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ABSTRACT 

 This paper analyses the disturbance error coefficients for the active disturbance 

rejection control(ADRC) system and proposes a new method to improve the disturbance 

rejection performance using the m-th order extended state observer(ESO) in order to 

guarantee the high-precision stabilisation performance of control systems. Using the 

first order extended state observer in the ADRC system, the disturbance rejection 

performance is limited due to the disturbance error coefficients. As well, the m-th order 

extended state observer was hardly used for the active disturbance rejection control. In 

this paper the relationship between error coefficients and gain coefficients of observer 

and the relationship between error coefficients and natural angular frequency of 

observer of the ADRC system are analysed for the plant representing in the canonical 

form according to the extended state order m, and the disturbance rejection performance 

on the constant, ramp, parabolic and harmonic disturbances is analysed comparing with 

the results in [32]. The proposed method shows that the constant, ramp and parabolic 

disturbances are rejected perfectly according to the increase of extended state order m 

while the rejection performance is improved for the harmonic disturbance of the same 

frequency by the multiple of m. Taking the merits of principle and method of ADRC 

and introducing the m-th order ESO the disturbance rejection performance can be 

improved by making the error coefficients to be ‘zero’ according to the extended state 

order m. 
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1.  Introduction 

Recently it is of great importance to improve the disturbance rejection performance 

according to the increasing requirements on the tracking precision of control systems [1]. 

In case that the reference signal and disturbances are measurable or observable, the 2-

DOF control would satisfy the requirements of disturbance rejection performance [2].  

Robust control and adaptive control are effective for the unstructured internal 

uncertainties with the bounded parameter variations [3, 4]. The methods to reject the 

disturbances were proposed by using the internal model principle and estimating the 

disturbances with observer for the specific structured disturbance model [5]. Recently 

the ADRC has attracted the interest of control system developers, which is to reject the 

‘total disturbance’. The ADRC method has the robustness on the parameter uncertainties, 

total attenuation capability on the external and internal disturbances and the high 

adaptive capability on the linear and non-linear plants [6, 7]. A method to represent the 

non-linear control plant in the canonical form with the integral chain structure through 

some transforms is researched in [7, 8]. Stability was analysed in the frequency-domain 

for the ADRC on the non-linear time-varying plant with the uncertain dynamic 

characteristics in [9, 10], and the root locus analysis, describing function method and 

extended circle criterion were used to analyse the stability of the fast tool servo system 

in the frequency-domain in [11]. Stability of ADRC systems was researched using non-

linear ESO including the fal function or sat function in [14, 15] and most of the other 

references. Convergence of the (n+1)th order ADRC system for the plant with unknown 

dynamics was proven, and the robustness and the effect of natural angular frequency of 

observer on the stability and disturbance rejection were analysed in ADRC system with 

uncertain parameters in [12]. The ESO-based ADRC was studied for the linear system 

with initial errors in [13], and the position vector control system of PMSM was designed 

based on the active disturbance rejection controller using the fal function, and the 

ADRC and velocity compensation controller for the automatic take-off of unmanned 

aerial vehicles under the various wind conditions were designed in [14, 15]. Missile 

guidance law using the ADRC was introduced in [15] by focusing on the 3-dimensional 

guidance in case that the response of autopilot has delays. In [16] the uncertainties in 

plant and sensors were treated using the adaptive extended state observer(AESO)-based 

ADRC, and the automatic estimation method was proposed to reduce the estimation 

error on the state and measuring noise. The ADRC method was studied for MIMO 

systems in [7, 17]. In [18] the ADRC of high precision servo system was designed to 

overcome the creeping phenomenon of friction influencing the low velocity 

performance, and the axis of MEMS gyroscope was driven to resonate and regulate the 

output amplitude of axis by the ADRC method. [19] showed that selecting the 

appropriate resonant frequency can reject the sinusoidal disturbances perfectly and 

implement the ideal reference signal tracking in steady state. The robust absolute 

stability of the interval non-linear active disturbance rejection-based control system was 

analysed in [20], and the condition disturbance negation(CDN)-based ADRC was 
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proposed to introduce a  method to control the velocity and altitude tracking system of 

the flexible air-breathing hypersonic flying vehicles in the presence of various 

uncertainties and disturbances in [21]. The ADRC method was studied to implement the 

practical output tracking in some non-linear systems in the presence of matched and 

mismatched uncertainties including the unknown internal systematic dynamic 

uncertainties, external disturbances and the uncertainties occurred by the difference 

between control parameters and their nominal values in [22]. The boundary stability of 

the 1-dimensional instable wave equation influenced by the boundary disturbance was 

studied in [23], and the ADRC with the actuators saturation characteristics was proposed 

to reduce the load on the wind turbine drive chain under the condition that the wind 

speed is slower than the nominal wind speed in [24]. Active control method was 

proposed to reject the disturbances in the mixed energy source systems used for the 

mixed electric car in [25], and the enhanced ESO-based control method was proposed to 

reject the disturbances due to the mismatched uncertainties and external disturbances in 

the systems without the integral loop in [26]. The fractional-order ADRC method was 

applied for the precise trajectory tracking and position decision control of the newly 

designed linear electric motor in [27]. ADRC proposed in [28] has considered the 

external disturbance and internal uncertainties as total uncertainties, and designed ESO 

to estimate them in real-time. The practical application is more studied than the 

theoretical research on the ADRC methods [29-31]. One of the features of ADRC is that 

it treats the external disturbance and the uncertainties totally in the plant model, and the 

other one is that it depends rarely on the model and doesn’t require the high gain, and it 

estimates and compensates the real values of the ‘total disturbances’ using state observer 

[6, 7]. The fundamentals in the ADRC structure are the canonical form of cascade 

integrator and the state observer, and its core is ESO [7]. However the cybernetic 

analysis is not sufficient on the error coefficients in the ADRC system. The differences 

between extended state variables and the extended state observation variables were 

evaluated in the most references including [7]. Practically the error of system doesn’t 

reduce even though the difference between the extended state variable and extended 

state observation variable is very small. The stability and error of control system should 

meet the required features only by the structure of the system independent of the input 

signals and disturbances acting on the system in the analysis and design of it. Hence the 

performance analysis and design of the ADRC system should be done on the basis of 

structural analysis of the system. However the performance analysis of disturbance 

rejection of the ADRC was rarely studied based on the analysis of error coefficients. 

Analysing the error coefficients of ADRC is important in raising the performance of 

disturbance rejection. 

In this paper, the disturbance rejection performance of the ADRC system is analysed 

with respect to the disturbance error coefficients and the method is studied to improve 

the disturbance rejection performance. 

Firstly, it is shown that the canonical (n+1)th order ADRC system becomes the system 

of the 1st order astatism with respect to the disturbance error while the canonical 



(n+m)th order ADRC system becomes the system of the m-th order astatism with 

respect to the disturbance error. 

Secondly, it is shown that the error coefficients are inversely proportional to the 2m-th 

power of the natural angular frequency of observer according to the increase of m in the 

canonical (n+m)th order ADRC system. 

Thirdly, it is shown that the harmonic disturbance error is proportional to the m-th 

power of the ratio of the harmonic disturbance frequency to the square of the natural 

angular frequency of observer when the natural angular frequency of observer is greater 

than the harmonic disturbance frequency. 

The paper consists of the following sections. 

Section 2 makes the error model of the (n+m)th order ADRC system, and section 3 

studies the relationship between the disturbance error coefficients and the gain 

coefficients of observer for the (n+m)th ADRC system. Section 4 analyses the effect of 

frequency in the (n+m)th linear ADRC system. Section 5 studies the stability of ADRC 

system using the m-th ESO. Section 6 compares and evaluates the errors on the constant, 

ramp, parabolic and harmonic disturbances according to the extended state order m with 

the results of [32]. Section 7 provides the corresponding conclusion. 

Results show that the disturbance rejection performance is improved greatly in the 

(n+m)th order linear active disturbance rejection control(LADRC) than in the preceding 

LADRC. 

2. Disturbance error model in the (n+m)th order active disturbance rejection 

control system 

To consider the problem simply while preserving the generality the model proposed in 

[7] is adopted. 
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Where )],,,[)(()( 21

nT

n RxxxtXtX    is the state vector, ))(()( Rtyty   is the 

observable output signal, ))(()( Rtutu   is the control input and ))(()( Rtutu   is the 

undefined non-linear function. Here the disturbance error coefficients are discussed in 

the problem where output signal )(ty  tracks the reference signal )(tr . 

Assumption 1. The nominal value of b  is 0b , and b  is uncertain parameter satisfying 

],[,0 maxmin 
bbbb  . 

Assumption 2. Eq.(1) is represented as the canonical form of the linear chain of 

integrators from [7]. 

Assumption 3. m is the extended order of system. 

Assumption 4. Eq.(1) is controllable by the feedback control. 



Assumption 5. External disturbance )(td  is introduced from [19] and can be 

considered to the extended order as follows. 
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Where )(1 td  is aperiodic disturbance, 
1i  is maximum of derivative of )(1 td  , the m-th 

order derivative of )(1 td  is zero. 

 )(2 td  is harmonic disturbance, and )( AAA   and )( ddd    are amplitude and 

angular frequency of )(2 td . ,1i A  and d  are uncertain quantities. 

Assumption 6. In Eq.(1) considering the Assumption 1 and Assumption 2, lump 

disturbance 

ubtbtdtxtxtxFtbdFw n ))(()())(),(),((),,,( 021                      (3) 

reflecting the internal uncertainties and external disturbances satisfies Lipschitz 

condition. 

Assumption 7. To analyse the error coefficients and evaluate the disturbance rejection 

performance for the active disturbance rejection control system, the reference signal is 

assumed as follows: 0)( tr  
From Eqs.(3) and (1) can be written as 
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In Eq.(4), denoting the extended state variable )(1 txn  as 

)(),,,()(1 thtdbFwtxn                                                      (5) 

and differentiating  Eq.(5) m times, and then substituting into  Eq.(4), it can be 

represented as the canonical m-th order extended state model. 
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Where m  is the extended state order and 
)(mh  is the m-th order derivative of )(th . 

The m-th order extended state observer on Eq.(6) can be represented as 
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Where )(ˆ txi  is the state vector of observer, )(ˆ ty  is the output signal of observer and 
i  

is the gain coefficients of observer whose characteristic polynomial imn
mn

i

i

mn ss 

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1

  

satisfies the Hurwitz criterion. If the disturbance on the control plant can be observed 

from the ESO the control law is represented as 
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Where )(ˆ
1 txn  is the observation value of )(1 txn . 

In Eq.(8), let’s denote the control law refu  as follows. 
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Where 
if  is the state feedback coefficient, and )()()( txtrte iii   is the i-th state error 

of the system. Considering the Assumption 7, Eq.(9) is represented as follows. 
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Substituting Eq.(11) into Eq.(4), 
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Substituting Eq.(11) into Eq.(7), 
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Using Laplace transformation of Eq.(12), )(sE  can be found as 
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Where )(,)( sWsE  and 
1
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nX  are the Laplace transformations of )(,)( twte  and 1

ˆ
nx .  

Let’s represent the observer error as 
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Using the Laplace transformations of Eqs.(13) and (15) the observer error can be 

written as 
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On one hand, from the Laplace transformation of the (n+1)th order term to the (n+m)th 

order term for Eq.(13), the extended state value  )(ˆ
1 sXn

 can be found as 
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Substituting Eq.(16) into Eq.(17), 
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On the other hand, substituting Eq.(18) into Eq.(14) the error model of LADRC system 

can be found as follows using the m-th order extended state observer. 
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3.  Analysis of disturbance error coefficients in the (n+m)th order linear active 

disturbance rejection control system 

From Eq.(19) the error transfer function from the lump disturbance to the error is as 

follows. 
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Where )(sew  is the error transfer function on the disturbance. 

The error coefficients in Eq.(20) are represented as follows. 
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Where iC  is the error coefficients and (s)ew  is the transfer function from disturbance 

to error. 

The following results can be found from Eq.(21). 

Remark 1. The canonical (n+1)th order ADRC system becomes the system of the 1st 

order astatism with respect to the disturbance error when 1m , and the system can’t 

make the disturbance error to be ‘zero’ on the other disturbances besides the constant 

disturbance theoretically. Let’s analyse the disturbance error coefficients for several 

systems. 

1) For 1,3  mn  

The disturbance error transfer function of ADRC system from Eq.(20) is as follows. 
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Where 
,3016 fbA  
 

,2030125 fbfbA  
 



,1020130234 fbfbfbA  
 
,10120230343 fbfbfbA  
 

,1022033042 fbfbfbA    

,1032041 fbfbA  
 

,4100 fbA   

,14 C  ,13 C  ,22 C  ,31 C  

2) For 1,2  mn  

The disturbance error transfer function of ADRC system from Eq.(20) is as follows. 
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Where 
,2014 fbA    

,1020123 fbfbA    
,10120232 fbfbA    

,1022031 fbfbA    
,1030 fbA   

,13 C    ,12 C    21 C  

3) For 1,1  mn  

The disturbance error transfer function of ADRC system from Eq.(20) is 
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Where 
,1012 fbA    ,11021  fbA   2100 fbA   

,12 C  11 C  

From Eqs.(22)-(24) the disturbance error coefficients using Eq.(21) can be found as in 

table 1. 

 

table1.   Error coefficients according to the plant order in LADRC 
Plant 

order 

Error  
Coefficients 

1,1  mn  1,2  mn  1,3  mn  

dC0  0 0 0 

dC1  
,

21

1





f  
,

31

2





f  
,

41

3





f  

dC2  0  0  0  

Remark 2. Canonical (n+m)th order LADRC system becomes the system of astatism 

of the m-th order with respect to the disturbance according to the extended state order m. 



1) For 1 1,  mn  

From Eq.(20) the disturbance error transfer function of system is same as  Eq.(24). 

2) For 2,1  mn  

From Eq.(20) the disturbance error transfer function of system is represented as 
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Where 
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,21031  fbA   

,3100 fbA      
,13 C     ,12 C  

3) For 3,1  mn  

From Eq.(20) the disturbance error model of system is as follows. 
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where  

,114 bfA    
,1123  bfA   
,2132  bfA   

,3141  bfA   
,410 bfA   

1,4 C  ,13 C  

From Eqs.(24)-(26) the disturbance error coefficients using Eq.(21) can be found as in 

table 2. 

 

table 2.  Error coefficients according to the extended state order m  in 

LADRC 

Plant 

Error 
Coefficients 

11,  mn  2,1  mn  3,1  mn  

dC0  0 0 0 

dC1  
,

21

1





f  
0 0 

dC2  0  
31

12





f  
0 

dC3  0  0  
41

13





f  
 

Corollary. Canonical (n+m)th order ADRC system can make the disturbance errors up 

to the m-th order to be ‘zero’ theoretically. 



4.   Analysis of frequency effect in the (n+m)th order LADRC system 

4.1. Analysis of Effect of Natural Angular Frequency in the (n+m)th Order 

LADRC System. 

Remark 3. Error coefficients of the canonical (n+m)th order LADRC system are 

inversely proportional to the 2m-th power of the natural angular frequency of observer. 

To explain the Remark 3 the error dynamics of the system can be found from Eqs.(6) 

and (7) as follows. 
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Where ))(ˆ)()()(( txtxtxtx iiieie   is the error state variable of observer. 

The characteristic equation of Eq.(27) is expressed as 
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)(                         (28) 

Where )(sDC
 is the characteristic equation of observer. 

From the Hurwitz criterion characteristic polynomial 
mn

CssD  )()(0C                            (29) 

the gain coefficients of observer can be written as 
i

Ci  i                              (30) 

Where 
i  is binomial coefficient and 

C  is the natural angular frequency of observer. 

The characteristic equation of Eq.(12) can be written as 


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0)(                          (31) 

From Hurwitz criterion characteristic polynomial 
nssD )()( 00                             (32) 

the coefficients of controller can be written as 
i

if 0i                                (33) 

Where 
i  is the binomial coefficient and 

0  is the natural angular frequency of 

controller. 

Let’s set the relationship between the natural angular frequencies of controller and 

observer as 

0 CC k                              (34) 

Where 
Ck  is a scale factor and given by the designer. 



Applying the results of Eqs.(30), (33) and (34) to table 2 gives the following table.  

 

 

table 3.  Error coefficients according to the natural  

angular frequency in the (n+m)th order LADRC 

Plant 
Error 

Coefficients 
1m  2m  3m  

dC0  0 0 0 

dC1  
,

2
2

C

Ck

  
0 0 

dC2  0  4

26

C

Ck


 

0 

dC3  0  0  6

12

C

Ck

  

4.2. Analysis of the Harmonic Disturbance Rejection Performance in the (n+m)th 

Order LADRC System. 

Remark 4. The maximum value of error on the harmonic disturbance is proportional to 
m

C

d

Ck 












2

  for 
Cd    in the canonical (n+m)th order LADRC system. 

From Assumption 2 and Eq.(2), the maximum value of the harmonic disturbance 

according to m is written as 
)1(
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


i

di Ad                             (35) 

Where ),1( mii   is the order of the derivative on the disturbance 
2d . 

From Eqs.(35) and (21) the maximum value of error on the disturbance 
2d  can be 

written as 
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From Table 3 and Eq.(36) the maximum harmonic disturbance error according to the 

increase of m  is illustrated in table 4. 

 

table 4.  Maximum value of the harmonic disturbance error according to the order m  
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5.   Stability of LADRC system using the m-th order ESO 



The dynamics of ADRC system depends on ),,,,( 21 txxxF n , where the m-th order ESO 

is combined with the plant with unknown dynamics. 

Combining Eqs.(12) and (13) into simultaneous equations 
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System of Eq.(37) will be stable provided that the gain coefficients i

if 0i  of 

controller satisfying Eqs.(30)~(33) for 0)( tw  and the gain coefficients i

Ci  i  of 

observer are determined. For 0)( tw  the proof on the stability can be referred from [7, 12, 

32] if )(tw  satisfies the Lipschitz condition. 

6.   Simulation results 

6.1 Simulation on the Disturbance Error Feature according to the Extended 

Order. 

For simulation and analysis the model of the control plant is given as 


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Disturbance d  contains the constant, ramp, parabolic and harmonic disturbances from 

Eq.(2). 
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For dx 2
 and 3m , the m-th order extended state model is as follows. 
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The ESO is as follows. 
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The ADRC law and control law of regulator are designed by the proposed design 

method and can be written as 
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Where 0r  is reference signal, and 
1k  and 

2k  are the transfer coefficients of 

controller, and 1100, 21  kk . 

Values of 
i  according to the extended state order are given in table 5. 

 

table 5.
i  according to the extended state order and the angular velocity. 

 

 

 

 

 

 

 

 

 

 

 
Figure1.  Block diagram of the system designed by the proposed method. 

 

The transient and tracking features of the system are as follows. 

 

                     
Figure 2.  Features of the proposed system(transient feature on left, velocity tracking 

feature on the right) 

In Eq.(39) the simulation conditions on the disturbances are ,10f ,s/1101f 

,s/110 22f ,1A s/110dω . 

(1) Constant disturbance rejection feature according to m   

m 
Values of iβ  for sωC /130  

1β  
2β  3β  

4β   

1 302   
230  

   

2 303   
2303   

330  
  

3 304   
2306   

3304   
430   

4 305   
23010   

33010   
4305   

530  
 



 

 
Figure 3.  Constant disturbance rejection feature according to m . 

Fig 3 shows ESO is astatic on the disturbances. 

 

(2) Constant ramp disturbance rejection feature according to m   

 

 
Figure 4.  Constant ramp disturbance rejection feature according to m . 

Fig 4 shows the 1st order ESO is 1st order astatic on the disturbances. 

 

(3) Constant parabolic disturbance rejection feature according to m   

 

 
Figure 5.  Constant parabolic disturbance rejection feature according to m . 

Fig 5 shows the 2nd order ESO is 2nd order astatic on the disturbances. 

 

(4) Harmonic disturbance rejection feature according to m  



 
Figure 6.  Harmonic disturbance rejection feature according to m . 

Fig 6 shows the harmonic disturbance rejection performance of the m-th order ESO is 

getting better according to the increase of m . 

6.2 Comparison of the Proposed Design Method with the Preceding ADRC 

System. 

The design and simulation data in [32] are used to compare and evaluate the feature of 
the proposed design method. 

The system model in [32] is as follows. 
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Where   1,3,5.0/,2,1;2,5.0)(,1)( 00  bbbiatdtd i
. 

For )()()( tytrte  , the controller can be written as 

12213
~~~)( ekeketu 
                         (44) 

The controller parameters are 41 k  and 42 k . 

From [32] the parameter uncertainty and disturbance conditions are given in table 6. 

 

 

 

table 6.  Parameter uncertainties and disturbances for comparison. 

No  Item 1a  2a  b  C
 )(td  

1 11C  -0.1 2 0.5 30 )08.0sin( t  

2 22C  0.6 -0.8 1.3 30 )1.0sin( t
 

3 43C  -1.6 -0.5 2.1 30 1 



The (n+m)th order ADRC system can be designed for the  (43) are compared with the 

(n+1)th order and (n+2)th order ADRC as follows. 

 

 
Figure 7.  Feature comparison for 11C (1-for n+1, 2-for n+2). 

 

 
Figure 8.  Feature comparison for 22C .(1-for n+1, 2-for n+2). 

 

 
Figure 9.  Feature comparison for 43C . 

 

 

Comparing with the results in [32] the disturbance rejection performance for 2m  is 

given in table 7. 

table 7.  Comparison with [32] for 2m . 
Item 11C  22C  43C  

Ratio of 
Disturbance 

Rejection 

34.7 

times 

58.82 

times 
- 

Fig 7 and Fig 8 show that the disturbance rejection performance has been improved 

further for 2m  than for 1m . 



Fig 9 shows that uncertainties independent of time change and the constant 

disturbances can be removed totally by the active disturbance rejection performance. 

7.   Conclusion 

In this paper, the error coefficients of the ADRC system were analysed using the m-th 

order ESO to guarantee the high-precision tracking performance of the control system 

and a method is proposed to improve the disturbance rejection performance. 

Corresponding analysis has evaluated the relationship between the error coefficients and 

the gain coefficients of observer, the relationship between the error coefficients and the 

natural angular frequency of observer and the relationship between the error coefficients 

and the frequency of harmonic disturbance. Results show that the proposed method has 

overcome the limitation of the first order ESO that the disturbance rejection depends 

only on the increase of natural angular frequency of observer by using the m-th order 

ESO and the disturbance rejection performance can be raised by changing the natural 

angular frequency of observer and the error coefficients simultaneously according to m. 

The disturbance rejection capability of the system using the m-th order ESO has been 

confirmed through the simulation and comparison. It has been verified that using the m-

th order ESO is an advanced method to raise the disturbance rejection capability of the 

system in the ADRC system. 
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