
Improvement of control performance in the random vibration 

tester using fuzzy CMAC neural network 
Pyon Kwang Hyok*, Son Jin Song 

Faculty of Mathematics, Kim Il Sung University, Pyongyang, DPR Korea 

 

ABSTRACT 

These papers introduce control method of random vibration test using fuzzy CMAC (Cerebellar 

Model Articulation Controller) based on high learning power of CMAC and knowledge-expression of 

fuzzy. 

Proposed method is real time control method in time domain in some other way spectra method 

based on amplitude frequency response. 

 These papers establish the random vibration control theory to neglect the change of mathematical 

models of vibration testers according to its types and sizes, using fuzzy CMAC neural network. 

      Finally, its accuracy is proved through MATLAB SIMULINK simulation. 

 
Keywords: CMAC neural network, random vibration tester, variable structure control, sliding control, 

environmental test 
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1. Introduction 

The random vibration test is to simulate the actual environment of rocket (artificial satellite) during 

its flight. Now there are mainly two methods for control of random vibration testers. There are two 

methods such as spectra feedback method and waveform control method. These two methods have 

advantages and shortcomings respectively. 

The spectra method takes advantages that its control algorithm is simple, while its control isn’t so 

accurate, then waveform control method takes advantages in the view of control accuracy but control 

algorithm is complex. 

In the literature [1], the control scheme for random vibration testers by the spectral feedback is 

proposed, considering that the random signal control by controlling the frequency spectra of excitation 

signal in real time is more convenient than by servo feedback because input of the vibration testers is 

random. These methods are also proposed in many literatures such as [2,5]. 

Also, in many literatures such as [3,4], they mentioned that the waveform must be controlled to 

improve the control performance of the random vibration testers. 

In this paper, waveform control method of random vibration testers is considered. 

In recent years, to improve the accuracy of random vibration testers, many researchers have studied 

waveform control of random vibration signal and realized the anticipated results. 

Nowadays, to achieve the waveform control of random vibration signal, many optimal control 

methods are used. However, these optimal control methods presuppose exact model of random vibration 

testers or the model without uncertainty so it is difficult for these methods to be applied to the plant with 

uncertainty. 

In order to solve these problem high-learning CMAC is used control domain such as [7, 9, 10]. 

There are two main problems for linear optimal control- one is to determine the design goal in terms  

of performance index and another is for the plant with sharp variance of parameters. To overcome  
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these problems, there are model tracking control method based on model tracking principle and 

model reference sliding mode control method operating by sliding mode as the design method 

consideration of uncertainties in terms of parameters and model. 

However, these methods require boundary of uncertainty for the control plant during its design, so in 

this paper, based on the present research achievements, to achieve unknown control purpose in the 

design, variable structure control method for the random vibration testers using fuzzy CMAC neural 

network is proposed and proved. 

In Section 2 is mentioned mathematical modeling of random vibration test, in section 3 is mentioned 

design of random vibration test control system using fuzzy-CMAC. 

In section 4 is mentioned simulation result using MATLAB. 

2. Mathematical model of the random vibration tester 

In the vibration testers, the main plant is an exciter. 

To derive the transfer property of the exciter, let us assume as follows. 

(1) Attenuation and loss of the machine components are neglected because it is too small. 

(2) Effective resistance and inductance of the advance winding take the mean value because of some 

reasons such as permeability change of iron according to the effect between the advance winding and its 

surrounding metal construction, and flux density. 

(3) The ratio of the exciting force in terms of the currents BlΓ   is constant. 

(4) The body of the shake table is fixed so its motion is neglected. 

First, consider the advance winding. Assume that the driving winding consists of circuited loop, then 

it can be described as follows. 

 

Fig. 1. Equivalent circuit of the advance winding with one short-circuited loop 

From fig 1, we have the following differential equation 
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where MLLRR ,,,, 2121  
are resistance, inductance and mutual inductance in terms of stator and 

rotor respectively and P  is counter electromotive force coefficient owing to the motion of vibrator. 

Then, consider the moving part.  

The simplified structure of moving part equals as shown in fig 2. 

The kinetic state of shake table can be expressed using the dynamic model with 1 freedom and 

concentration parameter. (Fig 2-5) 
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Fig. 2. Dynamic model with one freedom 

 

 
Fig. 3. Simplified moving part 

Form Fig 2, the dynamic model of the moving part follows 

mgffkxtxctxm  용로)()(                          (2) 

where )(tf ro
 is Lorenz force then can be expressed as follows. 

BIlf ro                                              (3) 

Then, ),(spring xxf   is elastic force by suspension spring. 

This elastic force is determined linearly by Hooke’s law but the spring on the vibration testers is 

hard so it’s considered as linear one 

kxf spring                                                 (4)

 where k is elastic coefficient. 

From the above equations, we have the following differential equation model. 
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In the above equation, considering that 21, RR
 are so small, eq. (5) can be rewritten as follows 

guXfX  )(                                          (6) 

where  2IxxX   is state variable and g  is gain in terms of control input u . 

So in the case without testing plant, the system can be considered 3-order nonlinear system. 

 

3. Controller design of random vibration testers using CMAC neural network 

3.1. Design of the model tracking variable structure controller 

In this section, consider the proposed controller design of model reference variable structure 

controller. 

First of all, consider the structure of general model reference tracking control law. 

Linear stationary plant is as follows. 

( ) ( ) ( )x t Ax t Bu t                         (7) 

The required reference model is as follows 

( ) ( ) ( )m mw t A w t B r t                       (8) 

where 
nx R and 

nw R are state vectors of the plant respectively, 
mu R is control vector, 

rr R  is input vector, and , , ,m mA B A B
 
are matrices with suitable dimensions. 

Assume that ( , )A B  is controllable and all eigenvalues of system matrix for the reference model 

have negative real parts. 

Tracking error e is difference between state of the plant and one of the model, it is as follows. 

( ) ( ) ( )e t x t w t                             (9) 

In model reference method, this error must be converged to zero asymptotically. 

Differentiating error equation (9) in terms of time, it is as follows. 

( ) ( ) ( )e t x t w t                              (10) 

Then, dynamics of model tracking error system can be determined from eq (7) and eq (8). 

( ) ( ) ( ) ( ) ( )m me t Ax t A w t Bu t B r t                      (11) 

Adding and subtracting term )(tAw
 
in Eq (11), it is as follows. 

)()()()()()( tBtButwAAtAete mm 
                

(12) 

So it’s clear that perfect model tracking system can be determined in terms of given plant and model. 

If error is zero after arbitrary time t, we have the following error equation from Eq (7) and Eq (8). 

( ) ( ) ( )me t A BK e t 
                          

(13) 
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If ( , )Am B  is controllable pair, we can arrange the eigenvalues of the closed system matrix at the 

arbitrary locations, like this, we can regulate the convergence time of error. 

Detailed control law is as follows. 

  1 2( ) ( ) ( )u t u t u t 
                            

 (14) 

Separating into each element, it is as follows 

1( ) ( )u t Ke t 
                               

(15) 

2 ( ) ( ) ( )u t Fx t Gr t 
                            

(16) 

where F and G are matrices satisfying the model match condition. 

Based on the above, consider the variable structure controller design of model tracking control 

system with sliding mode. 

In general, performance of the system required in the design is defined by the model and the 

controller is designed to minimize the difference between model state and control system state. 

Here, the part of the control law- Eq (9) must be determined for the closed system to be robust in 

terms of both parameter variances from the plant and other external disturbance. 

Consider the stationary multi variable control plant expressed by Eq (1). 

Here the output of the plant must track the output of model Eq (8). 

Dynamics of model tracking system can be obtained from Eq (11) and adding and subtracting the 

term mA , it is as follows. 

)()()()()()( tBtButwAAtAete mm 
                

(17) 

The design goal is to determine the coefficient matrix of sliding hyper plane S and its discrete 

control law for state error so as to reach sliding hyper plane. 

Now, let us define the switching function in terms of error as follows. 

)()( tSeel                                 (18) 

So, the following hyper plane can be defined in the error vector space as follows. 

}0:{)(  SeRetSe n

                           
(19) 

When the closed system has its sliding motion, the error state satisfies the following equation. 

( ) 0Se t                                      (20) 

Differentiating this equation in terms of time and substituting Eq (19), it is as follows. 

))()()()()(()( trBtButxAAtAeSteS mm 
               

(21) 

If the matrix product SB is nonsingular, the equivalent control law during sliding motion can be 

determined from Eq (21). 

))()()()(()( 1 trBtxAAtAeSSBu mmeq  

                 
(22) 

Substituting this equivalent signal into model tracking error system Eq (17), it is as follows. 

))()()()()()(()( 1 trBtxAAtAeSSBBIte mm  
              

(23) 

Assume that matrix ( , , ,m mA B A B ) satisfies the model match condition. 

Comparing the dynamics of Eq (23) with the one of the reduced order sliding motion by the sliding 

invariance condition, it can be shown that its dynamic motions are equal. 

Therefore, considering that x and r are disturbance exerted on error system dynamics, the model 

match condition ensures that the dynamics of the variable structure error system with the sliding motion 

is insensitive to the disturbance.  

 

Finally, Eq (23) can be written as follows. 
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)()())(()( 1 teAtAeSSBBIte eq 
                     

(24) 

The error system with sliding motion is nearly equal to n-m order and the response is determined by 

n-m nonzero eigenvalues of Eq (24). 

To attenuate error fast enough during the sliding motion, n-m eigenvalues must be arranged far away 

from imaginary axis in the left half plane of complex number sufficiently. 

On the other hand, if the matrix pair ( , )Am B  is given, the sliding hyperplane matrix S can be 

found. If a suitable hyperplane matrix S and nonlinear control structure using unit vector are chosen, we 

can determine controller parameters in order to lead the error vector to zero space of the matrix S and 

keep it in the subspace S of the sliding surface. 

Also, m eigenvalues associated with the parameter matrix Φ for controller parameters determine the 

velocity of the error state to reach into sliding surface. 

2

m mP R   is a symmetric matrix which satisfies Lyapunov equation 

2 2

TP P I 
                               

(25) 

Then, the part of error feedback 1u
 
in Eq (14) is defined as l nu u . 

Here, each part is as follows. 
1( ) ( ) ( )l mu SB SA S e t  

                               
(26) 

1 2
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(27) 

Finally, the model tracking variable structure control law is as follows. 

2( ) ( ) ( ) ( )l nu t u t u t u t  
                              

(28) 

The scalar function ( , )t e  multiplied before unit vector component is only related to the amount of 

uncertainty and it must be defined by the amount of uncertainty as follows 

1 2 3 2
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3 2
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lS M k x t k k u t t x
t x

k k B
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
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(29) 

where 2  is design parameter. 

As shown in Eq (29), if the information for uncertainty of the plant is given, we can calculate 

minimum boundary of ( , )t x  to keep the sliding motion using it. 

But when the uncertainty boundary of disturbance is not clear in the design, strong assumption for 

disturbance amount increases the control effect thus the amplitude of the high frequency near the sliding 

hyper plane becomes bigger, and otherwise weak assumption can’t ensure the quality of the reach 

process as parameter ( , )t x  then it can’t satisfy the condition 0ss   by the effect of disturbance. 

Thus, in order to be satisfied reach condition to sliding hyper plane under the disturbance, it’s useful 

to change parameter ( , )t x  according to s  and s  in order to satisfy the condition 0ss  . 

Therefore, in the next part, a method that changes ( , )t x  according to s  and s  using fuzzy 

CMAC neural network. 

3.2. Design of the variable structure controller by fuzzy CMAC neural network 

Here, it is considered how to design the controller if the amount of disturbance is not defined in 

design as proposed before. 



6 

 

Let us define 
21

2
V s

 
as Lyapunov function, then V ss . 

The fuzzy control rule can ensure asymptotic stability with designing the switched control input to 

satisfy the reach condition 0ss   based on Lyapunove condition 0V   and the condition for stable 

surface 0s s  . 

The fuzzy control rule is based on the following sliding control principle for the standardized phase 

plane. 

Condition 1: The switching control input must be negative on the sliding surface but positive outside 

the sliding surface. 

Condition 2: With the increment of distance between actual state and sliding surface, the absolute 

value of the switching control input must be increased. 

Based on the above conditions, the fuzzy control rule changing the switching control input 

adaptively is as follows. 

Rule 1: IF S P  AND DS P  THEN 
fsU NH  

Rule 2: IF S P  AND DS Z  THEN 
fsU NB  

Rule 3: IF S P  AND DS N  THEN 
fsU NM  

Rule 4: IF S Z  AND DS P  THEN 
fsU NS  

Rule 5: IF S Z  AND DS Z  THEN 
fsU ZE  

Rule 6: IF S Z  AND DS N  THEN 
fsU PS  

Rule 7: IF S N  AND DS P  THEN 
fsU PM  

Rule 8: IF S N  AND DS Z  THEN 
fsU PB  

Rule 9: IF S N  AND DS N  THEN 
fsU NH  

Rule 1 is derived from the condition that the biggest switching control input is required for the 

sliding mode condition if the sliding variable s is on the sliding surface and differentiation of s is 

positive.  

Rule 5 is derived from the condition that the switching control input must be zero if the sliding 

variable s is on the sliding surface and differentiation of s is zero. 

Other fuzzy rules can be defined in the same way. The standardization coefficients NS, NDS and NK 

are defined by trial and error according to the practical control problems. S and DS use the Gaussian 

functions. 

Unlike the traditional CMAC neural network, the fuzzy CMAC neural network uses fuzzy logic. 

The difference between the fuzzy CMAC neural network and the traditional neural network is that 

the membership function guides associative cells. In other words, functions in the output field are 

defined in the real field (0, 1]. 

Fig 4 shows the example of two-dimension fuzzy CMAC 
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Fig 4. The structure of two-dimension fuzzy CMAC 

where 9gn  . The mapping method is the same as one in the traditional CMAC. 

The output of fuzzy CMAC neural network is as follows 
1

0

gn

j i

i

r w 





                                

(30) 

where j is the corresponding storage address for i and is defined as follows. 

1, 2,i i i  
                                

(31) 

where 
,k i  is the i

th
 membership value of k

th
 input in the middle layer M. 

Cost function is as follows. 

2

2

1
sJ   

The weight adjustment law is designed as follows. 

1 ( )j j iw w s x   
                             

(32) 

-The design scheme of the variable structure controller based on the proposed fuzzy CMAC neural 

network 

Step 1: initial step 

All storages of fuzzy CMAC neural network are initialized. 

Step 2: mapping from X space to A space 

As inputs of the fuzzy CMAC neural network, quantized s and its differentiation and membership 

values for 9 rules are calculated. 
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Step 3: output 

Using Eq (29), the output of the fuzzy CMAC neural network is calculated and sent out. 

Step 4: learning 

At the end of each control period, quantized s and its differentiation are used as input variables and 

the switching function s is used for learning of the fuzzy CMAC neural network by Eq (31). 

Step 5: go back to step 2. 

 

4. Simulation example 

The proposed control scheme is applied to the random vibration testers. 

Table 1.                       The characteristic values of the random vibration tester 

Maximum exciting force 2. 8kN 

Maximum variation of the exciter 30mm 

Boundaries of the control input 6V 

Sensitivity of the sensor 11mV/g 

Disturbance characteristics of the sensor 0. 2mV, white noise 

Mass of the moving part 3. 2kg 

Mass of the testing product 0. 85kg 

 

Table 2.                The characteristic values of the suspension spring 

Coefficient of elasticity K 3. 5e3 N/m 

Constant h 1. 037e7 N/m
2 

Constant E 1. 29e2 N/m
3 

Inertia moment J 1. 301e2 Kgm
2 

Coefficient of friction C 0. 2 Ns/m 

 

The transfer function model of the random vibration tester is given as follows 

)2)((
)(

2

22

2

1

2

 


SSS

KS
SG                       (33) 

where 6000,15.0),/(1400 ),/(14 21  Ksradsrad  . 

The reference model of the random vibration tester is as follows 

)2)((
)(

2

22

2

1

2

mmm

m
SSS

KS
SG

 
                    (34) 

where 6000,1),/(3600 ),/(14 21  Ksradsrad mm  . 

Changing the transfer function into the state space model, we have as follows 

)(

)()()(

tCxy

tButAxtx




                                           (35) 

where 
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In the same way, changing the transfer function of the reference model into the state space model, it 

is as follows 
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Then, arranging both poles at (-50, 0) so that two eigenvalues of Aeq can be located far away from 

the imaginary axis, we can get S = [2500 100 1]. 

 

Using Eq (16), (27)-(30), the control law can be determined as follows 

 

 

1

2 2

3

1

2

3

( ) ( ) ( ) ( ) 9.38e5 2.15e4 3.76 +

-7.96e5 -1.83e4 -3.55 2 ( , ) ( )

l n

e

u t u t u t u t e

e

x

x r x t sign s
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 
 

    
 
  

 
 

  
 
                 (37)

 

The fuzzy membership function sets as Gaussian membership function. 

To prove the robustness and disturbance rejection of the sliding controller, we changed the plant 

parameters in the boundary of 30% and the random signal that its mean value is zero and the variance is 

1, is exerted on the output of the plant as disturbance. 

Then ( , )x t  is determined by the proposed fuzzy CMAC neural network. 

Matlab Simulink configuration in Fig 5 shows in more detail. 
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Fig 5. Synthesis Simulink configuration of the proposed control scheme 

In a few words, the random signal and sine signal are used as the testing signal and the simulation 

result with the random signal is of importance because it is a random vibration tester. 

The one next to the input signal is a filter, which is designed suitable for the mission of random 

vibration tester with the bandwidth of 5-2000Hz. 

 

Fig 6. The sliding controller Simulink configuration by the fuzzy CMAC neural network 
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Fig 7. Spectral and tracking curve ( 6000,7.0),/(13002  Ksrad  ) 

The error characteristics according to the testing product are as follows 

The results by the Zikhonov method are presented in [11]. 

Table 3.                                       Simulink results for various cases 

No 2    Time domain,

 % 

Frequency domain, dB 

Tikhonov Propose method 

1 1400 0.8 3 0.76 0. 25 

2 1300 0.7 3.2 0.68 0. 27 

3 1250 0.6 3.9 0.72 0. 33 

4 1100 0.5 4.1 0.69 0. 35 

As shown through the simulation, novel proposed control scheme has bigger errors in the learning 

process of the CMAC neural network but smaller one after learning than the traditional control scheme. 

In addition, the simulation results show that the proposed method has a lower frequency domain error 

than the Zikhonov method presented in [11]. 

These papers establish the random vibration control theory to neglect the change of mathematical 

models of vibration testers according to its types and sizes, using fuzzy CMAC (Cerebellar Model 

Articulation Controller) neural network. 

5. CONCLUTION 

In the paper, we have done the mathematical modeling of the random vibration test system and 

framed the control algorithm using the fuzzy CMAC neural network based on it. Finally, using 

MATLAB SIMULINK, we have constructed Simulink configuration and simulated so proved the 

effectiveness of the proposed method. 
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