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Abstract

In the presentation described algorithms for
Vision-based UAV (Unmanned aerial vehicle)
control and navigation developed in Ariel
University during Nofar project.



Lab drone flight
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Currently used GPS/INS methods are not trusty and are not noise-immune (easily
suppressed) enough.

So, we plan to use vision-based navigation.

Contrary to the similar projects, we plan to use a big set of existing and new methods
that allow us to get universality of our system — the system will operate in different
complex environments for different optical systems with precision enough for
successful drone navigation.
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Coordinates and Euler angles
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https://www.globalspec.com/learnmore/sensors_transducers_detectors/acceleration_vibration_sensing/accelerometers
https://www.globalspec.com/learnmore/sensors_transducers_detectors/tilt_sensing/gyroscopes
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GPS — no autonomy and noise sensitivity
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INS — increasing error
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Solution -Vision-based navigation
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Vision-based navigation — similar to the human navigation by eyes
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Millimeter-wave TV camera sees through
smoke, fog and even walls (the need 1)
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https://newatlas.com/nhk-millimeter-wave-tv-
camera/15411/
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https://newatlas.com/nhk-millimeter-wave-tv-camera/15411/
https://newatlas.com/nhk-millimeter-wave-tv-camera/15411/

Ability to monitor large areas in complete darkness,
glaring light, and adverse weather (the need 1)
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https://www.flir.eu/products/flir-elara-dx-
series/
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https://www.flir.eu/products/flir-elara-dx-series/
https://www.flir.eu/products/flir-elara-dx-series/

Satellites that can see through clouds (the need 1)

https://www.cnbc.com/2017/12/01/iceye-will-
launch-satellites-that-can-see-through-clouds-
in-january.html

The company uses synthetic aperture radar
(SAR) to provide real-time imagery even at mght
or through cloud cover. =



https://www.cnbc.com/2017/12/01/iceye-will-launch-satellites-that-can-see-through-clouds-in-january.html
https://www.cnbc.com/2017/12/01/iceye-will-launch-satellites-that-can-see-through-clouds-in-january.html
https://www.cnbc.com/2017/12/01/iceye-will-launch-satellites-that-can-see-through-clouds-in-january.html

Event cameras —very high dynamic range, no motion blur,
and a delay in the order of microseconds

file:///C:/fff/JOB/An End-to-End Broad Learning System for Event-Base.pdf
https://rpg.ifi.uzh.ch/research dvs.html

Event cameras are bio-inspired vision sensors measuring brightness changes (referred to as an
‘event’) for each pixel independently, instead of capturing brightness images at a fixed rate
using conventional cameras. The term ‘event’ refers to an output spike, characterized by a
specific spatial location (x, y), timestamp (t) and brightness change polarity (p), shown in Fig. 1.

Dynamic range - ratio between brightest and darkest of image
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FIGURE 1: Difterence between frame-based camera and the
event-based camera. 1


file:///C:/fff/JOB/An_End-to-End_Broad_Learning_System_for_Event-Base.pdf
https://rpg.ifi.uzh.ch/research_dvs.html
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New Technologies

Following the availability of the following
technologies
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3 methods of VBN
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UN.VEQS.'%\‘ Scheme of visual 3 methods
navigation of VBN
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Figure 1. In the picture at the top left, we show how a single camera on a drone is used in two positions, allowing you to create the effect of
stereovision even with only one camera.

In the picture at the down left, we show how the coordinate systems of the aircraft and the on-board camera looking down are set.

In the picture at the right, we show the structure of the operation of the video-navigation system, which uses three methods described in the text:
data into the video-navigation program comes from the on-board camera (visual information), from the computer memory comes a priori
known relief elevation map (Digital Terrain Map - DTM), from the computer memory comes a priori known images of the terrain (Aero or
cosmos photos). In addition, video-navigation data is combined with data from the Inertial Navigation System (INS) using Kalman filter. The
trajectory recovered (Recovered trajectory) using the video-navigation program (Programs) is compared with the trajectory obtained using
Satellite Navigation (GPS) to find errors (Errors) and check the quality of video-navigation.



The first method

In the first method, we do not use any prior known maps or images of the area. There are two sub-
regimes.

In the first sub-regime, the drone flies from an initial known point along a given route, using
information only from a conventional primitive INS and camera. The calculation from the INS is corrected
by measuring the relative displacement of “special” terrain points between vertical camera frames. This data
Is used for measuring the drone relative displacement each time. This sub-regime has an error that increases
over time but is at the level of the best Inertial Navigation Systems (INS) for $100,000. In addition, you can
use elements of Simultaneous Localization and Mapping (SLAM), i. e., in this flight we remember
characteristic ground labels during the flight, which allow us to return absolutely exactly to the starting point
of departure, if the target of the attack is not found. Such a problem cannot be solved only with the help of
INS. Thus, using a conventional INS and a camera, we provide a fundamentally new quality - the return of
the drone, and the navigation accuracy of the largest and most expensive INS.

In the second sub-regime, we use SLAM completely - we make repeated flights of the area around the
starting point with returns and increasing distances, remember characteristic ground labels (or even produce
complete maps of heights and images of the area); with each new return we know the position of the ground
labels more accurately. This allows future flights to use these ground markers to accurately correct errors in
determining the position and pose of the drone, i. e., eliminate increasing time errors during flying in the
investigated area. In the second sub-mode, the navigation error will not increase over time due to the use of
these corrections. In other words, this sub-mode allows you to create the necessary information about the
terrain in the launch zone to prevent the calculation error from growing over time during repeated launghes.



Correspondent intrinsic points
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Metod1l: finding coordinates’ increments by the help of visual

data flow
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The second navigation method

In the second navigation method, we use a priori known
Information about the relief elevation map on a given route, which
must be entered into the computer’s memory before launching the
drone. In this case, determining the location and pose of the drone is
achieved by comparing the current terrain observed by the camera with
the terrain on the input map. Since terrain is difficult to camouflage,
this method is highly reliable. However, it is applicable only if there is
rich terrain on the flight route (applicable only on very NOT flat

terrain).



Method 2:: Finding position and orientation with the help of
DTM.

Two consecutive images
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The third method

The third method uses additional information about a priori
known images of the terrain, which must be entered into the
computer’s memory before launching the drone. Navigation is
carried out by comparing the current image from the camera with the
Image on the map. The method is very difficult to implement - the
Image of the terrain changes greatly when the position and pose of
the drone changes, lighting, season, and changes in ground objects
over time. With a single image, it is difficult to reconstruct the
terrain. Very sophisticated identification algorithms are required that
are robust to these changes. For these purposes, it Is recommended to
use modern artificial neural networks and advanced mathematical
methods.



The third method
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getOpticalFlowField2()

Image of feature points from camera
with actual position and orientation
detectSURFFeatures() , extractFeatures()

Finding synthetic image
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) ) orientation.
terrain map and brightness map) (images_and_masks_generation2())

Finding feature points on synthetic
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Direct algorithm - Hausdorff Distance

O The direct algorithm we built is based on the Hausdorff Distance tool **"'* 7.

which is used to calculate distances between points of interest in an
image in order to analyze data and shapes in that image.

Iupﬁ[\inf t(y, 1))

0 We chose this algorithm because today it is widely used in image
analysis, shape recognition and comparison between identical
images. We believe it can be used to build an efficient algorithm for
identifying identical objects in similar images.



Metod 3 : Finding position and orientation with the help of the
archival photo using Hausdorff Distance
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Artificial Neural Network for
recognition known 3D ground object



AlexNet

e AlexNet -
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Artificial Neural Network for
recognition drone photo on Satellite
image and drone camera pose



Project goals:

Given a pair of images - a UAV image and a satellite image - our goal is to determine:

Identification and localization of the UAV image within the satellite image. In order to achieve this,
we developed a neural network model whose first output is to identify and locate the UAV image

within the satellite image.

The UAV camera pose. The second output of the same neural network is to estimate the camera
pose of the UAV.

Synthetic UAV images for verification. By determining the location of the UAV image and camera
pose within the satellite image, we can use homograph to produce a synthetic UAV image. We

compare the synthetic image to the real image using a second Siamese network or Hausdorff
Distance



Continuation of the project goals:

This project is based on previous projects in which the following goals were achieved:

We developed an initial Siamese neural network for identifying and locating UAV images within
satellite imagery, as well as the UAV camera pose. In this project, the network training process was not
completed, so we will need to finish the training process and improve or even change the network
according to the results.

We implemented a second Siamese neural network or Hausdorff Distance method to determine UAV
camera pose and compare between similar images. Also in this process, the network needs to be
trained based on the output of the first network, and it will be modified according to the output results.

The overall goal is to develop and validate an integrative model that can determine UAV image
location, camera pose, and achieve high accuracy. The current project represents gradual progress
towards this goal.



Our first model - Siamese neural network:
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Synthetic drone image by homoqgraphy

We have a UAV image (top left and also top
right) and a satellite image (bottom left). After
finding the location of the UAV image on the
satellite image by applying a homograph
transformation, we can find a synthetic UAV
image (bottom right).

The two images on the right side will be used
as input into a second Siamese neural
network (or Hausdorff Distance method) for
additional matching validation.

After this process, we will obtain a more
successful matching accuracy.
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Real path 2
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Optical Flow

Introduction to
Optical Flow

Optical flow is a computer
vision technique used to track
the motion of pointsin a
sequence of images. In this
project, we explore the
implementation of optical flow
algorithms in MATLAB and
automatic translation of the
program to hardware language
HDI.



Optical flow for UAV camera
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Lucas-Kanade method for optical flow

calculation
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Real time hardware
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Tools and Methods for
Implementation

MATLAB: Utilizing MATLAB for its advanced image
processing capabilities, offering a flexible environment

for algorithm development and testing. #election at the end -add
' - ) ‘_‘_ob (.)ts’eleit=t11
. r_ob.select=
HDL CODER: Toolbox in Matlab for automatic translation .. gl
from Matlab to HDL B{"Selected” + str(modifier i

#irror_ob.select = 0

Hardware Description Language (HDL) Tools: Employing __,22’_’;;‘;2?’5‘?;,33325??23 ;
HDL tools to translate MATLAB processes into hardware,

ensuring a smooth integration of software-based
algorithms with low-level hardware programming.

Efficiency Enhancement: The integrated toolset
enhances efficiency and effectiveness, ensuring the
successful execution of the project's objectives.

rint(“please select exacthy "%

. OPERATOR CLASSES ---




The process of creating a program in the project.

MATLAB / Simulink / Stateflow
(system architecture)

At the beginning, we write a program in MATLAB

and then convert it to FIXED POINT form. This l ‘ ‘
initial program is slow, utilizing expensive Software Digital Floating- AMS
. . o . Algorithms Point Algorithms Circuitry
hardware with significant power requirements and
la rge We'ght Fixed-Point Algorithms
= IF
Subsequently, we employ CODER HDL to translate Designer i

the program into HDL language for FPGA

HDL
hardware. This hardware operates in real-time;

however, it remains expensive, uses considerable Synthesizable st.mesizab.e

Verilog / VHDL SystemC

amount of power, has large weight. These issues

yystemC

Scripts
(synthesis,
simulation, linting).
appear because of possibility to change its

program. However, once we have a finalized
program that works, there is no need to form its
further modifications.

HDL Coder

At this point, we can make transition from FPGA to n "
ASIC. In ASIC, modifications of its program are not | oD 1L e ) ( — »‘
possible; the software is written once. ASIC is

significantly cheaper, consumes much less power, ‘\ bﬁ ‘ .n ! ‘
has much smaller weight. It allow us to produce

the hardware in large quantities for the low-cost

production (mass production).




Challenges of automatic translation
from MATLAB to HDL.

ind Frame Out

Frame-to-Sample
Conversion

Frameln |ud

Frame
In

The main goal of the project: We already have a
working program for optical flow, but we need to
modify it to a robust algorithm for which it is possible
to perform automatic translation.

Indeed, Itis not possible to automatically translate any
MATLAB program that we want.

For example, we need to preprocess the program input
so that the hardware receives not the entire image
immediately, but only sequence of its portions. This is
because the hardware input has a limited size. The
transition from input that includes the entire image to
input that includes only sequence of its portions is
drawn on the left side of the slide.

The second example of translation issues : some
MATLAB functions cannot be translated into HDL.

The third example of translation issues: many
operations with matrices is necessary to replace to
loops.

There are also many other issues, so such translation
is a complex task. We need to consider all the
constraints, to modify existing algorithm
correspondently and to get a robust algorithm for
which itis possible to perform automatic translation.
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Time delay of vision-based navigation

Unfortunately, there always exists noticeable delay in getting information about the

output-controlled parameters to autopilot for vision-based navigation measurements.

So, we have a problem, because of the lack of some necessary information for
controlling.

xde;, m_ System with RS
e delay

Delay-free
system model

>



Solution (the need 2)

Ravi P. Agarwal, Leonid

Automatic control

Berezansky, Elena Puose output
Braverman, Alexander Comparison Automatic pilot Drone parameters
Domoshnitsky, T —t > >
(desirable
NONOSCILLATION THEORY  values ot (current
OF FUNCTIONAL aramastars) system
DIFFERENTIAL EQUATIONS — state)
WITH APPLICATIONS, (detectors)  [*
Springer, New York 2012 with delay .
- e
e

dlide-path _
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Parameters of drone’s motion

S dV .
Jr:T = Pcosa—X —Gsind
af

mi’f’ﬁ =Psine + Y =Geost
df

d’v
Jz dt’

dH :
—=Vsinf+
- U,

=M,

dL
— =V cosO+

P=P(5, V) (v=6+a

X = C_\-S% y=C, S%

¢, = c,(a,v, 7, H);
¢, =c,(a, V, H);
pV*
M,=m,b,S
m >

m, = my(a, a.v.V, &, p)

V - flight velosity tangent to trajectory

Y - carrying force ortogonal to flight velosity
X - resistance force opposite to V

G - gravitational force

v - pitch angle, i.e. angle between lengthwise drone axis
and horizontal plane

0 - tilting of trajectory about horizontal plane

« - angle of attack, i.e. angle between lengthwise axis and projection of velosity on
the symmertry plane of drone

m = G/g - drone mass
P - tractive force directed along lengthwise dron axis

6]] - position of control knob

E-E_ - deviation of elevator



Nonlinear equations of motion

- dV .
m—f = Pcosa— X —Gsinf
[#

mf"ﬁ =Psina + Y —Geosé
di

LYoy,

dt’

= =Vsin@+[
” sin ]_1'

dL
— =V cos@+

P =P, V) =0+

X = c_\.S% Y = c_.s%

C_,'. = C_t. (EI,\-', V, H),

¢y, =c,(a, 7, H);
- m.b.sPY
M. =m.b.S >

m, = m,(a, &.v.V, 5, p)

Mz - total moment of aerodynamical forces with respect to transversal

axis z
Jz - inertial moment of drone with respect of axis z
P - air density

Ux and Uy - wind velosities with respect axes x and y, correspondently

S - area of winds
b, — tength of wina chora

111, - coefficient of moment
¢ and c¢, - coefficients of resistance and carrying forces, correspondently

6 - position of control knob

O, - deviation of elevator



Linear equations of motion
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Stability of the system.

Theorem

We study stability of the following system:

X|(t) + Z Z di(0)x;(t — 65(0) =0, t [0, +00).

=1 =1
i=1...., n.

Xi(£)=0, £=0,1=1,....n,

where af € L. 0f € Lo fork=1.....m.




Stability of the system.

Theorem

If the following conditions are fulfilled, then the
system is exponentially stable.

(1) for every i = 1,..., n (2) There exist positive numbers zy, ..., Z; such that

there exists m; such that a(t) = 0 @,(t) < 0, 6X(t) < 6L(t) m noo

fork = 1,....mpj = my+1,....m, Y, d) = ;a‘}(f(r)z; - 12: kz; |dj(©)]z = 1.t €[0.+00),
) = =1, j#i k=

Y e ‘a’}‘-m‘forr € [0. +00), i=1...n

=mj+1
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UAV Navigation g\ KEni:

EIbit Systems
:

& ASIO e

TECHNOLOGIES
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http://www.elbitsystems.com/elbitmain/default.asp

Competitive advantages of the project with respect
to the other methods not using visual navigation

Competition advantages of the project

Descrintion of novelty with respect to The video nawigators are at the moment in development
GF'EJIHFE systems t pe " - @_] * stage, their characteristics arent specified yet. Examples
I:I-I'E'IIIE

g of creators: Skilkigent; Scientific Systems Company, Inc
= Autonomy

-~ Possibility to find both position and , me L ,’
arentabon [: I. _ l
— Possibility to make exact landing: | [
— Possibility for obgects recognition ; ]‘ i La e |
and detecting cbstacles g i L.
Description of novelty with respect to
high-precision INS systems Description of novelty with respact to creators of the similar
systems

— HNot increasing in time emmar
~ Low prime cost = We plan to develop UNIVERSAL videc-navigator
— Possibility for objects recognition ’ INS including all basic methods and wide spectrum of

and detecting cbstacles complex situations
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Currently used GPS/INS methods are not trusty and are not noise-immune (easily
suppressed) enough.

So, we plan to use vision-based navigation.

Contrary to the similar projects, we plan to use a big set of existing and new methods
that allow us to get universality of our system — the system will operate in different
complex environments for different optical systems with precision enough for
successful drone navigation.
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Competitive advantages of the project with respect

Competition advantages of the project

Scientific
Systems
Company

Company name Asio

Technologies

Videonavig |Videonaviga
ator tor

Stage - in in
exisis development development

Method 1 (without additional
information) e i
Method 2 (by digital terrain map) no yes
Method 3 (by cosmos or aero photos of yes =
terrain)

Small part of
Complex situation processing such no

situations
Prime cost [$] 50008 unknown unknown
Precision for position under optimal unknown

" im 5m

condition

Scientific Systems Company, Inc. Sightec
https://www.ssci.com/
Product: ImageNav™
Novelty with respect to creators of the similar systems

= Universality for UAV (ALL basic methods and
complex situations)

in development

yes
yes

yes

yes

250 $

10m

Asio Technologies

Product: NOCTA

https://www.sightec.com https://asiotech.com/
Product: NAVSIGHT

1 Method (VSLAM) without additional
information

2 Method (With DTM) by digital terrain
map

3 Method (with photos) by cosmos or
aero photos of terrain

Complex situation:
(1)Superresolution

(2) Registration of big errors

(3) Small field of view of camera

(4) Optical axis of the camera is close to
flight direction

(5) Using occluding boundaries and
horizon lines

(6)Smooth relief

(7) Relief closed to plain one

(8) Differences between current photos
and photos from data set

(9) Images of terrrain closed partially by
ototds or mist

(10) 2D — 3D transform

(11) Searching an image similar to a
current image in big data set

(12) Forest terrain

(13) Urban terrain

UAV NAVIGATION
https://www.uav

navigation.com/

Product: VNSO1
66


https://www.uavnavigation.com/
https://www.uavnavigation.com/

https://www.alltheresearch.com/report/140/unmanned-aerial-vehicle-
market

Global Unmanned aerial vehicle (UAV) Market Forecast, 2016-2026, (US$ Mn)

18,857.5 I I6614
2016 2017 2018 2019 2020 2021 2022 2023 2024 2026

M Volume (Units) M Value (USS Mn)
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Intellectual Property: Know-how
Current stage is Know-how. In future we plan patent registrations of a
new and advanced drone navigation systems in the case of regular
and complex operating environment
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Visual navigation specialist

Dr. Kupervasser Oleg, included
to 30 issue of “Marquise Who's
Who in the world”, 17 years of
experience (leading companies
of Russia and Israel), 11 papers
and conference reports

Optimal control theory
specialist

Prof. Domoshnitsky Alexander
Mathematics Department of
Ariel University,

has 30 years of experience,
more than 120 publications,
received 7 awards and grants

Simon Kogan, Ph D

Algorithm developer

lgor Dadasov, M Sc

Programmer, drone operator,
Hardware specialist
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