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Abstract

We explore the different meanings of the two versions of universal
disjunction. A small but badly neglected aspect of quantificational
logic. A semantics is provided to distinguish the alternative meanings;
there are twelve for two predicate sentences.

In Quantificational Logic (QL) there are two versions of universal dis-
junction. (We only consider the simple case of formulae with two predicates).
There are individually quantified sentences combined in a disjunction, e.g.
∀x(Bx) ∨ ∀x(Rx). A simple English sentence in this form might be: ‘every-
thing is blue or everything is red.’ This compares to sentences in which the
universal quantifier distributes over a disjunction, e.g. ∀x(Bx ∨ Rx). The
English sentence might be: ‘everything is blue or red’. The sentence forms
are not equivalent and their asymmetric entailment is a basic tenet of QL.

∀x(Bx ∨Rx) ⊣⊬ ∀x(Bx) ∨ ∀x(Rx). (1)

Eq. (1) reminds us distributed universal disjunction does not entail individ-
ually quantified sentences, whilst entailment in the other direction is valid.
Lemmon provides an example to illustrate the difference.[1]. Consider the
domain whose elements are the positive integers. If all the numbers are even

garry goodwin@hotmail.co.uk

1



or odd, it does not mean they are all even or that they are all odd. As cogent
as the example is, we shall see it also leaves much out. Beyond Lemmon,
elucidations that delve deeper are thin on the ground; so room is left for a
fuller account.

Our investigation is limited to the following notation with the usual rules
for well formed formulae.

∀,∃, B,R, x, a,¬,∧,∨,→, (, ).

This limited set of symbols allows an infinite number of well formed formu-
lae, but as the majority are logically equivalent redundancy is also infinite.
However, the set of logically distinct meanings expressible in this fragment is
finite. A semantics is introduced to account for this finite set. It will then be
helpful to introduce the concept of a semantic tile. Unlike an atomic sentence
a semantic tile is syntactically complex whilst also a semantic atom. This
means it is a proposition only entailed by logically equivalent sentences or
those that express contradiction. Where there are many logically equivalent
sentences that are semantic atoms, they are the same tile.

Meanings expressible in our limited fragment may be distinguished using
a truth function which we can present on a 4× 4 array. A white (ivory) tile
represents a Boolean 1 (true) and a black tile is a Boolean 0 (false). Each
tile on the array also represents a semantic tile. The 16 tiles account for 216

possible meanings that are combinations of the four propositions shown in
Figure 1.

Ba ∀x(Bx) Ra ∀x(Rx)

Figure 1

The basic 4× 4 array is insufficient to express distributed universal disjunc-
tion; for this we need the 32 tile array of Figure 2.
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Figure 2

The double triangle (hour glass) is a single tile. The actual pattern is nego-
tiable but the additional five tiles that form each of the four central square
cells is not. As Figure 2 resembles a mosaic we refer to grid patterns as
‘mosaics’. The 32 tiles make possible 232 different meanings (a number ap-
proaching 4.3 billion) but we focus on the two forms of universal disjunction
when both predicates are positive. The mosaics for these are as Figure 3.

∀x(Bx) ∨ ∀x(Rx) ∀x(Bx ∨Rx)

Figure 3

Where one or both predicates is negated the mosaic points to the respective
corner of the array as shown at Figure 4.

∀x(Bx ∨ ¬Rx) ∀x(¬Bx ∨ ¬Rx) ∀x(¬Bx ∨Rx)

Figure 4

Mosaics help us unpack the alternative meanings that distinguish the two
versions of universal disjunction. To illustrate the point we restrict ourselves
to Figure 3. Each tile represents an infinite number of well formed formula
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but to keep things simple we only consider the formula with the simplest
syntax. The domain is flower stalks. The stalks have blue (B) or red (R)
petals. The meaning of the sentence in the form of the formula is illustrated
with an English sentence, a picture and a Venn diagram. On the Venn
diagram the additional arrow makes more sense once recognised it makes a
negative claim when stalk a has petals of one colour. Twelve propositions
(P1 to P12) fully account for Figure 3 and provide a deeper delve into the
difference between the two forms of universal disjunction.

P1. ∀x(Bx) ∧ ∀x(Rx)

Every stalk has a blue petal and a red petal.

•
•
•

•
•

•

•

•

• B R

P2. ∀x(Bx) ∧ ∀x(¬Rx)

Every stalk has a blue petal, none has a red petal.

•
•
•

•
•

•

•

•

• B R
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P3. ∀x(Rx) ∧ ∀x(¬Bx)

Every stalk has a red petal, none has a blue petal.

•
•
•

•
•

•

•

•

• B R

P4. ∀x(Bx) ∧ ∃x(¬Rx) ∧Ra

Some stalks do not have a red petal, but stalk a does.
Every stalk has a blue petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

P5. ∀x(Rx) ∧ ∃x(¬Bx) ∧Ba

Some stalks do not have a blue petal, but stalk a does.
Every stalk has a red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R
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P6. ∀x(Bx) ∧ ∃x(Rx) ∧ ¬Ra

Some stalks have a red petal, but stalk a does not.
Every stalk has a blue petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

P7. ∀x(Rx) ∧ ∃x(Bx) ∧ ¬Ba

Some stalks have a blue petal, but stalk a does not.
Every stalk has a red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

P8. ∀x(Bx ∨Rx) ∧ ∃x(¬Bx) ∧ ∃x(¬Rx) ∧Ba ∧Ra

but stalk a has both.
and some do not have red,

Some stalks do not have a blue petal
Every stalk has a blue or red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R
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P9. ∀x(Bx ∨Rx) ∧ ∃x(Bx ∧Rx) ∧ ∃x(¬Bx) ∧ ¬Ra

Stalk a does not have a red petal.
Some stalks do not have a blue petal.

Some stalks have both a blue petal and a red petal.
Every stalk has a blue petal or red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

P10. ∀x(Bx ∨Rx) ∧ ∃x(Bx ∧Rx) ∧ ∃x(¬Rx) ∧ ¬Ba

Stalk a does not have a blue petal.
Some stalks do not have a red petal.

Some stalks have both a blue petal and a red petal.
Every stalk has a blue or red petal.

•
•
•

•
•

•

•

•

•
a

•

a
B R

It is easier to make sense of the next two propositions if the the distributed
quantifier is rendered as the logically equivalent universal implication.
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P11. ∀x(Bx → ¬Rx) ∧ ∀x(¬Bx → Rx) ∧ ∃x(¬Bx) ∧ ∃x(Rx) ∧ ¬Ra

Some stalks have a red petal, but stalk a does not.
Some stalks do not have a blue petal.

and if stalks do not have a blue petal they have a red petal.
If stalks have a blue petal then they do not have a red petal

•
•
•

•
•

•

•

•

•
a

•

a
B R

P12. ∀x(Bx → ¬Rx) ∧ ∀x(¬Bx → Rx) ∧ ∃x(¬Rx) ∧ ∃x(Bx) ∧ ¬Ba

Some stalks have a blue petal, but stalk a does not.
Some stalks do not have a red petal.

and if they do not have a blue petal they have a red petal.
If stalks have a blue petal then they do not have a red petal

•
•
•

•
•

•

•

•

•
a

•

a
B R

If propositions P1 to P7 are compared with the larger set P1 to P12
it is obvious just how much information Lemmon’s elucidation passes over.
Admittedly the full set of 12 propositions have been introduced dogmatically.
If there is any doubt, attention to the Venn diagrams should give confidence
all the logical possibilities have been counted. Moreover, this approach is
founded on three valid arguments.
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⊢ ¬(Pn ∧ Pm),

where Pn and Pm are any two propositions taken from P1 to P12.
(2)

Eq. (2) is the contrary clause that insists no two propositions P1 to P12 may
be true together.

∀x(Bx) ∨ ∀x(Rx) ⊣⊢ P1 ∨ ... ∨ P7. (3)

Eq. (3) confirms the disjunction of two universally quantified sentences is
equal to the disjunction P1 to P7.

∀x(Bx ∨Rx) ⊣⊢ P1 ∨ ... ∨ P12. (4)

Eq. (4) confirms distributed universal quantification is equal to the disjunc-
tion P1 to P12.

There is also a theorem for the 32 tile mosaic.

⊢ P1 ∨ ... ∨ P32 (5)

Eq. (5) confirms Figure 2 represents a truth table tautology. To prove Eq. (5)
it is only necessary to prove the top left quartile of the mosaic is a disjunction
of eight propositions equivalent to Ba∧Ra. A principle of symmetry applies
to the remaining quartiles.

In conclusion: the advantages of the semantic approach advocated here
make them self felt if and when Figure 3 serves as a quick reminder why Eq.
(1) holds true.
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