · [K(a0, π, 2a0, π) ·K(a0, π, 2a0, π, a0) +K(a0, π, 2a0, π, a0) ·K(a0, π, 2a0, π)], so
it is divisible by K(a0, π, 2a0, π). Therefore we get
K(a0, π, 2a0, π)|K(a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π).

Remark. It seems useful in continuant expressions to label longer repeating π, 2a0, ..., π se-
quences accordingly to their number of π units. Thus sequence a0, π, 2a0, π can be labelled as
a0, 2π, sequence with four palindromes π, 2a0, π, 2a0, π, 2a0, π can be labelled as 4π. For in-
stance, K(a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π, 2a0, π) can be shortened to K(a0, 6π).

k = 1, n = 2 and the dividend
K(a0, 10π) = K(a0, 8π, a0)·K(π, 2a0, π)+K(a0, 8π)·K(a0, π, 2a0, π). The first summand gives
K(π, 2a0, π) · [K(a0, π, 2a0, π) ·K(a0, 6π, a0)+K(a0, π, 2a0, π, a0) ·K(a0, 6π)] and we already
know that K(a0, π, 2a0, π)|K(a0, 6π). So both summands are divisble by K(a0, π, 2a0, π) and
we get the necessary K(a0, π, 2a0, π)|K(a0, 10π).

Uniform splitting inductively proves the theorem.

Theorem 3.2 establishes the following divisibility rule for the specified continuants.

Table 4.
Divisor Dividends (trivial cases, as 1π|1π, are omitted)
1π 3π 5π 7π 9π ...
2π 6π 10π 14π 18π ...
3π 9π 15π 21π 27π ...
4π 12π 20π 28π 36π ...
5π 15π 25π 35π 45π ...
... ... ... ... ... ...
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For roots of the negative Pell’s equation x2 − Dy2 = −1 this gives the following divisibility.

Table 5.
Divisor Dividends (trivial cases, as x0|x0, are omitted)

x0 x1 x2 x3 x4 ...
x1 x4 x7 x10 x13 ...
x2 x7 x12 x17 x22 ...
x3 x10 x17 x24 x31 ...
... ... ... ... ... ...

For roots of the positive Pell’s equation x2 − Dy2 = 1 divisibility table is the following.

Table 6.
Divisor Dividends (trivial cases, as x0|x0, are omitted)

x0 x2 x4 x6 x8 ...
x1 x5 x9 x13 x17 ...
x2 x8 x14 x20 x26 ...
x3 x11 x19 x27 x35 ...
... ... ... ... ... ...

Theorem 3.3. Continuant K(a0, π, 2a0, π  
k-times

) is a divisor of all continuants K(π, 2a0, π  
l-times

). Here

l = 2k + 1 + 2n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ....

Proof. 1. k = 0, n = 0 and we must compare K(a0, π) with K(π, 2a0, π).
K(π, 2a0, π) = K(π, a0) · K(π) + K(π) · K(a0, π) = 2K(π) · K(a0, π), therefore
K(a0, π)|K(π, 2a0, π) – this was in Theorem 3.1.

k = 0, n = 1 and we must compare K(a0, π) with K(4π).
K(4π) = K(3π) · K(a0, π) + K(a0, 3π) · K(π). As K(a0, π)|K(a0, 3π), which was shown for
k = 0, n = 1 in Theorem 3.2, this confirms divisibility K(a0, π)|K(4π).

k = 0, n = 2 and the dividend K(6π) = K(5π) · K(a0, π) + K(a0, 5π) · K(π).
As K(a0, π)|K(a0, 5π), which was shown for k = 0, n = 2 in Theorem 3.2, this confirms
divisibility K(a0, π)|K(6π).

2. k = 1, n = 0 and we must compare K(a0, π, 2a0, π) with K(4π).
As K(4π) = 2K(π, 2a0, π) · K(a0, π, 2a0, π), this confirms K(a0, π, 2a0, π)|K(4π).

k = 1, n = 1. Now the dividend K(8π) = K(a0, 6π)·K(π, 2a0, π)+K(6π)·K(a0, π, 2a0, π).
The divisibility K(a0, π, 2a0, π)|K(a0, 6π) was shown at k = 1, n = 1 in Theorem 3.2, therefore
K(a0, π, 2a0, π)|K(8π).

The long expressions for k = 1, n = 2 are left for reader.
In total, this inductively confirms the theorem.

Theorem 3.3 establishes the following divisibility rule for the specified continuants.
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Table 7.
Divisor Dividends
1π 2π 4π 6π 8π ...
2π 4π 8π 12π 16π ...
3π 6π 12π 18π 24π ...
4π 8π 16π 24π 32π ...
5π 10π 20π 30π 40π ...
... ... ... ... ... ...

Roots of the negative Pell’s equation x2 − Dy2 = −1 have 1, 3, 5, ... palindromic units, so
divisibility of the type xi|yj do not exist for them.

For roots of the positive Pell’s equation x2 − Dy2 = 1 the following divisibility table exists.

Table 8.
Divisor Dividends

x0 y1 y3 y5 y7 ...
x1 y3 y7 y11 y15 ...
x2 y5 y11 y17 y23 ...
x3 y7 y15 y23 y31 ...
... ... ... ... ... ...

From π|π divisibility tables (Tables 1, 4 and 7) also more complex situations can be analyzed,
where any roots of positive Pell’s equation become divisors of any higher roots of the correspond-
ing negative Pell’s equation (with the same D value) and vice versa, but they are not the subject
of given article.

4 More about continuants and Pell’s equations

1. For Equation (2) with an = a0 and palindromic a1, a2, ..., an−1 = π we have

K(a0, π, a0) · K(π)− K2(a0, π) = (−1)n−1. (3)

Here n − 1 is the length of π, so for odd length palindrome we obtain positive Pell’s equation

K2(a0, π)−
K(a0, π, a0)

K(π)
· K2(π) = 1. (4)

Even length palindrome π gives negative Pell’s equation

K2(a0, π)−
K(a0, π, a0)

K(π)
· K2(π) = −1. (5)

Thus this main watershed is established by determinant properties (and continuants are special
form of determinants, see [8]).

If we substitute odd length π by longer chains (π, 2a0, π), (π, 2a0, π, 2a0, π), etc., these items
also have odd length and they produce higher roots of positive Pell’s equation. For even length
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π we obtain alternation between roots of negative Pell’s equation y1 = K(π, 2a0, π, 2a0, π),
y2 = K(π, 2a0, π, 2a0, π, 2a0, π, 2a0, π), etc. (all these items have even length), and roots of
positive Pell’s equation y1 = K(π, 2a0, π), y2 = K(π, 2a0, π, 2a0, π, 2a0, π), etc. (and these
items have odd length).

Relation

D =
K(a0, π, a0)

K(π)
=

K(a0, π, 2a0, π, a0)

K(π, 2a0, π)
=

K(a0, π, 2a0, π, 2a0, π, a0)

K(π, 2a0, π, 2a0, π)
= ... = const (6)

for given particular π. If this π has odd length, we can write it from Equation (4) in the following
form.

D =
K2(a0, π)− 1

K2(π)
=

K2(a0, 2π)− 1

K2(2π)
=

K2(a0, 3π)− 1

K2(3π)
=

K2(a0, 4π)− 1

K2(4π)
= ... = const.

(7)
For even length π we must alternatively use Equations (4) and (5), so obtaining expression with
alternating signs.

D =
K2(a0, π) + 1

K2(π)
=

K2(a0, 2π)− 1

K2(2π)
=

K2(a0, 3π) + 1

K2(3π)
=

K2(a0, 4π)− 1

K2(4π)
= ... = const.

(8)
2. Now we consider relation

D =
K2(a0, nπ)− 1

K2(nπ)
=

[K(a0, nπ)− 1] · [K(a0, nπ) + 1]

K2(nπ)
.

It’s denominator is square, but the numerator is formed from the first and the third of three con-
secutive natural numbers, therefore these numbers:

• either are coprime (and K(a0, nπ) is even), but then their product is not natural square;

• or their single common divisor is 2. But, as they differ by 2, their product K2(a0, nπ) − 1

cannot have prime divisor 2 in even power.

Thus this relation cannot be rational square (or – integral square).
3. For an odd length palindrome π the following binomial expression takes place.

K(a0, nπ) +
√

D · K(nπ) = [K(a0, π) +
√

D · K(π)]n =
n

i=0


n

i


Kn−i(a0, π) · [

√
D · K(π)]i.

Here D =
K2(a0, nπ)− 1

K2(nπ)
= const, n = 1, 2, 3...

We express separately

K(a0, nπ) = Kn(a0, π) +

i=1


n

2i


Kn−2i(a0, π) · Di · K2i(π);

K(nπ) =

i=1


n

2i − 1


Kn−2i+1(a0, π) · Di−1 · K2i−1(π).

9



For n = 3, 5 and 7 we have the following values.

K(a0, 3π) = K(a0, π) · [K2(a0, π) + 3D · K2(π)];

K(3π) = K(π) · [3K2(a0, π) + D · K2(π)].

K(a0, 5π) = K(a0, π) · [K4(a0, π) + 10K2(a0, π) · D · K2(π) + 5D2 · K4(π)];

K(5π) = Kπ) · [5K4(a0, π) + 10K2(a0, π) · D · K2(π) + D2 · K4(π)].

K(a0, 7π) = K(a0, π)·[K6(a0, π)+21K4(a0, π)·D·K2(π)+35K2(a0, π)·D2·K4(π)+7D3·K6(π)];

K7π) = K(π) · [7K6(a0, π)+35K4(a0, π) ·D ·K2(π)+21K2(a0, π) ·D2 ·K4(π)+D3 ·K6(π)].

A lot of corollaries can be made here, we show only few:

• if n is an odd prime p, p|D, but p  K(π), then p|K(pπ);

• if n is an odd prime p, pD and pK(π), then p2K(pπ).

5 Two basic theorems

Experimental calculations revealed that abc-triples (1, Dy2
i , x

2
i ) and (1, x2

j , Dy2
j ) arise according

to some rules between root pairs of positive/negative Pell’s equations.

Theorem 5.1. Now π is an odd length palindromic unit. If roots of positive Pell’s equation
(xi, yi), obtained from simple continued fraction [a0; π, 2a0, π  

k-times

] constitute an abc-triple (1, Dy2
i , x

2
i ),

then abc-triples (1, Dy2
j , x

2
j) are formed by all roots (xj, yj), obtained from simple continued frac-

tions [a0; π, 2a0, π  
l-times

]. Here l = k + n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ...

Proof. 1. k = 0, n = 0. Now [a0; π] =
K(a0, π)

K(π)
and abc-equation a + b = c is positive Pell’s

equation
1 + [K2(a0, π)− 1] = K2(a0, π).

If fundamental roots of this equation give an abc-triple, then

R[(K2(a0, π)− 1) · K2(a0, π)] < K2(a0, π).

Numbers in square brackets are coprime, therefore

R[K2(a0, π)− 1] · R[K2(a0, π)] < K2(a0, π) (9)

– this is our point of departure.

Remark. While from radical properties R[K2(a0, π)] ≤ K(a0, π), these initial conditions do not
mean R[K2(a0, π) − 1] < K(a0, π), significant is the product of two radicals in the left side of
(9). Thus, for the positive Pell’s equation with D = 5 we have x0 = 9 and y0 = 4, which gives

R[K2(a0, π)− 1] = 10 > K(a0, π) = 9.

Here R(abc) = 30 < 81 = x2
0, so (1, 80, 81) is an abc-triple.
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2. Now we pick n = 1 and must justify an inequality

R[K2(a0, π, 2a0, π)− 1] · R[K2(a0, π, 2a0, π)] < K2(a0, π, 2a0, π). (10)

From radical properties

R[K2(a0, π, 2a0, π)] ≤ K(a0, π, 2a0, π). (11)

In view of Equation (3) for π odd length K(a0, π, 2a0, π) = 2K2(a0, π)− 1, so

K2(a0, π, 2a0, π)− 1 = 4K4(a0, π)− 4K2(a0, π) + 1− 1 = 4K2(a0, π) · [K2(a0, π)− 1].

As numbers K2(a0, π) and K2(a0, π) − 1 are consecutive, we can ignore 4 as factor in radical
calculations and

R[K2(a0, π, 2a0, π)− 1] = R[K2(a0, π)] · R[K2(a0, π)− 1]

< K2(a0, π) ≤ 2K2(a0, π)− 1 = K(a0, π, 2a0, π).

By multiplying this inequality with (11) we get the necessary justification of Inequality (10).
The proof is analogous for all continuants with even number of palindromic units, because it

depends on properties of halved continuants K(a0, nπ, 2a0, nπ) = 2K2(a0, nπ)− 1.
3. So we must justify Theorem 5.1 for continuants with an odd number of palindromic units and
the simplest case is k = 0 and n = 2 – three palindromic units or 3π. From Eq. (4) and (6):

K2(a0, 3π)− 1

K2(a0, π)− 1
=

K2(3π)

K2(π)
= A2

and
K2(a0, 3π)

K2(a0, π)
= B2.

A and B are natural numbers (see Theorems 3.1 and 3.2).

R(B2) ≤ B or R[
K2(a0, 3π)

K2(a0, π)
] ≤ K(a0, 3π)

K(a0, π)
; (12)

R(A2) ≤ A or R[
K2(a0, 3π)− 1

K2(a0, π)− 1
] ≤ K(3π)

K(π)
; (13)

and our point of departure is Equation (9) or

R[K2(a0, π)− 1] · R[K2(a0, π)] < K(a0, π) · K(a0, π). (14)

In the left side of (14) there is a product of two coprime radicals, so the right side of (14) is also
splitted in two factors. As R[K2(a0, π)] ≤ K(a0, π), the maximal value for one of these factors
in the right side of (14) is K(a0, π). But, for inequality (14) to be satisfied, the maximal value of
the other factor, derived from R[K2(a0, π)− 1], cannot exceed K(a0, π)− 1, because this is the
greatest natural number coprime to K(a0, π) and not exceeding it. Therefore:

R[K2(a0, π)− 1] · R[K2(a0, π)] ≤ K(a0, π) · [K(a0, π)− 1]. (15)
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We multiply (12), (13) and (15):

R[K2(a0, 3π)− 1] · R[K2(a0, 3π)] ≤ K(a0, 3π) · [K(a0, π)− 1] · K(3π)

K(π)
. (16)

Now we compare [K(a0, π)−1] · K(3π)

K(π)
and K(a0, 3π). Both are natural numbers, so square

them. We have:

[K(a0, π)− 1]2 · K2(a0, 3π)− 1

K2(a0, π)− 1
and K2(a0, 3π);

K(a0, π)− 1

K(a0, π) + 1  
<1

· [K2(a0, 3π)− 1]  
<K2(a0,3π)

and K2(a0, 3π).

So sign < can be used and from (16) we get the necessary:

R[K2(a0, 3π)− 1] · R[K2(a0, 3π)] < K(a0, 3π) · K(a0, 3π) = K2(a0, 3π). (17)

All cases with an odd number of palindromic units can be treated analogously. So the theorem is
confirmed for k = 0 and all n values – with even and odd numbers of palindromic units.

For higher k values we denote unit π, 2a0, π as π. Since π is an odd length palindrome, the
proof reduces to discussed cases. This completes the proof of Theorem 5.1.

Theorem 5.2. Now π is an even length palindromic unit. If roots of positive or negative Pell’s
equation (xi, yi), obtained from simple continued fraction [a0; π, 2a0, π  

k-times

] produce an abc-triple,

then abc-triples are produced by all roots (xj, yj), obtained from simple continued fractions
[a0; π, 2a0, π  

l-times

]. Here l = k + n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ...

Proof. 1. This time π is an even length palindromic unit, which gives the following set of abc-
equations (observe alternation).

1 + K2(a0, π) = [K2(a0, π) + 1].

1 + [K2(a0, 2π)− 1] = K2(a0, 2π).

1 + K2(a0, 3π) = [K2(a0, 3π) + 1].

1 + [K2(a0, 4π)− 1] = K2(a0, 4π).

In Theorem 5.2 we deliberately do not indicate composition of abc-triples, because it depends on
the number of involved palindromes. If solution with one π unit is an abc-triple, then

R[K2(a0, π)] · R[K2(a0, π) + 1] < K2(a0, π) + 1.

2. We elongate sequence to 2π, so objects for comparison are

R[K2(a0, 2π)] · R[K2(a0, 2π)− 1] and K2(a0, 2π). (18)

From radical properties:
R[K2(a0, 2π)] ≤ K(a0, 2π). (19)
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K(a0, 2π) = K(a0, π, a0) · K(π)  
=K2(a0,π)+1

+K2(a0, π) = 2K2(a0, π) + 1.

Then K2(a0, 2π) − 1 = 4K2(a0, π) · [K2(a0, π) + 1] and factor 4 can be ignored in radical
calculations. We have:

R[K2(a0, 2π)−1] = R[K2(a0, π)]·R[K2(a0, π)+1] < K2(a0, π)+1 < 2K2(a0, π)+1 = K(a0, 2π).

By multiplying this with (19) we obtain necessary:

R[K2(a0, 2π)] · R[K2(a0, 2π)− 1] < K2(a0, 2π). (20)

Again – there will be analogous proof for all continuants with an even number of palindromic
units due to splitting (for π even length)

K(a0, nπ, 2a0, nπ) = 2K2(a0, nπ) + 1.

3. We elongate sequence to 3π, so objects for comparison are:

R[K2(a0, 3π)] · R[K2(a0, 3π) + 1] and K2(a0, 3π) + 1.

K2(a0, 3π) + 1

K2(a0, π) + 1
=

K2(3π)

K2(π)
= A2

and
K2(a0, 3π)

K2(a0, π)
= B2.

A and B are natural numbers (see Theorems 3.1 and 3.2).

R(B2) ≤ B or R[
K2(a0, 3π)

K2(a0, π)
] ≤ K(a0, 3π)

K(a0, π)
. (21)

R(A2) ≤ A or R[
K2(a0, 3π) + 1

K2(a0, π) + 1
] ≤ K(3π)

K(π)
. (22)

R[K2(a0, π) + 1] · R[K2(a0, π)] < K2(a0, π) + 1, (23)

or R[K2(a0, π) + 1] · R[K2(a0, π)] ≤ K2(a0, π). (24)

The product of two coprime radicals in the left side of (24) cannot be a square, therefore sign ≤
is changed again:

R[K2(a0, π) + 1] · R[K2(a0, π)] < K2(a0, π) = K(a0, π) · K(a0, π). (25)

Reasoning, analogous to Theorem 5.1, gives:

R[K2(a0, π) + 1] · R[K2(a0, π)] ≤ K(a0, π) · [K(a0, π)− 1]. (26)

We multiply (21), (22) and (26):

R[K2(a0, 3π) + 1] · R[K2(a0, 3π)] ≤ K(a0, 3π) · [K(a0, π)− 1] · K(3π)

K(π)
. (27)
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Now we compare

[K(a0, π)− 1] · K(3π)

K(π)
and K(a0, 3π).

Both are natural numbers, so square them. We have:

[K2(a0, π) + 1− 2K(a0, π)] ·
K2(a0, 3π) + 1

K2(a0, π) + 1
and K2(a0, 3π);

[1− 2K(a0, π)

K2(a0, π) + 1
]

  
<1

·[K2(a0, 3π) + 1] and K2(a0, 3π).

Clearly ≤ sign must be used:

[K(a0, π)− 1] · K(3π)

K(π)
≤ K(a0, 3π).

Now we obtain from (27) the necessary:

R[K2(a0, 3π) + 1] · R[K2(a0, 3π)] ≤ K2(a0, 3π) < [K2(a0, 3π) + 1]. (28)

Similar reasoning confirms the same rule in all other cases with odd number of π units. In terms
of Theorem 5.2 this covers situation k = 0 and all n values, but with even length palindrome
π. For greater k values substitution of longer π, 2a0, ..., π chains by π gives odd or even length
palindromes π, whose behaviour is previously analysed. This completes the proof of theorem.

Of course, both Theorems 5.1 and 5.2 can be combined in one, omitting the accent on the π

length parity, but then the proof will be less clear.
Theorems 5.1 and 5.2 suggest that each primary abc-triple with the number of palindromes

specified in the left column of the Table 9 induces an infinite sequence of secondary abc-triples,
specified in the right columns of the Table 9.

Table 9.
Primary Secondary

1π 2π 3π 4π 5π ...
2π 4π 6π 8π 10π ...
3π 6π 9π 12π 15π ...
4π 8π 12π 16π 20π ...
5π 10π 15π 20π 25π ...
... ... ... ... ... ...

If fundamental roots of positive or negative Pell’s equation for given specified D value produce
an abc-triple, then all higher roots for this D also produce abc-triples. The sequence of such D

values for positive Pell’s equation is the following:

D = 2, 5, 7, 8, 12, 13, 14, 18, 20, 21, 27, 28, 29, 31, 32, 39, ....
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From them, the following are of type K(a0, π), K(π):

D = 7, 8, 12, 14, 18, 20, 21, 27, 28, 31, 32, 39, 45, 46, 47, 48, ...,

but the following are of type K(a0, π, 2a0, π), K(π, 2a0, π):

D = 2, 5, 13, 29, 41, 50, 53, 73, 74, 85, 89, 109, 113, 122, ....

The corresponding sequence of such D values for negative Pell’s equation is the following:

D = 41, 73, 89, 109, 125, 250, 338, 457, 610, 634, 761, 778, ....

Here all fundamental roots are of K(a0, π), K(π) type. Of course, all roots of positive Pell’s
equation for these D values produce abc-triples.

The following experimental Table 10 illustrates emerging of abc-triples from higher roots of
positive/negative Pell’s equations with specified number of palindromes (T means ”True” – we
get an abc-triple; F means ”False”).

Table 10.
Number of π units

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 F T F T F T T T F T F T F T T T F T F T
3 F T T T F T F T T T F T F T T T F T F T
5 F T F T T T F T F T F T F T T T F T F T
6 F T T T T T F T T T F T F T T T F T F T
10 F F F T T T F T T T F T F F T T F T T T
11 F F F T T T F T T T T T F F T T F T F T
13 F T T T T T F T T T F T T T T T F T F T
15 F T T T T T F T T T F T F T T T F T F T
17 F F F T F T F T F F F T F F T T T T F T
19 F F F F T T F T T T F T T T T T T T T T
22 F F T T F T T T T F T T F T T T F T F T
23 F T T T T T F T T T F T F T T T F T F T

Characteristic and easily understandable are columns of ”False” at 13π, 17π and 19π (here only
primary abc-triples can emerge), as well as columns of ”True” at 15π, 16π, 18π, 20π. For D = 17

here is a longer experimental sequence (Table 11), limited by my laptop’s performance.

Table 11.
Number of π units

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 F F F T F T F T F F F T F F T T

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T T F T F T F T F F F T F T F T

33 34 35 36 37 38 39 40 41 42 43 44 45 46
F T F T F F T T F T F T T F
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In Table 11 for D = 17 we see the first appearance of abc-triple at 4π. This primary abc-triple
gives further secondary abc-triples at 8π, 12π, 16π, 20π, 24π, 28π, 32π, 36π, 40π and 44π. The
next primary at 6π gives secondary triples at 12π, 18π, 24π, 30π, 36π, 42π; secondary triples
from different primary sources can overlap. The next primary is at 15π, it gives secondary triples
at 30π and 45π. Then primary at 17π gives secondary at 34π; primary at 22π gives secondary at
44π, remains one primary at 39π.

6 Generalized Pell’s equation

Classical theory of the Diophantine equation

m2 − Dn2 = N (29)

with N = ±1 tells us the following.

• Every solution m + n ·
√

D of the Equation (29) can generate associated solutions of it,
which are of the form

(m + n ·
√

D) · (x + y ·
√

D) = m · x + n · y · D  
other m value

+(m · y + n · x)  
other n value

·
√

D. (30)

Here x+y ·
√

D is any solution of the corresponding positive Pell’s equation x2−Dy2 = 1

or Pell’s resolvent. There exists a solution associativity criterion and the set of all such
associated solutions is called a class. As there are infinitely many solutions of Pell’s resol-
vent, every such class contains an infinity of solutions to Equation (29), among them the
fundamental one m0 + n0 ·

√
D is defined. For one particular pair of D and N values there

can be zero, one or more solution classes, characterized by their fundamental solutions.

• If one given class C consists of the solutions mi + ni ·
√

D, i = 1, 2, 3, ... to Equation (29),
the solutions mi − ni ·

√
D, i = 1, 2, 3, ... also satisfy Equation (29) and constitute a class

C , which is conjugate of C.

• Generally speaking, conjugate classes are distinct. If classes C and C  coincide, they are
called ambiguous and they have a common ambiguous fundamental solution.

Useful online tools for finding fundamental solutions of Equation (29) are [11].

Example 6.1. For D = 7 and N = 2, ..., 30 we have the following fundamental solutions to
Equation (29).

Table 12. Equation m2 − 7n2 = N .
N Fundamental solutions m0/n0 N Fundamental solutions m0/n0

2 3/1 ambiguous 18 9/3 ambiguous; 5/1; -5/1
4 2/0 ambiguous 21 7/2; -7/2
8 6/2 ambiguous 25 5/0 ambiguous
9 3/0 ambiguous; 4/1; -4/1 29 6/1; -6/1

16 4/0 ambiguous ...
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Remark. As our final objective is abc-equation with pairwise coprime components, we deliber-
ately discard non-corresponding solutions of Equation (29). Remaining ones from Table 12 are
shown in Table 13.

Table 13. Equation m2 − 7n2 = N .
N Fundamental solutions m0/n0

2 3/1 ambiguous
9 4/1; -4/1

18 5/1; -5/1
29 6/1; -6/1

If we can find fundamental values m0 = K(ρ, ω) and n0 = K(ω), which satisfy an equation

m2
0 − Dn2

0 = N or K2(ρ, ω)− K2(a0, π)− 1

K2(π)
· K2(ω) = N (31)

with integral N = ±1, then we can find infinitely many positive solutions of Equation (29), each
times elongating continuant sequences from the left side in the following way for π odd length:

m0

n0

=
K(ρ, ω)

K(ω)
;

m1

n1

=
K(a0, π, a0 + ρ, ω)

K(π, a0 + ρ, ω)
;

m2

n2

=
K(a0, π, 2a0, π, a0 + ρ, ω)

K(π, 2a0, π, a0 + ρ, ω)
; etc.

For π even length an increment contains two π units:

m0

n0

=
K(ρ, ω)

K(ω)
;

m1

n1

=
K(a0, π, 2a0, π, a0 + ρ, ω)

K(π, 2a0, π, a0 + ρ, ω)
; etc.

Here ρ is zero or positive integer, but ω is an empty set or a sequence of one or more positive
integers.

We split m1 and n1 for π odd length:

m1 = K(a0, π, a0 + ρ, ω) = K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω)

= K(a0, π) · K(ρ, ω) + K(π) · K(ω) · D; (32)

n1 = K(π, a0 + ρ, ω) = K(π) · K(ρ, ω) + K(a0, π) · K(ω). (33)

The result agrees with an Equation (30).

Example 6.2. D = 21, N = 4.K(ρ, ω) = K(4, 1) = 5, K(ω) = K(1) = 1.

m1

n1

=
K(4, 1, 1, 2, 1, 1 , 4 + 4, 1)

K( 1, 1, 2, 1, 1 , 4 + 4, 1)
;

m2

n2

=
K(4, 1, 1, 2, 1, 1 , 8, 1, 1, 2, 1, 1 , 4 + 4, 1)

K( 1, 1, 2, 1, 1 , 8, 1, 1, 2, 1, 1 , 4 + 4, 1)
.

An odd length π unit 1, 1, 2, 1, 1 is highlighted in the box. As K() = 1 = K(1), the value of ω

in such cases is ambiguous and in calculations m1 = K(1, 1, 2, 1, 1, 8, 1) = K(1, 1, 2, 1, 1, 9) –
similarly to simple continued fractions. All higher roots also will end by 2, 1, 1, 9.
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Example 6.3. D = 13, N = 4.K(ρ, ω) = K(3, 1, 2) = 11, K(ω) = K(1, 2) = 3.

m1

n1

=
K(3, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2)

K( 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2)
;

m2

n2

=
K(3, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2)

K( 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2)
.

An even length π unit 1, 1, 1, 1 is highlighted in the box.

Example 6.4. D = 5, N = 4.K(ρ, ω) = K(2, 1) = 3, K(ω) = K(1) = 1.

m1

n1

=
K(2,, 4,, 2 + 2, 1)

K(, 4,, 2 + 2, 1)
;

m2

n2

=
K(2,, 4,, 4,, 4,, 2 + 2, 1)

K(, 4,, 4,, 4,, 2 + 2, 1)
.

Empty set  is an even length palindrome π. Again ω value ambiguity is present.
In calculations these empty sets do not show up and m1 = K(2, 4, 4, 1) = K(2, 4, 5) = 47;
n1 = K(4, 4, 1) = K(4, 5) = 21; 472 − 5 · 212 = 4.

Example 6.5. D = 2, N = −343.K(ρ, ω) = K(0, 1, 4, 3) = 13, K(ω) = K(1, 4, 3) = 16.

m1

n1

=
K(1,, 2,, 1 + 0, 1, 4, 3)

K(, 2,, 1 + 0, 1, 4, 3)
;

m2

n2

=
K(1,, 2,, 2,, 2,, 1 + 0, 1, 4, 3)

K(, 2,, 2,, 2,, 1 + 0, 1, 4, 3)
.

Empty set  is an even length palindrome π. If ρ = 0, K(ρ, ω) < K(ω). All higher roots for this
example in continuant form will have a long sequence of two’s, ending by 1, 1, 4, 3.

Higher solutions of the negative branch or conjugate class C  are products of ±(m0−n0 ·
√

D)

with higher roots of Pell’s resolvent [K(a0, π)+
√

D·K(π)]n (to avoid long and clumsy continuant
expressions we restrict our exposition with odd length π units):

m
1 = ±m0 · K(a0, π)∓ n0 · D · K(π); (34)

n
1 = ±m0 · K(π)∓ n0 · K(a0, π); (35)

m
2 = ±m0 · K(a0, π, 2a0, π)∓ n0 · D · K(π, 2a0, π); (36)

n
2 = ±m0 · K(π, 2a0, π)∓ n0 · K(a0, π, 2a0, π). (37)

From Equation (36):

m
2 = ±m0 · [K(a0, π) · K(a0, π) + K(a0, π, a0) · K(π)  

=D·K2(π)

]∓ n0 · D · 2K(π) · K(a0, π)

= K(a0, π) · [±m0 · K(a0, π)∓ n0 · D · K(π)] + D · K(π) · [±m0 · K(π)∓ n0 · K(a0, π)]

= K(a0, π) · m
1 + D · K(π) · n

1.
(38)

From Equation (37):

n
2 = ±m0 · 2K(π) · K(a0, π)∓ n0 · [K2(a0, π) + D · K2(π)]

= K(π) · [±m0 · K(a0, π)∓ n0 · D · K(π)]± m0 · K(a0, π) · K(π)∓ n0 · K2(a0, π)

= K(π) · m
1 + K(a0, π) · n

1.
(39)
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Comparing Equations (38) and (39) with previously obtained m1 and n1 (Equations (32) and
(33)), we see that m

1 and n
1 are analogues to K(ρ, ω) and K(ω) values. Therefore functional

mechanism in both conjugated classes C and C  is the same. We illustrate this by conjugates to
Examples 6.2 – 6.5.

Example 6.6. D = 21, N = 4. We use m
1 and n

1 as analogues to K(ρ, ω) and K(ω).

m
1

n
1

=
K(4, 1, 1, 1, 1)

K(1, 1, 1, 1)
;

m
2

n
2

=
K(4, 1, 1, 2, 1, 1 , 4 + 4, 1, 1, 1, 1)

K( 1, 1, 2, 1, 1 , 4 + 4, 1, 1, 1, 1)
.

Again an odd length π unit 1, 1, 2, 1, 1 is highlighted in the box. All higher roots for this example
in continuant form will end by 8, 1, 1, 2.

Example 6.7. D = 13, N = 4. We use m
1 and n

1 as analogues to K(ρ, ω) and K(ω).

m
1

n
1

=
K(3, 1, 1, 1, 1, 6)

K(1, 1, 1, 1, 6)
;

m
2

n
2

=
K(3, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 1, 1, 1, 6)

K( 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 1, 1, 1, 6)
.

For even length π unit two of these units are necessary.

Example 6.8. D = 5, N = 4. We use m
1 and n

1 as analogues to K(ρ, ω) and K(ω).

m
1

n
1

=
K(2, 3)

K(3)
;

m
2

n
2

=
K(2,, 4,, 2 + 2, 3)

K(, 4,, 2 + 2, 3)
.

Empty set  is an even length palindrome π.

Example 6.9. D = 2, N = −343. We use m
1 and n

1 as analogues to K(ρ, ω) and K(ω).

m
1

n
1

=
K(1, 7, 3)

K(7, 3)
;

m
2

n
2

=
K(1,, 2,, 1 + 1, 7, 3)

K(, 2,, 1 + 1, 7, 3)
.

Empty set  is an even length palindrome π. All higher roots for this example in continuant form
will have a long sequence of two’s, ending by 7, 3.

Both roots in the generalized Pell’s equation (29) are squared, therefore their signs do not
impact their divisibility and abc-properties of the resulting equation.

Example 6.10. D = 13, N = 4.K(ρ, ω) = 11;K(ω) = 3; K(a0, π) = 649;K(π) = 180.

For class C:
[K(a0, π) + K(π) ·

√
D] · [+K(ρ, ω) + K(ω) ·

√
D] →

→ m1 = +K(a0, π) · K(ρ, ω) + K(π) · K(ω) · D = 7139 + 7020 = 14159;

→ n1 = +K(π) · K(ρ, ω) + K(a0, π) · K(ω) = 1980 + 1947 = 3927.

For class C :
[K(a0, π) + K(π) ·

√
D] · [−K(ρ, ω) + K(ω) ·

√
D] →

→ m
1 = −K(a0, π) · K(ρ, ω) + K(π) · K(ω) · D = −7139 + 7020 = −119;

→ n
1 = −K(π) · K(ρ, ω) + K(a0, π) · K(ω) = −1980 + 1947 = −33.

We can take absolute values of m
1 and n

1:

1192 − 13 · 332 = 14161− 14157 = 4.

19



7 Genuine ambiguity

In the previous section we accented that coprimality requirements of components in abc-equation
result in discarding a lot of fundamental solutions for Equation (29), which was illustrated by
Tables 12 and 13. This is applied to ambiguous solutions, too. Therefore in this section we will
discuss the remaining ones of ambiguous fundamental solutions for Equation (29), calling them
genuine ambiguous (maybe anyone can offer a better term).

7.1 Necessary and sufficient conditions

Ambiguity implies coincidence of solution classes C and C .

K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω) = K(a0, π, a0 + ρ, ω) = m1. (40)

We equalize conjugated one to class C:

K(a0, π) · K(ρ, ω)− K(a0, π, a0) · K(ω) = K(ρ, ω) = m0. (41)

We add Equations (40) and (41):

K(a0, π, a0 + ρ, ω) + K(ρ, ω) = 2K(a0, π) · K(ρ, ω);

K(a0, π, a0 + ρ, ω) = 2K(a0, π) · K(ρ, ω)− K(ρ, ω) or m1 = 2x0 · m0 − m0.

We elongate sequence by π, 2a0, π instead of π.

K(a0, π, 2a0, π) · K(ρ, ω) + K(a0, π, 2a0, π, a0) · K(ω) = K(a0, π, 2a0, π, a0 + ρ, ω) = m2;

K(a0, π, 2a0, π) · K(ρ, ω)− K(a0, π, 2a0, π, a0) · K(ω) = K(a0, π, a0 + ρ, ω) = m1.

We add them, etc. and get m2 = 2x1 · m0 − m1, then inductively:

mk = 2xk−1 · m0 − mk−1 (k = 1, 2, ...). (42)

Analogously from

K(π) · K(ρ, ω) + K(a0, π) · K(ω) = K(π, a0 + ρ, ω) = n1 (43)

and K(π) · K(ρ, ω)− K(a0, π) · K(ω) = K(ω) = n0 (44)

we get n1 = 2x0 · n0 + n0, etc., and finally inductively:

nk = 2xk−1 · n0 + nk−1 (k = 1, 2, ...). (45)

Previously we proposed two versions for conjugate class (Equations (34) and (35)), so from

K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω) = K(a0, π, a0 + ρ, ω) = m1 (46)

and − K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω) = K(ρ, ω) = m0 (47)
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we get for ambiguity
mk = 2xk−1 · m0 + mk−1 (k = 1, 2, ...) (48)

and, in an identical way,

nk = 2xk−1 · n0 − nk−1 (k = 1, 2, ...). (49)

Both versions for ambiguity can be combined:




mk = 2xk−1 · m0 ∓ mk−1,

nk = 2xk−1 · n0 ± nk−1 (k = 1, 2, ...).
(50)

Now we write once more the first version of ambiguity:

K(ρ, ω) = K(a0, π) · K(ρ, ω)− K(a0, π, a0) · K(ω); (51)

K(ω) = K(π) · K(ρ, ω)− K(a0, π) · K(ω). (52)

As K(ρ, ω) ⊥ K(ω), then

• from Equation (51) we have K(ρ, ω)|K(a0, π, a0) – condition (A);

• from Equation (52) we have K(ω)|K(π) – condition (B).

The restriction for genuine ambiguity is component coprimality in generalized Pell’s equation

K2(ρ, ω)− K2(a0, π)− 1

K2(π)
· K2(ω) = N.

As K(ρ, ω) ⊥ K(ω), this restriction also gives

K(ρ, ω) ⊥ K2(a0, π)− 1

K2(π)
=

K(a0, π, a0) · K(π)

K2(π)
=

K(a0, π, a0)

K(π)
.

Together with condition (A) this gives K(ρ, ω)|K(π), then we take into account condition (B)
and obtain K(ρ, ω) · K(ω)|K(π).

From Equations (51) and (52) we get the following.

K(ρ, ω) · K(ω) = K(a0, π) · K(π) · K2(ρ, ω) + K(a0, π, a0) · K(a0, π) · K2(ω)

− K(a0, π, a0) · K(π) · K(ρ, ω) · K(ω)− K2(a0, π) · K(ρ, ω) · K(ω)

= K(a0, π) · K(π) · [K2(ρ, ω) +
K(a0, π, a0)

K(π)
· K2(ω)]− K(ρ, ω) · K(ω) · [2K2(a0, π)− 1].

From this

K(ρ, ω) · K(ω) =
K(a0, π) · K(π)

2K2(a0, π)
· [K2(ρ, ω) +

K(a0, π, a0)

K(π)
· K2(ω)]

=
K(π)

2K(a0, π)
· [K2(ρ, ω) +

K(a0, π, a0)

K(π)
· K2(ω)].
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Then

[K(ρ, ω) · K(ω)] · K(a0, π) = K(π) · 1
2
· [K2(ρ, ω) +

K(a0, π, a0)

K(π)
· K2(ω)]. (53)

We have K(a0, π) ⊥ K(π) and K(ρ, ω) · K(ω)|K(π). In square brackets of Equation (53) is a
sum of two coprime summands, one of them divides by K(ω), the other by K(ρ, ω), therefore
their sum is coprime to K(ρ, ω) · K(ω). Now we have two possibilities.
1. This works for positive/negative Pell’s equations, because N = ±1 gives an ambiguous class.





K(π) = 2K(ρ, ω) · K(ω),

K(a0, π) = K2(ρ, ω) +
K(a0, π, a0)

K(π)
· K2(ω).

(54)

2. This is a situation with genuine ambiguous solutions to generalized Pell’s equation (29).




K(π) = K(ρ, ω) · K(ω),

K(a0, π) =
1

2
· [K2(ρ, ω) +

K(a0, π, a0)

K(π)
· K2(ω)].

(55)

From the second version of ambiguity

K(ρ, ω) = −K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω) (56)

K(ω) = −K(π) · K(ρ, ω) + K(a0, π) · K(ω) (57)

we can obtain the same results (Eq. systems (54) and (55)).
We equalize m1 values from Equations (40) and (42):

2K(a0, π) · K(ρ, ω)− K(ρ, ω) = K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω);

K(ρ, ω) · [K(a0, π)− 1] =
K2(a0, π)− 1

K(π)
· K(ω);

K(ρ, ω)

K(ω)
=

K(a0, π) + 1

K(π)
. (58)

Expression (58) can be obtained also from Equations (43) and (45).
As we recently obtained K(π) = K(ρ, ω) · K(ω) for genuine ambiguity (Eq. system (55)),

from Equation (58) we get:
K(ρ, ω)

K(ω)
=

K(a0, π) + 1

K(ρ, ω) · K(ω)
;

K2(ρ, ω) = K(a0, π) + 1.

N = K(a0, π) + 1− K2(a0, π)− 1

K2(π)
· K2(ω) = K(a0, π) + 1− K2(a0, π)− 1

K2(ρ, ω)

= K(a0, π) + 1− K2(a0, π)− 1

K(a0, π) + 1
= K(a0, π) + 1− K(a0, π) + 1 = 2.

Analogously from the second version of ambiguity (Equations (48) and (49)) we obtain

K(ρ, ω)

K(ω)
=

K(a0, π)− 1

K(π)
(59)

and N = −2.
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Remark. By employing K(π) = 2K(ρ, ω) · K(ω) instead of K(π) = K(ρ, ω) · K(ω) we will
obtain N = ±1 – standard values for positive/negative Pell’s equations.

Formula K(π) = K(ρ, ω) ·K(ω) also means that genuine ambiguous fundamental solution is
single. If K(ρ, ω), K(ω) and K(ρ, ω), K(ω) will be two different partitions of K(π) in coprime
parts, then K(ρ, ω) · K(ω) = K(ρ, ω) · K(ω). Then, for example, K(ρ, ω) > K(ρ, ω), which
means K(ω) < K(ω) and, taking N = 2, we get D ·K2(ω) + 2 < D ·K2(ω) + 2, which gives
K2(ρ, ω) < K2(ρ, ω) – a contradiction.

We rewrite our generalized Pell’s equation K2(ρ, ω)−D ·K2(ω) = N , for which we assume
existence of genuine ambiguous fundamental solutions. From recently obtained N = ±2 we
conclude that K2(ρ, ω) and D · K2(ω) are odd numbers. As squares K2(ρ, ω) ≡ 1 (mod 4) and
K2(ω) ≡ 1 (mod 4), but N ≡ ±2 (mod 4), that means D ≡ 3 (mod 4). Then K(π) is an odd
number, but K(a0, π) is an even number.

From equations K2(ρ, ω) − D · K2(ω) = N and K2(a0, π) − D · K2(π) = 1 we express D

and equalize:
K2(ρ, ω)− N

K2(ω)
=

K2a0, π)− 1

K2(π)
=

K2a0, π)− 1

K2(ρ, ω) · K2(ω)
.

Thus K2(ρ, ω) · [K2(ρ, ω)± 2] = K2a0, π)− 1 = [K(a0, π)− 1] · [K(a0, π) + 1]. As K(a0, π)

is even, K(a0, π) − 1 or K(a0, π) + 1 must be perfect square – we obtained this previously in
calculations of N = ±2 values. Then, substituing K2(ρ, ω) by K(a0, π) ± 1 in our equation
K2(ρ, ω)− D · K2(ω) = N , we get D · K2(ω) = K(a0, π)± 1.

All conclusions from current subsection can be united in the

Theorem 7.1. 1. If natural non-square D =
K(a0, π, a0)

K(π)
≡ 3 (mod 4) is the discriminant of

the positive Pell’s equation K2(a0, π)− D · K2(π) = 1, if D|K(a0, π)− 1, and if K(a0, π) + 1

is perfect square, then one and only one pair K(ρ, ω), K(ω) of coprime divisors of K(π), which

satisfy expressions K(π) = K(ρ, ω) · K(ω) and K(a0, π) =
1

2
· [K2(ρ, ω) + D · K2(ω)], are

genuine ambiguous fundamental roots of generalized Pell’s equation K2(ρ, ω)−D ·K2(ω) = 2.
There are not solutions for the corresponding equation K2(ρ, ω)− D · K2(ω) = −2.

2. If natural non-square D =
K(a0, π, a0)

K(π)
≡ 3 (mod 4) is the discriminant of the positive

Pell’s equation K2(a0, π) − D · K2(π) = 1, if D|K(a0, π) + 1, and if K(a0, π) − 1 is perfect
square, then one and only one pair K(ρ, ω), K(ω) of coprime divisors of K(π), which satisfy

expressions K(π) = K(ρ, ω) · K(ω) and K(a0, π) =
1

2
· [K2(ρ, ω) + D · K2(ω)], are genuine

ambiguous fundamental roots of generalized Pell’s equation K2(ρ, ω)−D ·K2(ω) = −2. There
are not solutions for the corresponding equation K2(ρ, ω)− D · K2(ω) = 2.

The sequence of D ≡ 3 (mod 4) values for equation K2(ρ, ω)−D ·K2(ω) = 2 with genuine
ambiguous solutions is the following.

D = 7, 23, 31, 47, 71, 79, 103, 119, 127, 151, 167, 191, 199, 223, 239, 263, 271, ...
Table 14 shows links with the corresponding Pell’s resolvent.
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Table 14. Equation K2(ρ, ω)− D · K2(ω) = 2.
D K(a0, π)/K(π) K(a0, π)− 1 K(a0, π) + 1 K(ρ, ω) K(ω)

7 8/3 7 9 3 1
23 24/5 23 25 5 1
31 1520/273 1519 = 31 · 49 1521 = 392 39 7
47 48/7 47 49 7 1
71 3480/413 3479 = 71 · 49 3481 = 592 59 7
79 80/9 79 81 9 1
103 227528/22419 227527 = 103 · 2209 227529 = 4772 477 47

The sequence of D ≡ 3 (mod 4) values for equation K2(ρ, ω) − D · K2(ω) = −2 with
genuine ambiguous solutions is the following.

D = 3, 11, 19, 27, 43, 51, 59, 67, 83, 107, 123, 131, 139, 163, 171, 179, 187, 211, 227, 243,
251, 267, ...

Table 15 shows links with the corresponding Pell’s resolvent.

Table 15. Equation K2(ρ, ω)− D · K2(ω) = −2.
D K(a0, π)/K(π) K(a0, π) + 1 K(a0, π)− 1 K(ρ, ω) K(ω)

3 2/1 3 1 1 1
11 10/3 11 9 3 1
19 170/39 171 = 19 · 9 169 = 132 13 3
27 26/5 27 25 5 1
43 3482/531 3483 = 43 · 81 3481 = 592 59 9
51 50/7 51 49 7 1
59 530/69 531 = 59 · 9 529 = 232 23 3

7.2 Higher roots, divisibility and abc-properties

Consequently, if K(ρ, ω), K(ω) correspond to requirements of Theorem 7.1, then they are gen-
uine ambiguous fundamental roots m0, n0, but all higher roots are obtained by standard method:

m0

n0

=
K(ρ, ω)

K(ω)
;

m1

n1

=
K(a0, π, a0 + ρ, ω)

K(π, a0 + ρ, ω)
;

m2

n2

=
K(a0, π, 2a0, π, a0 + ρ, ω)

K(π, 2a0, π, a0 + ρ, ω)
; etc.

(D ≡ 3 (mod 4) from Theorem 7.1 means π is odd length.)
We illustrate divisibility properties of these higher roots by their origin.

Theorem 7.2. If K(ρ, ω), K(ω) are genuine ambiguous fundamental roots m0, n0 of the gener-
alized Pell’s equation K2(ρ, ω)−D ·K2(ω) = ±2 and K(a0, π), K(π) are fundamental roots of
the corresponding Pell’s resolvent, then their higher roots meet the following two relations:

K(π, 2a0  
2k-times

, π, 2a0, π, 2a0, π) = K(a0, π, 2a0, π  
k-times

, a0 + ρ, ω) · K(π, 2a0, π  
k-times

, a0 + ρ, ω); (60)

K(π, 2a0  
2k-times

, π, 2a0, π, 2a0, π, a0) =
1

2
· [K2(a0, π, 2a0, π  

k-times

, a0 + ρ, ω) +D ·K2(π, 2a0, π  
k-times

, a0 + ρ, ω).

(61)
Here k = 0, 1, 2, ...
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Expressions (60) and (61) are analogues to Equations (55).

Proof. 1. k = 0 and we must justify K(a0, π, a0 + ρ, ω) · K(π, a0 + ρ, ω) = K(3π).

K(3π) = K(π, 2a0, π)·K(a0, π)+K(a0, π, 2a0, π)·K(π) = 3K2(a0, π)·K(π)+K(a0, π, a0)·K2(π).

K(a0, π, a0 + ρ, ω) · K(π, a0 + ρ, ω)

= [K(a0, π) · K(ρ, ω) + K(a0, π, a0) · K(ω)] · [K(π) · K(ρ, ω) + K(a0, π) · K(ω)]

= K(a0, π) ·K(π) ·K2(ρ, ω)+K(a0, π, a0) ·K(π) ·K(ρ, ω) ·K(ω)+K2(a0, π) ·K(ρ, ω) ·K(ω)

+ K(a0, π, a0) · K(a0, π) · K2(ω)

= K(a0, π)·K(π)·[K2(ρ, ω)+
K(a0, π, a0)

K(π)
·K2(ω)]+K(a0, π, a0)·K2(π)+K2(a0, π)·K(π)

= 3K2(a0, π) · K(π) + K(a0, π, a0) · K2(π).

We obtain the same, this confirms Equation (60) for k = 0.
2. From binomial form (Section 4.3) we obtain:

K(a0, 2nπ) +
√

D · K(2nπ) = [K(a0, π) +
√

D · K(π)]2n

= [K(a0, nπ) +
√

D · K(nπ)]2 = K2(a0, nπ) + 2
√

D · K(a0, nπ) · K(nπ) + D · K2(nπ).

That means 
K(a0, 2nπ) = K2(a0, nπ) + D · K2(nπ),

K(2nπ) = 2K(a0, nπ) · K(nπ).
(62)

3. For k > 0 we at first split off unnecessary fragment to obtain even number of π units, then use
relations (62).

K(π, 2a0  
2k-times

, π, 2a0, π, 2a0, π) = K(π, 2a0  
2k-times

, π, 2a0, π) · K(a0, π) + K(π, 2a0  
2k-times

, π, 2a0, π, a0) · K(π)

= 2K(π, 2a0  
k-times

, π, a0)·K(π, 2a0  
k-times

, π)·K(a0, π)+[K2(π, 2a0  
k-times

, π, a0)+
K(a0, π, a0)

K(π)
·K2(π, 2a0  

k-times

, π)]·K(π).

Now we calculate the right side of Equation (60).

K(a0, π, 2a0, π  
k-times

, a0 + ρ, ω) · K(π, 2a0, π  
k-times

, a0 + ρ, ω)

= [K(ρ, ω) · K(a0, π, 2a0, π  
k-times

) +
K(a0, π, a0)

K(π)
· K(π, 2a0  

k-times

, π) · K(ω)] · [K(ρ, ω) · K(π, 2a0, π  
k-times

)

+ K(ω) · K(a0, π, 2a0, π  
k-times

)]

= K2(ρ, ω) · K(a0, π, 2a0, π  
k-times

) · K(π, 2a0  
k-times

, π) + K(ρ, ω) · K(ω) · K(a0, π, a0)

K(π)
· K2(π, 2a0  

k-times

, π)
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+K(ρ, ω) · K(ω) · K2(a0, π, 2a0, π  
k-times

) +
K(a0, π, a0)

K(π)
· K(π, 2a0  

k-times

, π) · K2(ω) · K(a0, π, 2a0, π  
k-times

)

= K(a0, π, 2a0, π  
k-times

) · K(π, 2a0  
k-times

, π) · [K2(ρ, ω) +
K(a0, π, a0)

K(π)
· K2(ω)]

+ K(ρ, ω) · K(ω) · [K2(a0, π, 2a0, π  
k-times

) +
K(a0, π, a0)

K(π)
· K2(π, 2a0  

k-times

, π)]

= 2K(π, 2a0  
k-times

, π, a0)·K(π, 2a0  
k-times

, π)·K(a0, π)+[K2(π, 2a0  
k-times

, π, a0)+
K(a0, π, a0)

K(π)
·K2(π, 2a0  

k-times

, π)]·K(π).

This confirms Equation (60). The proof of Equation (61), closely analogous to recent one, is left
to the reader.

In view of Equations (55) and (60), we can employ the corresponding rows and columns of
Table 1 for describing mi · ni|yj divisibility in K(π)|K(π) terms.

Table 16.
Divisor Dividends (trivial cases, as 1π|1π, are omitted)
mi · ni yj

1π 3π 5π 7π 9π ...
3π 9π 15π 21π 27π ...
5π 15π 25π 35π 45π ...
7π 21π 35π 49π 63π ...
9π 27π 45π 63π 81π ...
... ... ... ... ... ...

Together with mi ⊥ ni, m0|mk and n0|nk for all k = 0, 1, 2, ..., as well as Equations (55) and (60),
the divisibility table ni|nj coincides with the Table 2, but the divisibility table mi|mj coincides
with the Table 5 and we do not repeat them here. As the result for genuine ambiguous solutions
of equation m2 −D ·n2 = ±2 each mi with k units of π is a divisor of all mj with k+n(2k+1)

units of π. Here k = 0, 1, 2, ... and n = 0, 1, 2, ... The same for ni|nj divisibility.

Theorem 7.3. Now π is an odd length palindromic unit. If roots (mi, ni) of the genuine ambigu-
ous generalized Pell’s equation m2−D ·n2 = ±2, having k palindromic units π, produce an abc-
triple, then abc-triples are produced by all roots (mj, nj) of this equation, having k+n · (2k+1)

palindromic units. Here k = 0, 1, 2, ... and n = 0, 1, 2, ...

Proof. Our abc-equation (for N = 2) is 2 + [K2(ρ, ω)− 2] = K2(ρ, ω), which gives

2 · R[K2(ρ, ω)] · R[K2(ρ, ω)− 2] < K2(ρ, ω)

as starting point. Radical expressions (in square brackets) are two coprime odd numbers.
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According to obtained divisibility data,

K2(a0, π, a0 + ρ, ω)− 2

K2(ρ, ω)− 2
=

K2(π, a0 + ρ, ω)

K2(ω)
= A2 and

K2(a0, π, a0 + ρ, ω)

K2(ρ, ω)
= B2,

where A and B are natural numbers. So we can work analogously to the corresponding parts of
Theorems 5.1 and 5.2. Detailed outline is left to concerned reader.

Theorem 7.3 suggests that for genuine ambiguous generalized Pell’s equations each primary
abc-triple with the number of palindromes specified in the left column of the Table 17 induces an
infinite sequence of secondary abc-triples, specified in the right columns of the Table 17.

Table 17.
Primary Secondary

0π 1π 2π 3π 4π ...
1π 4π 7π 10π 13π ...
2π 7π 12π 17π 22π ...
3π 10π 17π 24π 31π ...
4π 13π 22π 31π 40π ...
... ... ... ... ... ...

The following experimental Table 18 illustrates emerging of abc-triples from higher roots of
genuine ambiguous Pell’s equations with specified number of palindromes (T means ”True” – we
get an abc-triple; F means ”False”).

Table 18.
Number of π units

D N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
3 -2 F F F F T F F T F F F F F T F F F F
7 2 F F F T T F F T F F T F F T F F F T
11 -2 F F F F T T F F F F T F F T F F T F
19 -2 F F F F T F T F F T F F F T F F T F
23 2 F F F F F F F T F F T T T F F F F F
27 -2 F T T F T F F T F F T F T T F F T T

For D = 3, N = −2 here is a longer experimental sequence (Table 19), limited by my laptop’s
performance.

Table 19.
Number of π units

D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
3 F F F F T F F T F F F F F T F F F F

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
F F F F T F F F F T F F F T F F F F

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
F T F F T F F F F F F T F T F
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In Table 19 for D = 3, N = −2 we see the first appearance of abc-triple at 4π. This primary
abc-triple gives further secondary abc-triples at 13π, 22π, 31π, 40π and 49π. The next primary at
7π gives secondary triples at 22π and 37π; secondary triples from different primary sources can
overlap. Remains two primary at 27π and 47π.

As genuine ambiguous fundamental roots (m0, n0) of the generalized Pell’s equation (29)
with N = 2 produce an abc-triples for D = 343 and D = 511, all higher roots for these D values
will produce abc-triples.

As genuine ambiguous fundamental roots (m0, n0) of the generalized Pell’s equation (29)
with N = −2 produce an abc-triples for D = 243, 251, 307, 867, 1107, 1331, all higher roots for
these D values will produce abc-triples.
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