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                                                                                  ABSTRACT 

 

In control system synthesis, the use of orthogonal functions such as Chebyshev polynomials, Lagrange 

polynomials, Legendre polynomials and Fourier series has recently attracted special attention. 

An important objective of applying these functions and polynomial sequences is to avoid the complexity as 

possible in considering optimal control problems and to fix the solution of algebraic equations, thus 

simplifying the problem consideration. 

In this paper, the Legendre approximation method for solving optimal control problems is proposed. 

Using the Gauss-Legendre quadrature method, the given integration problem is transformed into a 

polynomial series, and Legendre approximations for the control and state variables are performed to 

consider the given problem as a nonlinear programming problem. 
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     1. Introduction 

In this paper, using Gauss-Legendre quadrature ,we propose a simple method to solve the constrained 

optimization problem easier than the preceding method. 

To date, a number of papers related to Legendre approximation of optimal control problems have been 

presented [1,3, 5,8]. 

In 2012, a paper using the penalized local quadratic interpolation approach as a method for solving 

constrained optimization problems using Legendre approximation was presented, where the pseudo-spectral 

integral-differential matrix was mentioned [6~10]. 

Since then, several papers have discussed the approximation process using pseudo-spectral integral-

differential matrices, which are difficult to consider and difficult to understand because of the use of 

complex formulas [11~16]. 

Hence, we have considered a simpler approach from a practical point of view. 

First, we chose the Gauss- Legendre quadrature method as an easy-to-realistic way to satisfy the accuracy 

in the integral calculation and apply direct comparison techniques using initial conditions, boundary 

conditions and constraints to implement Legendre approximations. 
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Several methods have been introduced, including robust and Chebyshev approximations, in connection 

with quadrature selection, among which the advantage of Gauss-Legendre quadrature is that for any 

function the node selection is symmetrical and the weight for each node is not changed, so it is easy to 

reduce the computation and the process. 

As an example of the application of this paper, we have compared the results with those presented in the 

previous works, especially since all dynamical systems can be decomposed into integral components, we 

have added examples applied to second-order integral subcomponents and examples applied to simple 

tracking systems. 

We believe that the approach presented here has a simple and easy-to-implement merit compared to the 

previous methods, and thus is an advance in Legendre approximation theory. 

The organization of this paper is as follows. 

In Section 2, we set the optimal control problem with linear terminal constraints. 

In Section 3, we consider the Gauss-Legendre quadrature method. 

In Section 4, we consider the formulation of Legendre approximation for OCP. 

Section 5 presents numerical calculations and applications. 

 

2. Setting Optimal Control Problems with Linear Terminal Constraints 
 

 Consider the problem of finding the control u(t) that gives the minimum to the objective function as 

follows: 
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The initial and termination constraint are as follows. 
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where T is assumed to be given. 

To approximate a given problem, we perform the following transformation to map the interval τ∈ [0,T] to 

the interval  t∈ [-1,1] 
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Hence, the optimal control problem is given as 
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Using (7) and (8), we can determine the coefficients of Legendre approximation. 
 

3. Gauss-Legendre quadrature method 
 

For the integral, we use the following Gauss-Legendre quadrature formula. 
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where i  is a node point selected for approximating the integrals, and iA  is a weight to the each node point. 

The advantage of Gauss-Legendre quadrature is that the nodes i  and weight iA  do not change even if the 

function is changed.                                 

  
  

                                 Table 1. Selecting node points and weights in gauss-legendre quadrature 

N node point  i       Weight iA  N node point  i     Weight iA  

1 

3 

 

 

4 

 

 

0.577350            1.000000 

0.000000             0.88 

-0.774597           0.555556 

0.774597            0.555556 

-0.861136           0.347855 

-0.339981           0.652145 

0.339981            0.652145 

0.861136            0.347855 

5 
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-0.906180           0.236927 

-0.538469           0.478629 

0                   0.568889 

0.538469            0.478629 

0.906180            0.236927 

Error! Reference source not

 found.0.932470        0.17132

4 

Error! Reference source not

 found.0.661209        0.36076

2 

Error! Reference source not

 found.0.238619        0.46791

4 
 

 

As can be seen from the table 1, the nodes are symmetrically placed with respect to 0i , and the weights 

assigned to the nodes in the symmetrical position are the same. 

 This feature of the Gauss-Legendre quadrature allows the modular integration computation process to 

provide convenience and quickness. 
 



4. Legendre Approximations for OCP 

  Legendre approximations are adopted here to approximate the solution to the problem. 

 In the previous work, Legendre approximations are performed for higher order derivatives )(nx  and the 

lower order derivatives )1()1()0( ,,, nxxx  are also approximated through continuous integration of higher 

order derivatives. 

However, the way to calculate this is complicated by the computational process and complicated 

computational complexity. 

Thus, we here approximate a and approximate x  higher order differential )()2()1( ,,, nxxx   through 

continuous differentiation. 

Applying continuous differentiation, we have 
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  Similarly, if the approximation for the control variable u(t), the optimal control problem (4)~(7) is 

transformed into the following constrained optimization problem: 
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Where NiB are weight coefficients, and jt s are node points. 

Our goal is to find unknown coefficients ja  that give a minimum to J. 

 

5. Numerical Examples and Application 

 

In this section, we consider three numerical examples to illustrate  the effectiveness of the proposed method. 

 

Example 1: 

As the most basic equations of motion of the control system, we can take the constant coefficient differential 

equation as an example. 

                                                                   

1)0(,  yxy
dx

dy

                                                            (12) 

 

  The analytical solution of this problem can be found in Matlab, 12y  xex
.    

  We solve this problem by Legendre approximation as follows.     
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when N is selected as 4, 
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Our objective is to determine the unknown coefficients (i=0, 1, 2, 3, 4). 

Five algebraic equations are needed to obtain five unknown coefficients. 

We want to obtain these five algebraic equations by comparing the coefficients of x in the initial and 

residual equations. 

In this problem, one equation can be obtained by the initial condition, so the remaining four equations are 

constructed by comparing the constants, the coefficients of x, the square coefficients of x and the cubic 

coefficients of x. 
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Solving this equation yields the following result. 
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Substituting the obtained coefficients ia  into the test solution yields. 
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The solution thus found is an approximate solution. 

It is first assumed that the solution is represented by a linear combination of finite Legendre polynomials. 

Next, the coefficients of the square of x in the residual equation were not compared. 

The error between analytical solution and test approximate solution is given in the following table. 

From the results obtained, it can be seen that this technique is very effective for constant coefficient 

nonhomogeneous differential equations. 

For the example mentioned above, the error is found for the case using Legendre approximation and for 

the case using Taylor expansion. 
 

 

                Table 2 Comparison of analytical solutions of ordinary coefficient differential equations  

                         with  solutions by approximations 



X N=4 N=6 N=8 N=10 

0.0 0 0 0 0 

0.1 1.6948e-07 4.0184e-011 5.5511e-015 0 

0.2 5.5163e-06 5.29092e-09 2.8793e-012 8.8818e-016 

0.3 4.2615e-05 9.0152e-008 1.1183e-010 9.1260e-014 

0.4 0.00018272 6.8417e-007 1.5048e-009 2.1738e-012 

0.5 0.00056754 3.3053e-006 1.1328e-008 2.5525e-011 

0.6 0.00143760 1.2001e-005 5.9067e-008 1.9130e-010 

 0.7 0.00316374 3.5779e-005 2.3903e-007 1.0518e-009 

 
 

                   Table 3 Comparison of Legendre approximation and Taylor approximation 

x Legendre approximation 

 error 

Taylor approximation 

              error 

Error between 

       two approximations 

 0.1 1.6948462855e-07 1.6948462855e-07 0 

0.2 5.5163203396e-06 5.5163203398e-06 -2.2204e-16 

0.3 4.2615152006e-05 4.2615152006e-05 0 

0.4 0.00018272861587 0.00018272861587 0 

0.5 0.00056754140025 0.00056754140025 -2.2204e-16 

0.6 0.00143760078101 0.00143760078101 0 

0.7 0.00316374827428 0.00316374827428 -4.4408e-16 

0.8 0.00628185698493 0.00628185698493 -4.440892e-16 

0.9 0.01153122231389 0.01153122231389 -8.881784e-16 

 

 

It can be seen from the table that as the order N of the test approximate solution increases, the errors 

become smaller, as compared with the Taylor expansion, we can see that it is reasonable to apply Legendre 

approximation to the numerical solution and that the errors by direct comparison technique are very small.  

 

Example 2: All linear control objects can be decomposed into integral or second-order integral 

components. 

Ball control system, international standard experimental device, is represented by second-order integral 

component. 
     

 

 



 

 
 

 

 

 
 

 

(a)  
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xqq  21 ,  

J - rotary inertia moment of the beam 

                                                                    bJ - rotary inertia moment of the ball 

                

Fig 1. ball stabilization device and generalized coordinates 

          (a)- Ball control device   (b) generalized coordinates 

 

  The motion equation of this device is as follows. 
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      Representing above formula to transferfunction 
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Therefore, consider the optimal control problem of second-order integral modulation. 
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Let's solve this problem by the method described in this paper. 



Let us convert time interval t∈ [0,3] to t∈ [-1,1]. 

1
3

2'  tt ,     dtdt
3

2'          

 

Then, a given problem is as follows; 
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The second step is to approximate )(),(),( 21 tutxtx   by Legendre approximation. 
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Where  iii cba ,,  are unknown constants , ip is the i-st order Legendre polynomial. 

We transmit the integral to finite series by Gauss-Legendre quadrature. 
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Where )6,1( iAi   are weight coefficients, )6,1( iti
 are collocation points.  

As shown in Table 1, iA  and  it  are known constants. 

Then, a given problem is given as follows; 
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Therefore, we have to find the unknown coefficient jc  that gives the minimum to J. 

In order to solve this problem, considering the constraints, initial and final conditions, the given problem 

becomes a nonlinear quadratic programming problem. 



Solving this nonlinear quadratic programming problem, we can obtain the following result. 
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For this problem, the error with the exact solution is calculated as table 4. 

 

            Table 4 Comparison of exact and approximate solutions. 

it  
 

)(tu  )(1 tx  )(2 tx  
Approximat

e solutions 

exact  

solutions 

Approximat

e solutions 

exact  

solutions 

Approximat

e 

 solutions 

exact solution

s 

0.0 0.000 0.000 2.000 2.000 -1.000 -1.000 

0.4 0.098 0.113 1.602 1.592 -0.972 -0.969 

0.8 0.177 0.187 1.119 1.117 -0.929 -0.920 

1.0 0.222 0.211 1.019 0.999 -0.888 -0.876 

1.4 0.301 0.298 0.701 0.697 -0.772 -0.769 

1.8 0.407 0.397 0.416 0.402 -0.630 -0.623 

2.0 0.424 0.412 0.266 0.257 -0.545 -0.536 

2.4 0.503 0.499 0.992 0.987 -0.360 -0.353 

2.8 0.622 0.617 0.013 0.011 -0.129 -0.118 

3.0 0.666 0.666 0.000 0.000 0.000 0.000 

 

 

As shown in Table 2, the error is given to be least as 0.01. 

Figure 2 shows the comparison curves of x1 by legendre approximation and on the actual plant. 
 

                                                          
 

                                                           Fig 2. Comparison curve of X1 obtained in both methods 
 

Figure 3 shows the comparison curves of x2 by legendre approximation and on the actual plant.  



 

                                                             
 

                                                          Fig 3. Comparison curve of X2 obtained in both methods 

  

 As shown in the figures, when the plant is given initial and final conditions, the operation when inputting 

the control by Legendre approximation is completely the same. 

Both curves in both methods cannot be distinguished in too consistent. 

 

Example 3: 

Find a suitable control for minimization of the following optimal control problem. 
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The optimal values of state and control are given in Table 3. As can be seen on Table 3, the proposed method 

is efficient in solving OCP. 
 

                                                  Table 3. Observed state x(t) and control u(t) variables 

                                                                  for Example (2)                                                       

T x1(t)              x2(t)            u(t) 

-1.000 

-0.809 

-0.309 

0 

0.309 

0.809 

1 

1.21              1.79           -2.422 

1.158            1.578          -2.038 

1.099            1.179          -1.179 

1.123            1.033          -0.725 

1.196            0.953          -0.307 

1.435            0.957          0.331 

1.571            1                  0.575 

 

 



Example 4: 

In practice, there are more cases of closed-loop control than open-loop systems. 

Therefore, let us try the following closed-loop control problem in this way. 
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                                        Fig 4. Comparison of step response  as adding control and not 

1-Step input , 2- output without controller , 3- output with controller 

 

The order of legendre polynomial is the higher, output error of the system is the smaller. 

 

6. Conclusions 

In this paper, we consider a simple approach to solving optimal control problems with constrained boundary 

conditions by Legendre approximation to nonlinear optimal programming. 

This method is useful for objects with uncertainties, which are difficult to solve analytical solutions, 

especially for those with simplified calculations and modularization, and has the advantage of being 

feasible. 

In addition, depending on the characteristics of the plant, controller design also overcomes the conventional 

approach that has to be complicated and provides the possibility to design controller design in a uniformly 

matrix algebraic equation. 



Simulation results demonstrate that the method by Legendre polynomial approximation is very useful for 

applications, and direct comparison techniques for solving them can be seen as the simplest method, giving 

results close enough to the exact solution. 

This method can be applied to linear and nonlinear plants, especially those with uncertainties and non-

stationary plants. 
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