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  Abstract 

This paper makes an accurate fractional model of the existing non-linear systems using fractional 

order theory and various intelligent optimization methods and proposes a novel method to identify 

time-varying parameters of the fractional non-linear system offline and online.  More accurate  

mathematical model of the proposed system was made by applying approximated fractional derivative 

into the state space model of the classical non-linear system.  The initial parameter values of the 

proposed non-linear fractional system were identified offline by using hybrid particle swarm 

optimization-genetic algorithm method that is a combination of particle swarm optimization(PSO) and 

genetic algorithm(GA) that are typical intelligent optimization methods.  The time-varying parameters 

of the non-linear fractional order systems were identified online in real-time by using the output error 

technique and the recursive least square method. In order to verify the efficiency of the proposed 

identification technique, we made a simulation experiment for offline and online identification of the 

time-varying parameters in the existing nonlinear fractional Lorentz system and nonlinear fractional 

lithium-ion battery system. Simulation results show that the proposed novel identification method can 

be effectively used for offline and online parameter identification of many complicated non-linear 

fractional order systems in practice.   
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1. Introduction  

Fractional calculus could be used in modeling many physical phenomena and engineering systems of 

the real-world in a more reasonable and accurate way compared with the classical integer calculus[1]. 

 In recent years, fractional calculus has been widely researched by a lot of researchers and applied in 

various fields, especially in control engineering[2], electrochemistry[3], dielectric physics[4] ,  

viscoelasticity[5] , nonlinear acoustics[6], diffusion theory [7], photoelectricity field ionization[8], 

human engineering [9,10], epidemicity  contagious  disease [11], fuzzy logic [12],  artificial neural 
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network [13], spline  approximation[14], and so on. It has also been reported that many researches for 

fractional modeling and system identification of nonlinear systems are continuously being made 

[15-21]. Fractional calculus is a kind of classical integer calculus, which could be used in modeling the 

classical nonlinear systems to be more accurate fractional nonlinear systems［22］.There are several 

definitions of fractional calculus and［23］describes  3 typical definitions; Grunwald – Letnikov, 

Riemann- Liouville and Caputo fractional calculus. Otherwise fractional operators have usually been 

approximated by high order rational models. General approximation of fractional operator in a limited 

frequency band is the recursive distribution of zeros and poles proposed by  Oustaloup  in ［24］. 

Trigeassou et al ［25］have proposed to use the integrator outside a certain frequency band instead 

of a gain and described the principle and method of approximation of fractional integration in［26］. 

The parameters of fractional nonlinear system could be identified offline and online by using several 

optimization methods such as intelligence optimization and least square method.  Particle Swarm 

Optimization is the method proposed by  Eberhart and Kennedy in 1995, which is the intelligence 

optimization method that imitates food-searching action of a group of insect such as ants and bees , a 

flock of birds and a shoal of fish[27].In [28], inertia weight has been suggested in order to consider the 

effects of the previous speed on the present speed of the particle. Because Particle Swarm Optimization 

has been known to be very sensitive to the size of particle population, inertia weight coefficient, 

moving step number, maximum velocity and maximum number of replacement, it could be used to 

identify the parameters of the system.  However, if the number of particles is given to be large, it’s 

possible to find optimal solution while it’s time consuming and takes a large amount of calculations. 

Genetic algorithm is a kind of intelligent optimization method, proposed by Holland in 1968, that 

imitates the natural genetic phenomena.  With the rapid development of computer technology since 

1990’s, genetic algorithm is widely used in several aspects such as reservoir operation optimization, 

numerical model parameter optimization, path searching problem , battery management system and so 

on [29,30]. Meanwhile, the classical least square method is one of parametric identification method of 

the system and widely used in many fields because of its simplicity in principle and good performance 

in identification［31,32].  

Also the recursive least square(RLS) is the approach which parameters are updated on every addition 

of new data, which is widely used in online real time parametric identification of the system[33]. 
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observation values and recalculate the normal least square estimation. This paper sets an accurate 

fractional model of the existing nonlinear systems using fractional theory and several intelligent 

optimization  approaches and proposes a new approach for online real-time identification of the time 

varying parameters in fractional nonlinear system. Section 2 introduces the basic knowledge on the 

definition of fractional nonlinear system, the fractional derivative and fractional integration, and the 

approximation of fractional operators.  Section 3 describes the offline and online parametric 

identification method of nonlinear fractional system using  approximated fractional order derivative 

and the intelligence optimization method.  Section 4 shows simulation results and verification for 

offline and online parametric identification in nonlinear fractional Lorentz system and nonlinear 

fractional lithium-ion battery system. Section 5 gives conclusions. 

2. Knowledge Background 

2.1. fractional nonlinear systems  

Fractional calculus is the generalization of the classical integer order calculus. 

This paper considers the general fractional nonlinear system as follows［22］: 
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is supposed to be the equilibrium point of nonlinear system (1). 

2.2. fractional derivative and fraction integration 

Among several definitions on fractional derivative,［23］has proposed the Grunwald – Letnikov, 

Riemann- Liouville and Caputo fractional calculus definitions for absolute continuous functions, that 

are three most commonly used ones. The Riemann- Liouville derivative definition of the order  can 

be described as follows: 
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Caputo derivative is defined as follows; 
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below. 
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While Riemann-Liouville) integration definition on function )(tf  can be described as follows:   
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where,   is the real positive. 

2.3.  approximation of fractional operators 

Fractional operators are usually approximated by high order rational models. As the result, a 

fractional model and its rational approximation have the same dynamics in a limited frequency band. 

General approximation of S  in frequency band ],[ hb   is the recursive distribution of zeros 

and poles proposed by Oustaloup. Trigeassou et al.[25] have suggested to use an integrator instead of a 

gain outside the frequency range ],[ hb   . 
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The bloc diagram of fractional integration approximated by equation (8) can be shown in figure 1 

[26].  

 

      Figure 1.   Block diagram of )(* SI  

Operator )(* SI  
is characterized by 6 parameters , where  

1 and 
N  

define the frequency range. 
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N is the number of cells(it is directly related to the quality of the needed approximation),and pulsations 

i  and 
i  

are related as follows; 
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A larger number N  is one of better approximations of the integrator )(SI . Since operator 

)(* SI  
is found by the product of cells, the state variables are defined as the output of each cell 

through figure 1 [26]. The state space model of this system is given as follows: 

BuxAxM 
 

  Equivalently it can be described as follows: 

)11(, 1*1*

**

BMBAMA

uBxAx

 



 

  where   

.,

0

0

,

000

0000

000

000

00000

,

1000

01000

0010

0001

00001

1

2

1

1

22

11



















































































































N

N

NN

N

x

x

x

X

G

B

AM









































 

Hence, the block diagram of state space model on the operator of fractional integration is represented in 

figure 2. 

 

Figure 2. Block diagram of state space model on the operator of fractional integration  

3. A novel offline and online parameter identification technique of non-linear fractional -order 
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systems 

3.1. The offline parameter identification of  non-linear fractional-order systems 

3.1.1. output error method  

Output error method is one of the visual parameter estimation methods which gives the same input 

to the estimation object and model, and minimizes the output error by means of least square.  

In output error method the parameter is represented as fractional equation unlike in prediction error 

method, so that it is nonlinear for the parameter to find it difficult in its analytical solution.   

As a result, nonlinear optimization iteration approach like gradient-based method should be available. 

On the other hand, because of the local minimum value in the output error method, applying the 

gradient-based method can converge to the local minimum value which is not the global minimum 

value. Fig. 3 shows the schematic diagram of the output error method. 

 

         Figure 3 .Principle diagram of output error method 

Parameter estimation of nonlinear system in the time domain is done with M  data pairs },{ *

kk yu . 

Where ku
 

is  the input value and 
*

ky  is the output value of real object. 

The objective function uses the following mean square error. 
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Here, )ˆ,(ˆ uyk
 is the output value of model system based on input signal u  and parameter 

estimation ̂ .Parameter estimation ̂  
giving minimum to the objective function can be found by 

using PSO-GA optimization method.In general, in case that the system of the object is given as the 

linear system or nonlinear integer system, parameter estimation is simple and easy to solve. 

3.1.2. Offline parameter identification by PSO method 

In D-order solution search space each point represents a solution called ‘particle’. At the initial stage 

the PSO method generates a random particle swarm and finds the optimal solution through several 

iterations.If the i -th particle position is represented as  idiii XXXX ,,, 21   , flight velocity as 

 idiii VVVV ,,, 21   , i -th particle optimum position as  idiii PPPP ,,, 21   and the optimum 

position among all particles as    gdggg PPPP ,,, 21   , the velocity and position of a particle can 
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be updated as follows; 

 

))((()))((())()1( 21 tXPrandctXPrandctVwtV igiiii           (13) 

)()()1( tVtXtX iii 
                                                    

(14) 

  Here,   Ni ,,1   

w  is the constant inertia weigh coefficient 

00 21  candc  are the moving step coefficients 

()rand  is  uniform random number in interval［0,1］.  

In equation, w  is coefficient to show the inertia on the previous flight of particle. 21 candc
 

are 

coefficients to control the maximum step in the  

optimum position flight direction of each particle itself and population. 

The flow chart of offline parameter identification by PSO method is shown below. 

 
        Figure 4. Flow chart of offline parameter identification by PSO method 

3.1.3. Offline parameter identification by GA 

Parameters of nonlinear fractional system can be effectively identified by using GA. First, we 

randomly create a group of parameter search and make an initial group by coding each individual in 

terms of decimal code. Second, we calculate the fitness value of each individual based on the analytic 

model of nonlinear system. Third, we get a next generation of population by using genetic operation 

(selection, cross-over and mutation) for each individual. After judgment of the terminal condition, if the 

evolution generation number reaches the maximum generation number of the initial step or if the 

optimal solution is obtained in a group of individuals, searching must be done or the above process be 

iterated. .Flow chart of offline parameter identification by GA is represented as follows; 
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            Figure 5. Flow chart of offline parameter identification by GA 

3.1.4. Offline parameter identification by hybrid PSO-GA  

Combination of GA and PSO can improve the convergence and global optimizing performance. The 

method that PSO is combined with GA is called the hybrid PSO-GA. Evolution operators of GA can be 

used to prevent premature convergence of parameter identification algorithm. Applying cross-over and 

mutation operations into PSO improves the global optimum and the population diversity. The hybrid 

PSO-GA can be used in offline parameter identification of nonlinear fractional system. First, we 

randomly generate the initial position and velocity of the population and set the maximum number of 

repetitions. Second, we calculate the fitness value of each individual of the population by using the 

fitness function. Third, we update the position and velocity of the particles by using equations (13) and 

(14). Fourth, by applying random selection, cross-over and mutation operations into the updated 

population, we get a new population and search for the optimal solution by using the fitness function.  

Fifth, if we get a reasonable value after judging the terminal condition, we end the searching; 

otherwise, we iterate the above process. Figure 6 shows the flow chart of offline parameter 

identification  using hybrid PSO-GA. 
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       Figure 6. Flow chart of offline parameter identification based on hybrid PSO-GA 

3.2. Online parameter identification of nonlinear fractional systems 

3.2.1. Online parameter identification  based on RLS    

Using RLS, the parameters of nonlinear fractional system can be identified online in real time. 

At the time of 1t , the normal least square estimation of parameter is expressed as follows;  




















1

1

1
1

1

)()()()()1(ˆ
t

k

t

k

T kykkkt 
                               

(15) 

 Giving the following symbol, 

       





1

1

)()()1(
t

k

T kktR                                                 
(16) 

 The following equations will be given; 

        





1

1

)()()1(ˆ)1(
t

k

kykttR 
                                        

(17)
 

       
)()()1()()()(

1

tttRkktR T
t

k

T  


                                
(18)

  

       
)()()()1( tttRtR T

                                             
(19) 

 Using equations (17), (18) and (19), the following relation can be given; 
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Meanwhile, in case of )(1 tRPt

  , the following recursive least square equation can be obtained. 
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Therefore, using (21), the parameters of nonlinear fraction system are identified online in real time.  

3.2.2.  Online parameter identification based on hybrid PSO-GA and RLS 

This paper presents a new online parameter identification method combining hybrid PSO-GA with 

RLS in order to improve the convergence and accuracy for online parameter identification of nonlinear 

fractional system. Figure 7 shows the flow chart of online parameter identification based on hybrid 

PSO-GA and RLS. 

   

    Figure 7. Flow chart of online parameter identification based on hybrid PSO-GA and RLS 

4. Simulation results 

4.1. Result of offline parameter identification of nonlinear fractional Lorentz system 

The state space model of nonlinear fractional Lorentz system is represented as follows; 
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This fractional state space model is a hydrodynamical equation used to consider the flow of heat in 

meteorology. Here, zyx and, represent the spatial coordinates and qand,,  are 

parameters to be identified.In simulation the true values of identification parameters are set to 
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be 98.0and30,67.5,12  q  and initial condition of coordinate set to be 

)1.0,1,0,1.0(),,( 000 zyx .Grunwald-Letnikov derivative is used and the step size is given 

as 001.0h . In addition, the fractional derivative is approximated by 7~2N for different 

cells in frequency of sradsrad hb /10and/10 13    . The followings are set to be 

searching range of parameters. 

1000,10

,2.10,550,80,230





hb

q





  

 

In MATLAB 2021a programming language, the hybrid PSO-GA is implemented and the simulation 

experiment is made. In simulation 50M  is given for the size of the initial population;
 

76.2and64.3,85.0 21  cc for the initial values of the inertia weight coefficient and 

the moving step coefficients, respectively; 0.8 for cross-over probability; 0.7 for mutation probability; 

500 for maximum genetic number. Tables 1, 2 and 3 show the simulation results using GA, PSO and 

hybrid PSO-GA, respectively. 

Table 1. Simulation result based on GA 

Cell 

number 

   


 

Std of  

  

 


 

Std of 

  

 


 

Std of 

  

 

q
 

Std of 

q  

 

J
 

 True 

value 

  12    -    5.67    - 30    -  0.98   -   - 

  2  10.54  3.56   5.31  0.97  29.53   1.04  0.97  0.08  2.26 

  3  20.37  3.07   5.57  0.31  29.48   0.26  0.97  0.02  0.55 

  4  14.93  6.43  5.62  0.66  29.57  0.27 0.98 0.03 0.78 

  5  13.54  4.02  5.68  0.43  29.98  0.20  0.98  0.05  0.43 

  6  13.98  4.38  6.11 0.58  31.07  0.97  0.99  0.21  1.39 

  7  12.75  4.21  6.47  0.51  30.03  0.84  1.00  0.09  1.02 

 

Table 2. Simulation result based on PSO 
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Cell 

number 

   


 

Std of  

  

 


 

Std of 

  

 


 

Std of 

  

 

q
 

Std of 

q  

 

J
 

 True 

value 

  12    -    5.67    - 30    -  0.98   -   - 

  2  10.93  4.47   5.31  0.56  27.90  0.36  0.95  0.25 1.07 

  3  14.37  3.91   5.53  0.17  29.73  0.05  0.97  0.02  0.09 

  4  12.27  1.27   5.66  0.05  29.85  0.09  0.98  0.03  0.07 

  5  12.01  0.93   5.67  0.09  29.99  0.06  0.98  0.07  0.07 

  6  13.35  2.57   5.74  0.25  29.12  0.22  0.99  0.08  0.08 

  7  14.88  2.34   5.82  0.33  29.53  0.26  0.99  0.12  0.15 

    

                   Table 3. Simulation result based on hybrid PSO-GA 

Cell 

number 

   


 

Std of  

  

 


 

Std of 

  

 


 

Std of 

  

 

q
 

Std of 

q  

 

J
 

 True 

value 

  12    -   5.67    - 30    -  0.98   -   - 

  2 11.97  1.53  5.60  0.32  29.14  1.25  0.99  0.12  0.05 

  3  13.32  2.16  5.62  0.11  31.05  1.73  1.00  0.08  0.04 

  4  12.05  1.27 5.69  0.18  30.05  0.21  0.98  0.26 0.04 

  5  12.01  1.12  5.67  0.13  30.01  0.15  0.98  0.03 0.01 

  6  12.04  1.35  5.67  0.22  30.08  0.38  0.99  0.07  0.02 

  7 12.03  1.74  5.68  0.17  30.16  0.20  0.97  0.14  0.03 
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In simulation experiment each method was repeated 30 times, respectively, with increase in the 

number of cells. As a result, in simulation experiment using hybrid PSO-GA, when the number of cells 

is 5, the least mean square error was given as 01.0J . From the above simulation experiment 

results, it can be seen that offline parameter identification method by hybrid PSO-GA is more effective 

in accuracy and convergence and better in performance than the other methods.   

4.2. Online parameter identification result of nonlinear fractional lithium-ion battery system 

This paper proposes the data tested in the system of NCR18650-1,2,3 type lithium-ion battery. The 

above 3 types of batteries are characterized by 3.7V for rated voltage, 2.8V for cutoff voltage, and 2422 

mAh , 2661 mAh, and 2855 mAh  for their capacities, respectively. Figure 8 shows the 

electrochemical impedance spectroscopy (EIS) curves of lithium-ion battery under the different state of 

charges(SOC). In the electrochemical impedance spectroscopy (EIS) test the amplitude of test signal is 

set to be 5mV, frequency range is 0.005 Hz~5000 Hz, and the SOCs of lithium-ion battery are 40%, 

60% and 80%, respectively. Figure 9 shows the hybrid pulse power characteristic (HPPC) test curve of 

lithium-ion battery. Discharge current of battery in the hybrid pulse power characteristic (HPPC) test is 

set to be 3A, the rest time is set to be 1h and the sample time of voltage and current is set to be 0.1s. 

Figure 10 shows the fractional order equivalent circuit model of lithium-ion battery. 

  

Figure 8. Electrochemical impedance spectroscopy (EIS) curves of lithium-ion battery under 

different state of charge(SOC) 
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Figure 9. Hybrid pulse power characteristic (HPPC) test curve of lithium-ion battery 

 

 

Figure 10. Fractional order equivalent circuit model of lithium-ion battery 

In figure 10, 1R is set for the ohmic resistor, 
2R for the concentration polarization resistor, 

2CPE for the constant phase element, 
0E for the open circuit voltage of the battery and 

0V for 

terminal voltage of the battery. Total impedance transfer function of the fractional equivalent circuit 

model of the lithium-ion battery is given as 

                       
SC P ER

R
RSZ




22

2
1

1
)(                            (23) 

 
where, 10,   R  . 

The state space model of nonlinear fractional lithium-ion battery system is represented as 

222

2
20

CPE

I

CPER

V
VDt

GL 




                             (24) 

                      
2100 VIREV 

  
                                     (25) 

where, and,, 221 CPERR  are parameters to be identified. 

In simulation experiment the searching range of identification parameters is given as 

10,40000,1.00,2.00 221  CPERR . 
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In a similar way to the above, the simulation experiment of hybrid PSO-GA was also made in 

MATLAB 2021a programming language.In this simulation, the size of initial population was given to 

be 200M , the initial values of inertia weight coefficient and moving step coefficient to be 

82.3,35.5,24.1 21  cc , the cross-over probability to be  0.75 and the maximum genetic 

number to be 1000. Table 4 shows the simulation result of the identification parameters of lithium-ion 

battery system under different SOCs. Figure 11 shows the online parameter identification result of 

nonlinear fractional lithium-ion battery system.  

              

Table 4.  Parameter identification result of lithium-ion battery system under different SOCs 

SOC 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

,1R  0.0380 0.0387 0.0378 0.0383 0.0380 0.0378 0.0389 0.0402 0.0401 

,2R  0.0083 0.0080 0.0101 0.0085 0.0102 0.0104 0.0113 0.0081 0.0082 

KFCPE ,2
 0.8021 0.8235 0.8783 0.8920 0.9012 0.9320 0.8149 0.9170 0.9348 

  0.7123 0.7015 0.6998 0.7310 0.7154 0.7062 0.6950 0.7012 0.7108 
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Figure 11. Online parameter identification result of nonlinear fractional lithium-ion battery system 

As a result of the above simulation experiment, the method proposed in this paper could be found to 

be more effective in accuracy and convergence and better in performance compared with PSO and GA, 

respectively. 

 Conclusion 

This paper establishes the fractional model of non-linear systems using approximated  fractional-order 

derivative and intelligent optimization methods and proposes a novel method to identify time-varying 

parameters of the fractional non-linear system offline and online. More accurate fractional state space 

model is established by applying approximated fractional order derivative into the state space model of 

the previous non-linear system. In addition, the above modeled initial parameter values of non-linear 

fractional system is identified offline by using the hybrid particle swarm optimization-genetic algorithm 

method. Also the time-varying parameters of the non-linear fractional order system are identified online 

in real time by using the output error technique and the recursive least square method. Finally, a new 

identification technique presented in this paper is verified through the simulation experiment for offline 

and online identification of the time-varying parameters in the existing nonlinear fractional Lorentz 

system and nonlinear fractional lithium-ion battery system. The simulation results show that the 

proposed identification method could be effectively used for the offline and online parameter 
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identification of many complicated non-linear fractional order systems in practice. 
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