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Abstract. A new non-Archimedean approach to interacted gunarfields is presented. In proposed approach,
a field operatop(x, t) no longer a standard tempered operator-valuedhditibn, but a non-classical operator-
valued function. We prove using this novel approtett the quantum field theory with Hamiltoni&typ),

exists and that the correspondifiy algebra of bounded observables satisfies all tegHKastler axioms
except Lorentz covariance. We prove thatibe*), quantum field theory model is Lorentz covariant.

L.Introduction

Remind that extending the classical real numets include infinite and infinitesimal quantitiesiginally
enabled D. Laugwitz [1] to view the delta distrilout§ (x) as a nonstandard point function. Independently A.
Robinson [2] demonstrated that distributions cdaddviewed as generalized polynomials. Luxemburgf&]
Sloan [4] presented an alternate representatidesbfbutions as internal functions within the aaxttof
canonical Robinson's theory of nonstandard anallgsisfurther information on classical nonstandeal
analysis, we refer to [5]-[7]. The technique of namslard analysis (NSA) in constructive quantundfisleory
(QFT) originally were considered in P. J. Kelemed A. Robinson papers [8],[9]. The methods of nandard
analysis are demonstrated for the constructioh@hbnstandard: ¢5: model. J. Glimm and A. Jaffe's results
[10],[11] were analysed from the nonstandard pofntiew. For further information on methods of dasl
nonstandard analysis in QFT, we refer to [12],[E8}wever methods of classical nonstandard anatysisot
resolve this problem in physical dimensidr= 4, in particular for the case of simplest scalar QRadel with
interaction: ¢3: , see concise explanation in ref. [15 Introdugti®emark 1.4] and ref.[17 sect.1, Remark 1.4].
Cardinally novel approach has been developed imoaytapers [14]-[19].This approach based on non-
conservative extension of the model theoretical NlBAhis paper we consider a some-what different
hyperfinite cut-off theory, namely thiep; theory in a periodic box. This gives a cut-ofeiraction
which is translation invariant, and therefore iugeful for the study of the vacuum state. In a
hyperfinite interval we prove that the total Hamilian is self#-adjoint and has a complete set of
normalizable eigenstates.

Abbreviation 1.11In this paper we adopt the following canonicalations. For a standard getve
often writeE,. For a seE; let °E; be a sétEg, = {*x|x € Eg}. We identifyz with °z i.e.,z = 9z
forallz € C. HencePEy = Eq if ES C,e.9..°C=C,°R=R, °P =P, °L} =L, etc.

Let"R. "R.yt, "Ren, “Ro, and*N,, denote the sets of infinitesimal hyper-real nurappositive
infinitesimal hyper-real numbers, finite hyper-reaimbers, infinite hyper-real numbers and infinite
hyper natural numbers, respectively. Note tiRgf, = "R\"R,,, "*C = "R+ i'R, "Cq = "R, +
i"Rg, . Note that there is a natural imbeddiRg> "R, see ref. [5].

Notation 1.1 We denotet- completion of the non- Archimedean fielRl by *R#, see ref. [18],[19].
Abbreviation 1.2 Let *R¥_ ,*]R§+ ‘R, , "R¥, denote the sets of infinitesimal hyper-real nurappositive
infinitesimal hyper-real numbers, finite hyper-reaimbers, infinite hyper-real numbers in a non-hiredean
field *R¥. Note that there is a natural imbedditg < *R¥, see ref. [18].

Notation 1.2 We denote byR# special extension of a non-Archimedean fighd, see ref. [19] and section 22
in this paper.

Abbreviation 1.3 Let *R¥_ _*m ‘R, , "R¥, denote the sets of infinitesimal hyperreal numpgositive



infinitesimal hyper-real numbers, finite hyper-reaimbers, infinite hyper-real numbers in non- Ancdean
field *R¥ respectively. Note thaR%;, = "RE¥\"R%,, *C# = "R¥ + i"R¥, *C;, = "R, + iR,
Abbreviation 1.3 Let ‘R, *Rf, "Ry, , ‘Rf, denote the sets of infinitesimal hyperreal numpositive
infinitesimal hyper-real numbers, finite hyper-reaimbers, infinite hyper-real numbers in non- Ancdean
field respectively. Note thaR?;, = "R¥\"R¥,, *C# = "R + i'R¥, *Ct;, = "R¥;, + i"R¥;,, see ref. [19].
Note that there is a natural imbeddifB? - *R? , see ref. [19].

Definition 1.1 The Schwartapace of essentially rapidly decreasii§- valued test functions o*mﬁﬁ“" ,mnE’N

is the function space defined by
Sin (RE") = St ('RE™, *CE) =

{Fec=(Rm )V p)(a e N € "N)acus(cap € "Regn)Va(x € "REW) |
Caﬁ]}'

Definition 1.2 Let B be a non-Archimedean Banach space endowed W#ith- valued#-norm||°||s. Let A be a
linear operatod: B — B. We say that operatear is bounded irfR¥ if there is positive constaate *R*? such
that for anyx € Bthe inequalityjlAx]|» < &]lx||« holds.

Definition 1.3 The Fock spac&* is the non-Archimedean Hilbert spatecompletion of the symmetric
tensor algebra ovéf; (*R#3)

x® (D#B f(x))| <

Ft = C(L4('RE)) = Ext-@,2,Ff, (1.1)
whereF/ is the space of non-interacting particles,
FH = L§(*R§3)®SL§(*@ﬁ3)®s ®SL§(*R§3)_ (1.2)
The variablek = (ky, k,, k3) € *R¥2 denotes momentum vector. Rpr= {1, Y, ...} € F# = Fé®FF® -

We define on Fock spad&* the *R#3- valued#-norm |||, by |ly||3 = Ext- Z;ﬁolll/)zllﬁz, where||-||4,is a
#-norm inL(*R¥%) The no particle spacgf = *C* is the complex numbers, and

9, ={1,0,0,..} e F# (1.3)
is the (bare) vacuum or (bare) no-particle stattoreWe define operatoré and H, ,, by
(NY)y = n(Ext-[1i=1 0 (K;ll, 20) ), (1.4)
(Houh),, (Ky, .., k) = Ext- X7 0(|| K|, ) (ks ) n (s, .o, K, (15)
where » € *R¥,\*R%,, and
0l ) = 1 g | < e and (K x) = 01 [l > 21u(l) = [ehy Ky + 3 (w6)
HereN is the number of particles operator, aHgl, is the free energy operator (the free Hamiltonid@hk rest

mass of the non-interacting particlesrig, andu(k ) is the energy of a free particle with momentumteek .
We use the standard annihilation and creation ¢pes@a(k) anda*(k),

(a(k)lp)n—l(kl' R kn—l) = \/ﬁlpn(k' kl' L] kn—l)'



As a convenient minimal domain fa(k), we use the s&" of vectorsp € F* with y,, = 0 for largen € *N
andy, € Sf ("R#3) for alln € *N.

(@ ()P (Byy oo Koy Kngr) = N+ 1Ext- X721 6% (k — k) Yo (Ko, o Ky o Ky, (1.7)

Here the variabld; is omitted. While a*((k) is not an operator, itaslensely defined bilinear form ot x ¥
Remark 1.1 Note for a*C#- valued function ofC#- valued distributiorb we can define*C#- valued bilinear
form B =

E.xt' f*ﬁgg_xl*ﬁgg_ b(kl, ey km, k’ y ey k;«l)a*(kl) o a*(km)a(_ki) - a(_k%)d#3k£ d#3k;1. (18)

The integration helps in (1.8) aldis not only a bilinear form, but often an operaidis is the case if, for
examplep is the kernel of a bounded operaBgrirom F# to £#. In this case

(N, +D)~%/2B(N,, + [)—ﬁ/2||# < const - || By|l4, (1.9)

provided thaim +n < a + . The constant depends only @13, m andn. Intuitively we think ofB

as being dominated BY{™ *™’?; in particular B is an operator oR (fom +")/2) the domain

of Nﬁ” *™/2 The inequality (1.9) is one of our basic estiraatad in using it we will often dominate

IBolly by the Hilbert Schmidé-norm ||Bo [lyns < I1Bll42, 1Bollens = v Ext- Xic-wollAe;lly , and
where{e;|i € *o} is an orthonormal basis #*. By definition the field with hyperfinite momentum
cut-off o (x), x = (x1,%,,x3) € *R¥3, 30 € "R¥, "R, is

@ (x) = Ext- flleK(Ext-exp(—i(k, x)){a* (k) + a(k)}u(k)]"?d*3k =
= Ext- f*Rgg O(llk 11, 5) (Ext-exp(—i(k, x))){a* (k) + a(k)}u(k)]~*/2d*3k. (1.10)
We also define the bilinear form

i (x) = Ext- fIkIS% i(Ext-exp(—i(k, x))){a"(k) + a(k)}[u(k )]%d#3k =
Ext- f*Rgg i0(||k |I, ) (Ext-exp(—i(k, x)) ){a* (k) + a(k)}[u(k )]%d#g’k, (1.11)

the conjugate momentum ¢gf (x). Since the kernels(k) = 8(||k ||, ) (Ext-exp(—i(k, x)))[u(k )]‘% in L%
the bilinear forms (1.10)-(111) define operatorueal functionsef (x): *R#3 - L(F#) andrf(x): *R#3 -

L(F*). For realf (x), g (x) such thaB (lIk [, ) [u(k )] "2f (x) € L% ando(k II, ) [u(k)]z§(x) € L, , the
1
bilinear formsg#(f) andr(g) define operators whosgclosures orD (Nj) are self#-adjoint. They satisfy

the canonical commutation relations
Ext-exp (inﬁ (g)) Ext-exp (i(pﬁ (g)) =

Ext-exp(i{f, g)s) {Ext—exp (i(pﬁ (g)) Ext-exp (inﬁ (g))}. (1.12)

It is furthermore possible to define polynomial dtinns of the fieldp (x), the Wick polynomials ¢ (x): (see
chapter | for a definition of the Wick dots : :)xicitly, as a bilinear form o ( N,/*) x D( N,/?),

L) = 0o (1) by ey, o Je) @ (k) - @ (Ky)a(—Kjyp) = a(=ky),  (113)



where
by, -, ko) = Ty O([|Ks || 2) (k)] ™2 Exct-exp(—i(S7y k;, %))
Thus for real f(x) € S*(*R#3), the bilinear form
P M) = Ext [t " (0 (x): dx

has a kernel proportional f}_, (k| 2)[u (k)] f(Z71 k;). Thus from (1.9) we conclude that
@i (f): defines a symmetric operator on the donﬂ{riv;’}/z). It was shown in chapter | sect. 15 that
(@in(f): is essentially selft-adjoint on this domain.

2. The periodic hyperfinite approximation in configuration space. The cut-off Hamiltonian H,,(g).

The cut-offHamiltonianH,,(g) acts orfFf and can be written in terms of the field operatp(x), x =
(1, %2, x3) @s

Hu(g) = HO,H + Ext- f*@g3 (Pﬁ4(x) dfx = HO,J{ + Hl,u,g (2.1)
where Hy,, = H,,(0) is the free hamiltonian, arid< g. Let
C*OO(HO.H) = nnoioD(Htr)l,x)

be the set of " vectors forH, . It was shown in [16]-[17] thatl, (g) and H, ,, are essentially se¥-adjoint
onC *(H,,), that

D(H,(9)) =D(Hox) ND(Hpsy) (2.2)

and that there are finite or hyperfinigh = b(g) such that

” Ho,;ﬂ/JH# + ” Hl,x,glp”# < [[(H,(g) + b)Yl (2.3)

forally € D( Hk(g)).

Note that it is convenient to introduce a peridayperfinite approximation in configuration spacenddr this
approximation, the momentum space varidbte (k,, k,, k3) € *R¥3 is replaced by a discrete varialides I}

2nn;

03 = {k = Gew oo, ks lley = 22, my € "3 = 1,2,3)

with V € *R¥,\"R%_,. Thus we defing?, the Fock space for voluni&’ as
7 = () = TPl (DS )@l ()

We identify F}# with the subspace 6* consisting of piecewise constant functions whigh@nstant on each
cube of volum&2m/V)3/ cantered about a lattice point

{ky, ..k} €T X T x = x I =T,

The periodic annihilation and creation operators a(k) and a*(k) can be extended from F; to F# by
the formulas



ay (k) = (—) [E t- f”/V d*l, Ext- f”/ d*l, Ext- f"/V d*l, a(k+l)] (2.4)

3/2
al(k) = (%) [E t- f"/V d*l, Ext- f"/V d*L, Ext- f"/V d*ly a* (k+z)] (2.5)

Therefore the periodic fielg? , (x) and the periodic Hamiltonia#,, ;,(g) can be extended to act &It by the
formulas

@y (6) = @V)32Ext Spers gex Ext-exp(—ilh, x)[a” (k) + a(—I0)) (k) "%, (2.6)

Hyy = Houyyv + Hiyy, (2.7)

v/2 v/2 v/2
HIKV = Ext- fV/zE xt- fv/zE xt- fV/Z(pHV(x)d#g (28)
Ho .y = Ext- f|k|< a*(k) a(k)u(k,)d*3k (2.9)

with ky, a lattice point infinite close th,

T

ky €T3, Ik — kyll <2 ~ 0. (2.10)

Remark 2.1 Note the absence oflain thea(k) anda*(k) in (2.1.9). OrF}, this definition of H, ,,.,, agrees
with the standard definition

Ext-Sierg,, ., @ v ()ay (Ru(k).
The operatordd, ., and H,, , are essentially self adjoint an® (HO_,,_V), and
D(H,y ) =D(Ho,y)ND(Hy,y). (2.11)
Forally € D( H,y ),
1Howvbll, + 1Hisvll, < all(Hew + D), (212)

whereb depend oi¥. OnF}, the operatoH, ,,,, has a#-compact resolvent. We want to approximétg (g)
by operators with-compact resolvents oi?, so we define

Hy, (9, V) = Hopey + Ext- [.pus + @l () g(x)d*x = (2.13)

= Hoy,y + Hp (g, V).

As in chapter | sect. we can show tHa(g, V), andH, ,,(g, V) are essentially se¥-adjoint onC * (Hopv),
and that

D(H,(g,V)) = D(Houy) 0 D (Hyn(g, V). (2.14)
Furthermore, for aly € D(H,,(g,V)),

| Hopox ¥ll, + |Hie (g, VIV, < all(H, (g, V) + b)Yl (2.15)



In this case botlg andV serve as volume cutoffs, and the constastb(g, V) can be chosen independently of
V for fixed g. On the spacg}, the operatoH,, (g, V) has a#-compact resolvent. Our hamiltonians are semi-
bounded and for eagh> 0, there is a constahtsuch that

0 < eHy, + Hy,(g9) + b, (2.16)
0 <eHy,y + Hpyy + b, (2.17)
0<eHgy,y+H,GYV)+h, (2.18)

see chapter | sect.18. In (2.18), thean be chosen to be independerit ofakinge = 1/2, we have

1
SHos < Hi,(g) + b,

1
which implies that for aljp € D ((H%(g))z )

1/2

||H3_{flp||# < V2 || (H(g) + b)) ¢||#. (2.19)

Here we must choodg(x) at leadiiF,, (2g)|, whereE, (2g) is the vacuum energy for the cut-2§.

3. The existence of a vacuum vector Q,, , for H, (g)

In this section we prove the existence of a vacuaator,, , for H,(g). Since the HamiltoniaH, (g) is
bounded from below, we can define the vacuum engggy= E (3, g) to be the infimum of the spectrum of
H,(g) and we also refer t8, ;, as thdower bound of H,,(g). We show thak,, , is an isolated point in the
spectrum. In a relativistic theory, the gap betwdenground state and the first excited statedsihss of the
interacting particle. For this reason we say fiiglg) has a mass gap. A vacuum vedgr, is defined as a
normalized eigenvector @f, (g) corresponding to the eigenvalblg, .

H%(Q)Qx,g = E}t,gﬂ}{,gr

|Q%.g”# =1 3.1)

Theorem 3.1 There is exists a vacuum vecty ;, for HamiltonianH,,(g). For anys > 0,e = 0 the
operatotH,, (g), restricted to the spectral intervb&",{,g,E%g +mgy — s] is #-compact.

Theorem 3.2 The approximate Hamiltonia, ,(g), has a vacuum vect&, ;. Any hyperinfinite sequence of
volumesV; tending to hyperinfinityco has a hyperinfinite subsequeri¢gl € "N such that#-limit

Qy g = #-limy_ oo Oy gy, (3.2)

exists and satisfies (3.1).

Remark 3.1 LetE, ,, be the lower bound off, ,(g) on FJ. Since H,,,(g) has a#-compact resolvent af,
there is a vacuum vect@, , , for H,,,(g) T FE. We now see thd, , , is the lower bound fotd,, , (g) onF,
so thatQ,, , is a vacuum vector fdi,, ,(g).

Remark 3.2 Let Fj* be the orthogonal complement®f. Since H,,, (g) leavesF;} invariant and is self-
#-adjoint, H,,,(g) also leavesFj* invariant.

Theorem 3.3 The lower bound of,,,(g) onF is Ey gv T mgy, Wherem,, is the rest mass of the Fock space
bosons.

Remark 3.3 Theorem 3.3 shows tha, , , is a vacuum forH,, ,(g).

Proof We have an orthogonal decomposition in the sipghticle space

Ff = L5("RE) = 7l @ 7. (3.3)



Here 7}, = F§ n F} consists of functions piecewise constant on irisreantered at lattice points. Thus we
may write

Ft = Ext-@,%, F'O, Fit = Ext-@,%, F'0), o
where F*U) consists of vectors with exactlyarticles fromFf+ and
FHOD = (Ext- Fij ®; = ®; FIH)®; F (3.5)

In this tensor product decomposition therejai@ctorsFy; . The Hamiltonian H,, , (g) leaves each subspace
F*U) invariant, and orF*Y) we haveH,,,(g) = IQA+ B ® I, whered = H,,(g) I F§ andB is a sum of
j copies offl ., each acting on a single fact@¥;. Since

the Theorem follows from this decomposition.
Theorem 3.4 ForV < "o, and forb sufficiently large we have

1

D(HO,”) cD <Hg_n> n D(NK) c D( H%,V(g) + b)! (37)

D(Hos) € D ([N + D7 (Huy () + )], (3.8)

Here we denote by~ #-closure of the operate.
Proof We takeb large enough so thdf,, ,(g) + b is positive, see (2.1.18). By (1.9) and (2.14)gse

D(Hox) 0 DNZ) € D(Ho) 0D ( Hiy(@)) = D ( Hey (@) D ((He(9) +b)?),

Thus for allyy € D(H,,,) N D(N2),

2
#

|t o) + Yo

| = @ (Haw (9) + DY < (0, (Higy + D) +
| (N + D7 Hppey (o + D7H| N, + DI

1
Since( H,y(9) + b)2 is a#-closed operator, we can extend this inequality-bgontinuity. AsN,, and Hy ,,
commute, the inequality extends #ycontinuity to alkp € D (H&yf ) NnD(N,) D D(HOV,,). The proof of (3.8) is
similar.
Theorem 3.5 Let z be non-real or real and sufficiently negative. sl tends to hyper infinityoo,

|(Hoy (o) = 21)™" = (H () — 2D = 0. 93

Proof Let us fixg andz and suppresg when possible. In chapter | sect 16 we have shbanH,, (g) is
essentially sel#-adjoint onC " ( H,,, ). Thus vectors of the forpn= (H, — zDy, ¢ € € °( H,,,), are
#-dense irF#. On these vectors

{(Hyy —21)" = (Hy = 2Dy} x = (Hyy — 21) " {(Hye = 2D% = (Hyoy — 21)p} =

= (Hey —21) " (Hye = Hey)(H, = 2D 7y =



= (Hyy — zl)_l(N,, + DN, + DY (H, — Hyy)(N,, + DY (N, + D(H,, — 2Dt 1.

Forg € F¥,
|(9'{(H%,V_ZI) — (H, —zI) }X)#|s (3.10)
< ||+ D(Ho =20) 7|10 0 |+ D7 (B = Ho )W+ D7),

X | (Nye + DCHy = 2D~ lgllxll -

Using (2.15), we find tha“(zv,, +D(Hy,y - z-z)‘l||# is bounded uniformly i, since
|+ D = 20|, < const | (Hosey + D(Hey = 21) 9|, <

< const - ” Hyy(Hyy — Z_I)_ll,l)”# + const - ||(Hx,v - Z_I)_lll}||#'

where the constants can be chosen independeriflyRy a similar consideration, the orthogonal decosifion

(3.3) shows thafN,, + D ( H,., — zl)_1 is a bounded operator. Thus from (3.10), andabethat ther are
#-dense, we infer

_1 _ _ _
||(H,{,V —zI)"" = (H, — zI) 1||# < const - || (N, + D7 Hye = Hyey )Ny + D7), (3.10)
with a constant independent &f. The differenceH,, — H,., = ( Ho,c — Hopey) + (H,,%(g) - H,‘,{,V(g))
and for infinite largéd/,
| (N, + D)2 Hope = Hope )Ny + D7, = 0V ). (3.12)

This is a simple direct computation, usipgk,) — u(k)| = 0(V1). For the interaction terms, we use (1.10)
to estimate

|+ D72 (Hi(9) = Hiey (9)) N + D72 = 0. (3.13)
The kerneb (k, ..., k,) corresponding to a monomial if; ,,(g) is

b (s, kg) = ()T 0Kl ) [(he)] %8 (k2 + 1 + kD + kD, k™ + 1D + kP +
k),
0 <j < 4. The kerneby, (k4, ..., k,) ) for the corresponding monomial H ,,,(g) is obtained by replacing the
factor[1}-, 0|k, 2)[1(k;)]* by the factof -, 0(||k;y ||, 2¢)[(k;y )] 2. Inspection of the difference

b (kll ey k4_) - bV(kl' ey k4) ShOWS thatlb (kll ey k4_) - bV(kl' ey k4)”L§ = O(V_l).aSV 4 *OO’ from

which we conclude that (3.13) @V ~1). The#-convergence of the resolvents follows from (3.1.}8). The
#-limit

Eu,g,V 4 Ex,g

follows from the#-convergence of the resolvents, since for largetipedh,

(E}f,g,V + b)_l = ||(HH.V(9) + b)_1||#'



Proof of thetheorems 3.1 and 3.2 Lef (x) be a#-smooth positive function with support in the intairv
[—&,mo — €]. Thenf(H,y(9) — E,.zv) I Fif is#-compact, since the resolvent 8, ,(g) I Fis
#-compact orfFf. By Theorem 3.3f( H,,(g) — E,,_gy) I F#+ = 0 and therefore #-compact on the full Fock

spaceFy. By Theorem 3.5, the resolveit,,, (9) — E, 5y — z)_1 #-converge int-norm asV’ — *oo, and
therefore

”f( HH,V(g) - EJ{,g,V) - f( Hk(g) - Ex,g)”# 4 0:

sincef ( H,(9) — E,4) is a bounded function ¢fH,(g) — E,., — z)_1 which vanishes at hyper infinity. Since
the uniform#-limit of #-compact operators #-compact, H,,(g) restricted to the spectral intenfale, m, — €]

is #-compact. This means furthermore that only a finit@yperfinite number of eigenvalues Hf, ,, (g)
#-converge td, ;. Theorem 3.6 shows that the projection onto titeesponding set of eigenvectors of
H,y(g) #-converge a¥ — “oo. Since(),, , is an eigenvector of( Hep(g) — E,{,glv) a hyperinfinite
subsequence of thg, ,, #-converge to &-limit asV — “oo. For this#-limit

(g +b) Qg = #-my o (B gy, + ) Qg =

) -1 _
= #- hml—>*oo( Hx,Vl(g) + b) -Qu,g,Vl = (Hu(g) +b) 1Qu,g

by Theorem 3.5. Hen@®, , € D( H,(9)), H,(9)Q g = E, 4, , andQ,, , is a vacuum vector fdi, (g). In
the following section we will see th&t, ; andQ,, ,,, are unique except for an arbitrary phase

multiple Ext-exp(i8), and that there is a natural choice for this eaibjtphase. With this choice, we then will
prove that the,, ,, #-converge tdl, ;, asV — *o.

4. Uniqueness of the vacuum.

In this subsection we prove the uniqueness of awacvecton,, , for H, (g).
Theorem 4. 1 The vacuum vectdw,, , for H,(g) is unique.

Remark 4.1 In other words,, 4, the lower bound of1,.(g) is a simple eigenvalue.

Definition 4.1 LetH* = L%(Q, d*u) be a non-Archimedean Hilbert space. We say thauaded operator

A: H* - H* has a strictly positive kernel provided that

WY, Ax)s >0 (4.1)

whenevenp andy are non-negativé$ functions with non-zeré&-norms. Such an operator transforms a
functiony = 0, ||x|l4+ # 0 into a functiondy which is strictly positivet-almost everywhere.

Definition 4.2 Let H# = L%(Q, d*u) be a non-Archimedean Hilbert space. We say thaumded operator
A: H* - H* has a positive, ergodic kernel if for eaghy as aboveéy. Ay) > 0 and

W, AV x)s >0 (4.2)

for somej, depending onp andy. Clearly everyd with a strictly positive kernel has a positivegadic kernel.
Theorem 4.2 Let A have a positive ergodic kernel, and suppose|thf is an eigenvalue of. Then
[|All4 is a simple eigenvalue and the correspondinghegtor can be chosen to be a strictly positivetion.
Proof SinceA maps positive functions into positive functionalto maps real functions into real functions. If
Y € H¥ satisfiesAy = ||A]l» - ¥, then so dReyp andImy. Therefore without loss of generality we may

assume thap is real. Sinc¢|Af||# = ||All}, andA’y = ||A|l] - ¥, we infer that

471, - 1plIZ = . Ay < (lpl, A1)y < 1AL, - lplI3,

Y. APy = (11, AV ).



Writing nowy = ¢t — ¢ ~, wherey™ and ¢~ are the positive and negative partgpof
W AP )y = H AT )y — (7 ATt )+ (7, AT )=
= (F AP )y + (AT )y T, AT )+ (T, ATy
or

W AP + (7, APt = 0. (4.3)

Unlessy* = 0 oryp~ = 0, each term of (4.3) could be made strictly posity choosing an approprigteThus
eithery™* or ¢~ must vanish, and we may choose the eigenvectorbe non-negative. jf = 0, || x|l # 0,
then for some integef, 0 < (x, /)y = ||A||£ - {x, ¥)4. This proves thaty is not zero almost everywhere,
and thatp is strictly positivetf-almost everywhere. Finally, if andy were linearly independent eigenvectors
of A with the eigenvalu§4||,, then we could repeat the above argument witlcdineponent o orthogonal to
1. This would yield two positive, orthogonal eigentas, which would be impossible, and the proof is
complete.

Remark 4.2 Let ¢} (h) = Ext- f*mﬁ‘* e (x)h(x) d*3x denote the smeared, time zero free field opesaldre
spectral projections of thg (h), or the function&xt-exp (i (h)) generate a maximal abelian algeifd of
bounded operators dff. Let Q be the spectrum of the algelivé”. The no particle vectdd, € F*# is a cyclic
vector for 'DR, namelyF# = #-(M*#Q,). Therefore we may introducetameasurel*u onQ so thatF* is
unitarily equivalent td.%(Q, d*x) and so that the equivalence carté¥ into L%  and take%), into the
function 1.

Theorem 4.3 With F# represented a4 (Q, d*u), Ext-exp(— H,, ) has a positive, ergodic kernel.

Proof Lety andy be non-negative. Writg = 1, + 1,, wherey, is the component of) alongQ,. Thus the
L% #-norm of ¥ is given by 141 = (W, Qods = (P1, Q)4 Note||yp|l4; # 0 whenevenp is non-zero, and

|| Ext-exp(= tHo, )2l < (Ext-exp(—tmo))lly,l41, wherem, is the boson mass. Thus

W, Ext-eXp(—tHo_H))()# =Y llur - lx ller = N2llys - ||)(2||#1(Ext-exp(—tm0)). (4.4)

By choosing t sufficiently large, (4.4) is positjiwghich proves (4.2). If the following inequalitylds

1 llgalixlles 1 1 11 11x 12 (4.5)

Ext-exp(—tmg) < =
2lallen lzllen 2 (2=, > (2 -Ixi2,) "

then

(1, Ext-exp(—tHo, ) )% = 5 11 llys - Il llsa. (4.6)

We need to show thatp, Ext-exp(—tHoy,,))()# > 0 for all finite t. In fact, it is sufficient to prove this for a
#-dense set of non-negatiyeandy. Let us consider an approximate free energy operat

Ho .y = Ext- flklsu a*(k)a (k)u(ky)d*3k. 4.7

For vectorsp € € °( Hy,), asV — *oo. || Hy eyt — Ho ||, =4 0. Since H, ,, is essentially sel#-adjoint

on C*°°( HOV,,), the resolvents oH, ,,,, converge strongl{18, p. 429]. Thus the generalized semigroup
#-convergence theoref8, p. 502] ensures that for ajp € F*#

Ext-exp(—tHoy,,,V)lp — Ext-exp(—tHo_,,)lp” -4 0
| "

asV — *w, and the#-convergence is uniform aftcompact sets af. Therefore we need only show that for a
#-dense set of non-negatiyeandy (), Ext-exp(—tHoy,,,V))()# > 0. LetF(x, ..., x,) be a non- negative,
hyper infinitely #-differentiable function witht-compact support, and let



¥ =F(@i(f), -, 0k (fa))Q0, (4.8)

wheref;, ..., f,, are real. The set of all such vectors#mense inF#*, the non-negative vectors #f.
Furthermore, we define

Yy = F (0 (F)r s 00 (£)) Q0. (4.9)
whereg , (f,) is defined by restricting the sum in (2.6) to #os
keTl}, =7 n{k|lk| <x}.

Theny, , € Fiy c F** whereF}} is the Fock space corresponding to the mdded’: . For any vector
x € C(Hy,)

leky(Dx = @k (Pxll, 4 0, asV > oo,

and asC*""( HO_,,) is a#-core for ¢/ (f), the resolvents ap}. , (f) #-converge strongly to the resolvent of

©E(f).[18, p. 429]. Thus the generalized semigrotzonvergence theorem [16hsures that for each
x € F* sreal

[rt-exp (150 1)~ Exteespis g B, = 0. a5 = 0,

and the#t-convergence is uniform fat-compact sets of. By (4.9)

Uy = Ext- [ F(sy, ..., 5p) [i Y7, Ext-exp (l'S(p;V (f] ))] d*s, - d*s,,
andF (sy, ..., s,) vanishes rapidly at hyper infinity, so we concliblat
v — 1p||# -4 0,asV - *o.
Thus for such vectong, y,
W, Ext-exp(—tHO,%))()# = #-limy o (Y, v, Ext'exp(_tHO,u,V)Xu,V>#
and we need only show that

(WYseys Ext-exp(—tHO,%,V))(%,V)# = 0. 4.10)

However orfF,
Hy .y = Ext- Zkeri,v ay(k)ay(kK)u(k) = Ext- Zker;y Houv,

SOExt-exp(—tHy,.y) = Ext- Mierz, exp(—tHo,.v)- It easily verify by explicit computation that eagperator

exp(—tHO%V) have a strictly positive kernel, sa18) holds and the proof is complete.

Theorem 4.4 With F# represented a$(Q, d*u), the operatoExt-exp(—H, (g)) has a positive, ergodic
kernel.

Remark 4.3 We expect thaExt-exp(—H, ) andExt-exp(—H,.(g)) have strictly positive kernels.

Proof As in Theorem 4.3, formula (4.7), we considgr, (g) = Hy,, + H;,.(g). The approximate interaction
H,,.v(g) is constructed witlp}; , in place ofypj. SinceC*°°( H,,) is a#-core forH, (g), we can argue as in the
previous theorem that for ajl € F#



Ext-exp (—tH,{,V(g)) Y -y Ext-exp(—tH, (g) ), asV - *oo.
Thus we need only prove that fgr y as in Theorem 4.3
0 < & < (i, Ext-exp (—tH,,y (9)) Kooy )s- 1)

and that for sufficiently largg the constant = (¥, x, %,V ) can be chosen independentlyoéndV. OnF,

we have an explicit representationfbft-exp (—tH,{IV(g)) given by generalized Feynman-Kac integral
formula

(Wi Ext-exp (—tH,y (9)) Kooy ) = (4.12)

Ext- [ Ext-exp (= [Ext- [} Hyg,0(a(9)) d*¢]) 1 (a(0)) 20w (4(0) D¥q ().
Hereq(s) denotes a points in the spectrum of the modes
av (k) = ay (k) +ay (k) + a}, (k) +aj, (—k)
gy (k) = ay (k) — ay (—k) + a;, (k) — ) (k)

for k € T, = {k|k € I’ A |k| < »}, andC,,, is the path space for these modes. Skhaeexp(—tH,,) has a
strictly positive kernel, (4.12) exhibifsxt-exp (—tHW(g)) explicitly as an operator with a strictly positive
kernel. Thus (4.11) is valid, and taking t#hdéimit asV — *co shows that

W, Ext-exp(—tH,,(g)))( Yu = 0. (4.13)

We now establish a uniform lower bound©oim (4.11) to prove that far sufficiently large (4.13) is strictly
positive. Given any positiv®f we can split the integral (4.13) into two partst C,(fa be those paths such that

the exponent in the Feynman-Kac formula satisﬁ%ﬁxt- fot H,‘g,,{y(q(s)) d#t] > —M, and IetC,(f‘), be the
complementary set of paths. Thus

Wiy, Ext-exp (—tHyoy (9)) Kooy )s = (Ext-exp(—M))Ext- Je ¥ (a(0)) 2oy (a(©)D*q () =

= (Ext-exp(—M)) {(1/);4,1/' Ext-exp(—=tHo ey )Xoew Y = Ext- [o ey (4(0)) e (a (t))D#q(')}- (4.14)
First we choose by (4.5) so that (4.6) holds. Then for sufficigritifinitely largeV (depending on),
1 1
(l/J,,_V, Ext'exp(_tHO,x,V)Xx,V)# = E(lp' Ext-exp(—tHO_,,))( o = z 1 11 = 1 e
Thus (4.14) becomes

(lpx,v' EXt'EXp(_tHO,M,V)XM,V)# =
1 #
> Ext-exp(—M) Z”lp M4 - X 141 — Ext- @ lpu,v(CI(O)) Xx,V(q(t))D q()¢
C;t,V
Let Pr{-} denote theét-measure on path space, so that by the generaliakidiHnequality

r-1)

Ext- ;o) Yrow (4(0)) Xu,v((I(t))D#CI(')| <(Pr{c)) 7 Iaw (@)t (e,



wherel < r < 2. By the smoothing property dfxt-exp(—tH,, ) for sufficiently larget

[ (@) (@@, < s ll,y X Moev I,

and forV sufficiently infinitely large, this is dominated/R ||y ||45 - Il x |42 Thus with the choices so far made
forV,t, M,

(r-1)

T

1
Wiy Ext-exp (=t (9)) ey ds = Ext-exp(=M) {1 llar - It o = 20 Nl - 112 lla (Pr{c} )
=
2 2 (Ext-exp(—=M)) 1Y llg: - x4z > £, x, )

provided in addition that

@) < (Wl xlles \GT=D
Pr{c”'v}_(16||1P||#z'||)(||#2) : (4.15)

We now show that fod sufficiently large, (4.15) is satisfied and thereftheorem is proved.
Note that

Pr{C)} = Pr{M < Ext- [} Hy, gy q(s)ds} = Pr{1 < M~ (Ext- J} Hypqy q(s)d"s)} <

2
<M? [Ext- fcw |Ext- fot Hyygv q(s)d#s| d#q(-)].

Replacing the integral overby a#-limit of hyperfinite Riemann sums, we obtain a bdumterms of
generalized Wiener integrals depending on a hypigzfnumber of times.

Pr{CS&} < #-1im,_ 0 (i)z [Ext- Xiioq Ext- fo,v Hy,gvd (%) Hp oy gvd (%) d#q(-)].

By the definition of the generalized Wiener intdgthis expression can be evaluated in terms gbamicle
expectation values, and it equals

2
#- limn—»*oo (j) Ext- Z?j:l(QO' {EXf'eXp(—“ _jltHO,x/n)} ’ HI,u,g,VQO)#-

By the generalized Schwarz inequality

PE(C2) = ()" [Hiegwtol < (22)

for some consta,, independent of/. Thus we choose

-
M > Dt (lﬁllw 1 1lx ||#1)(r—1).
1619 lluz: llx llu2

Combining Theorem 4.4 with Theorem 4.2 yields sopaf Theorem 4.1. Clearly the same proof applies t
H, ,(g), to show that its vacuum is unique.

Corollary 4.5. LetQ, ,, be the vacuum fat,, ,, with its phase determined by the requirement
(Qo, Ly g ) > 0. (4.16)

Then#-limy_ o Qy gy = Q4 EXiSts,Q,, 4 is the vacuum foH,, ;, and



(Qo, Qe g)y > 0. (4.17)

Proof A hyper infinite sequencﬂ,{,gyj with V; - *co has a#-convergent hyper infinite subsequence by

Theorem 4.2#-converging to a vacuum faf,, ;. The phase (4.16) fixes the phase (4.17) so every
#-convergent hyper infinite subsequence has the $alineit Q,, ;. Thus theq,, ,, #-converge td}, 4, as
required.

Corollary 4.6 The vacuunt,, , is a cyclic vector foM .

Proof The function?, , is positive for#-almost allg € Q#, andM = L%, (Q*) in theL}(Q*,d*f)
representation ofF ¥

5. The Heisenber g picturefield operators
In the Heisenberg picture operators have the tiepeddence

A(t) = Ext-exp(it H,(g))A(0)Ext-exp(—i tH,(g)) (5.2)

This definition of the dynamics contains the cutfahction g(x) explicitly. For an important class of operators
A(0), howeverA(t) is independent of (x) provided thag(x) = A, the coupling constant, on a suitably large
set. For example, we tak0) to be an observable representing a measuremédatmped in some 3-

dimensional regio® c *R#3 of space (at time = 0). ThenA(t) represents the same measurement performed
at timet. A Hamiltonian with a hyperfinite ultraviolet cuffor € *R¥,\"R% ., such asH,,(g), propagates
information with at most the speed of light. Therefif g(x) = A on a region containing, andt is sufficiently
small, the fact thag (x) does not equal everywhere will never be recorded by a measured@nt For each
localized observablg(0) and eacht, we make an appropriate choice ). Therefore (5.1) provides the
correct dynamics for thép*), quantum field theory with the cut quantum fieledhy with the cut-off removed.

In this section we consider the quantum field oesap} (x, t) or *R#*

i (f) = Ext- f*u«ﬁ‘* ol (x,t) d*3xd*t. ()

We see that integration helps in (4.2) becapf§g) is an operator while(x, t) is a bilinear form. Actually
the time integration is not required and for rgal

A(t) = Ext- [.es 0f (%, 1) d*3x (5.3)

is also a selft-adjoint operator dependintrcontinuously ort. We expect that this is a special feature of the
two dimensional model we are considering and thatgstime fields will not be operators in four dimséons.

For this reason, basic physical concepts have tmeanlated in terms of the time averaged field)5ather
than the sharp time fields (5.3). For example, Wigin's axioms for a quantum field theory are exg@ésn
terms of the opera tors (5.2), and we will shovt thany of his axioms are satisfied for our moddie Time
integration in (5.2) presents some new difficuliies example in the proof of self-#-adjointnesobtocality)
which would not occur if we considered only therghiame operators (5.3). An advantage of the timeraged
field is that product® (f;) - ¢(f,) can be defined on vectors with finite energy (Uarg 6.5). In fact we will
construct a dense domain which the localized figldratorp (f) leaves invariant, and on which p(f ) is essen-
tially self-#-adjoint for reaf.

6. An invariant domain for localized quantum fields.

In this section we study the Heisenberg picturig fiecalized in a 4-dimensional region of spaceetin We

find thate} (x,t) is a bilinear form and that for refil ¢} (f) is a#-densely defined symmetric operator. We
start with the region B, a bounded open subsepade time. We require thadf, (g) be a Hamiltonian foB.

This means that the spatial cut-gffix) equals the coupling constahbn a sufficiently large interval to contain
the domain of dependence 8 In other words, assuming that the velocity ofitigs one, for every point

(y,t) € B,

gx) =4if |lx — yll <t a)



It is convenient to deal with the field
ok ,(x,t) = Ext-exp(it H,(9))@ji (x)Ext-exp(—i tH,(g))
and its timet-derivative
i o (x, ©) = Ext-exp(it H,(g) )} (x)Ext-exp(—i tH,(g)) = 0%} ;(x,t) /0"t

The time zero fieldg# (x) and its conjugate momentunj(x) were defined in chapter I. We shall see that for
(x,t) € B, ;i ,(x,t) is independent of, and equals the fielg; (x, t). Thus all the cut-offs have been removed

in the definition ofp (x, t). For eactC -function f (x, t) with support irB, we show that
@ (f) = Ext- [.gua 0 (x, O)f (x,0) d"xd"t 2B
is an operator whose domain contains
D}y = € (Hy(9)) = N2 D(HE(D)), 6.9)
In factDj; ; is an invariant domain, i.e.
94Dy < Dy, (6.4)

o) thatDﬁ_g c C“"((pﬁ(f)). We note that this invariant domain may depencherrégionB in which the field
@5 (f) is localized. Forp € D} ; the expectation values

(W, @ (x1, 1) = @ (X, t) )y (6.5)

is *C#*- valued Schwartz distribution ib*' (B x-x B). If f(x, t) is a function ins* (*R%*), thengj; ; (f) still

is defined orDﬁ_gand leaves it invariant. The expectation values)(6f <p,§_g (x,t) are tempered distributions in
S*(*REY). However, the fieldg;; ;(f) may depend op.

Lemma 6.1. The fieldp# ,(x,t) is a bilinear form o (( H,(g) + b)*/?) x D(( H,.(g) + b)*/?)

1
#-continuous inc andt. Namely fory € D (( H,(g) + b)E) L, o (x, t)y), is a#-continuous function.
Furthermore

|Ext- s 0, 01, 9GO0 s O < const I lluah, (Hi(9) + D)) = 1,23 (6.6)

Proof The free fieldp} (x,0) is the sum of two expressions of the form (1.8) Kernel® (k, »)b(k) are in
L¥. Furthermore we havé(k, »)b(k)[u(k)]"*/? € L%. The estimate (1. 9) has been generalized to cmar
kernels, giving us

| Hone + 1) 00k g (x, 0) (Ho + 1)‘1’2||# < const - [|0(k, )b () [u(R)] 2|, < oo . (6.7)

Thus foryy € D ((H,(g) + b)?), Ext-exp(~it H,(g))% € D ((H,(g) + b)2) < D(HEZ), by (2.19) and

0,

therefore(y, of ,(x, t )y = (Ext-exp(—it H,(9) ), pi ;(x,0)Ext-exp(—it H,(g))y)s is defined and
(W, @3 g (x, £ ) 4| < comst - ||6 ke, )b (R [k /2|, - (b, (H,.(9) + b))y

Since [|6(k, )b (k) [ |k [*f (K ||, < [|6 e, 5)b () [T /2 KI?|[. - Ifll4z < const - [If [l 4, the
inequality (4.2.6) holds. Let us writg, i = 1,2,3 for b to denote the dependencebobnx;. Then




[|(bs, — by, )0 (K, ;{)[y(k)]‘1/2||#2 is a function of(x; — y;) only and it#-tends to zero al& — y| —4 0.

Since
|, (0o, 6) = 03, )) | < comst- || (7 + Ho) " <

#2

lp”; ' ||(bxi - in)g(k‘}{)[M(k)]_%

< const - [|(Hy(g) + DY/ - || (b, = by )0 s0luCiOT =) (6.8)
we have continuity with respect 40 Also
|CHeCo) + b)z (Ext-exp(it H,(g)) — Ext-exp(~is H,(9))) ||# 540
as|t —s| —4 0. Thus
|, (k5 G, -0l g (9)) 9| <
< const- || (1 + Hy,)""* (Ext-exp(~it Hy(9)) — Ext-exp(~is H,(g))) zp||# | be)o 20 [u(l)] 2 X

X {”(1 + HOVH)I/Z (Ext-exp(—it Hk(g))) zp”# + ”(1 + Hoy,,)l/2 (Ext-exp(—is H,{(g)» 1,0”#} <
<

const - ” (H,(g) + b)*/? (Ext-exp(—it H,(g)) — Ext-exp(—is H,,(g))) 1p||# . ” (bxi)H(k, z)[y(k)]_%

X
#2

x |(H(g) + b)?9|, =4 0 (6.9)
as |t —s| =4 0.

From (6.8)-(6.9) we see th@ﬁ_g(x,t) is jointly #-continuous inx andt. Probablynﬁ_g(x,t) is a bilinear form
onD(( H,(g) + b)*/?) x D((H,(g) + b)*/?) #-continuous inx andt, but our estimates are not strong
enough to prove this. The functiofiéx, t) in Sf,, ('R**) determine bounded

#-measured®v = f(x,t)d**xd"t, sog} ,(f) = Ext- [ ¢} ,(x,t) f(x,t)d*3xd*t is a bilinear form. If
d*v, =y d*v in the weak topology fo#-measures, thefixt- [ ¢} ;(x,t) d*v, =y Ext- [ ¢} ;(x,t) d*v in
the weak sense that fgre D(( H,(g) + b)'/?)

(W, Ext- [ @jt 5(x,t) d*vp )y =4 (W, Ext- [ @f ;(x,t) d*v )y, (6.10)
We define also the sharp time field
A} () = Ext- [ @f ;(x,t) f(x,)d"x (6.11)
and
Bf () = Ext- [ m}} ,(x,t) f(x,)d"x. (6.12)

Lemma 6.2 Let functionf (x, t) in S, ("R**) be real. Ther’ ;(t) andBj ,(t) define self+#-adjoint
operators, and their domains inclualé( H,(g) + b)l/z). With a constant independent of,

(6.13)

|4 g I, + |BEg@wll, < clliF ¢ Ol + IDEFC,Ollia} | Hilg) + b)zw

| )
#

for ally € D(( H,(g) + b)*/?).
Proof It is sufficient to considep;; (f,) = Ext- [ ¢} (x) f(x,t)d*x in placeof A ,(t) andr}(f,) =



Ext- [ mji(x) f(x,t)d*3x in placeof B ;(t), as they are unitarily equivalent by the unitary
operatoiExt-exp(—it H,(g)), and this unitary leave3(( H,(g) + b)'/?) invariant. The same is true for
i (f,) By (2. 19) we have

1/2

2
1+ N2l < mat ([ (14 Ho) " ||, < 2m3 [ CHiCo) + b) 2y,

so we need only prove that

ot GFwls + It Gwlly < clllf Oz + IDEFC,Ollsa} || € + N2

|#. (6.14)

The lemma now follows from (1. 9). For exampté(f;) is the sum of two operators of the form (1. 8)wit

kernelsb(k) = 0(k, »)b(k) [,u(k)]%(Ext-f(Ext-exp(—i(k, x))) f(x,t)d*3x), satisfying the inequality
Ibllsz = [|(=D¥* + m&)*f (., )|, < const- (IfC, )lluz + IDEF C, O)lly2)-

The kernel fokpf (f,) can be bounded by thigf (-, t)||4, #-norm alone. The estimate (6.13) now follows from
(6.14). The selft-adjointness of4}, ;(¢) andBj ,(t) can be proven by showing thaf(f,) andr} (f,) are self-
#-adjoint. But (4.14) ensures that every vectdF finwith a finite or hyperfinite number of particles i
#-analytic fore (f,) and forr}:(f,), so these operators are essentially self-#-adjmirthe domain of vectors
with a finite or hyperfinite number of particlesehte they are uniquely determined by their definiton that
domain.

We now explain the sense in which the integralZp#tconverges, since we did not show thlﬁ_tg (fy) was a

bilinear form. Ify € D(( H,(g) + b)*/?), themp € D(( N, + )*/?) and

W, Ext-aL 09}y = 00k, ) [uCOTHaliow, ¥y + b, a(—k)p)y} (6.15)

is a slowly increasing, locally summable functiand hence a tempered distributiors ) (*R#‘*). Thus
(p, ¥ (x)y)4 is by definition the distribution Fourier transfoof (6.15), and hence a tempered distribution
inS# (*R*). Finally (6.12) is the weak integral

(W, B g () = Ext- [ d*3xf (x, 6) {(Ext-exp(—it H,(9))) ¥, mh(x ) (Ext-exp(—it Hy(9))) ¥y -

Theorem 6.3 Lety € D(( H,(g) + b)*/?), and letf (x, t) be a real function isf, (*R**). Then the vectors
A% (O and B} ,(t)y are strongly#-continuous and are rapidly decreasing functions She integrals
Ext- [ AL ;(®O)yd*t = ¢f ;(p andExt- [ B ,(t)ypd*t = nf; ,(f)y exist and defingf ,(f) andx}; ;(f) as
#-closed symmetric operators with domains contaim]QgH,,(g) + b)l/z). We have the estimate

ks OV, + 7k g (O, < cExt- [UIFC Ol + IDEFC ONlu}d O(H, (@) + D)V (6.16)

with a constant independent of andg.
Proof We write

IfC Ol =cllf GOl + cliDEFC Ol (6.17)

and
AL g ()P —AL o (09 = (1 — Ext-exp(—i(t — 5) Hy(9)) ) ALy ()W +

+|Ext-exp(it H,(9))|{Ext- [ @fi(x) (f(x,5) — f(x,t))d*3x}[Ext-exp(—is H,(9))]|¥ +



Aff,g (s)[Ext—exp(—i(t —5s) H,{(g))]ll)

Thus by (6.13),

| 4% g () — Al @l < ||(1 — Ext-exp(=i(t — ) H,(9))) ALg(s)p|, +

HFCs) = FG O || (el + by ||, +

HfC Ol (Ext-exp(=it — 5) He(9)) = I)(H,(9) + b)/?||, =4 0

ast —y s. This proves thét-continuity. The rapid decrease is ensured by (6ah8)the fact thte
s#, ("R#**). Asimilar argument works foB# , (t)y. The integrals defining: ,(f) andr} ;(f) now exist;

(6.16) follows from integrating (6.13). Sinc&, ;(t) and B} ;(¢) are selt#-adjoint, fory € D((H,(g9) +
b)¥/?) c

(l/J, (pﬁ,g (f)lp)# = Ext- f<l/)' Aft,g (t)l/})#d#t = Ext- f< Aft,g (t)lp' l/))#d#t

is a real, and similarly forﬁ,g (f). Symmetric operators ateclosable and we now defimgf,g )
andnfj,g (f) as thett-closure of the above operators on the domain

D((H,(g) + b)/?). (6.18)

Remark 6.1 (a) The integrals defining;; ;(f)y andr}, ;(f)y are strong Riemann integrais); ,(f) is a
strong#-limit of operators of the form

Ext-Y1; Al 4(t),n € "N, (6.19)

Conversely using th#-continuity ofAfflg (t)y, we see that an operator of the form (6.19) isang #-limit of

a hyper infinite sequenczp:ﬁ_g (f]- ),j € "N, and thef; can be chosen with thenorm

IFl = ¢ (Bxt- Lgs {IIf C Olluz + ZEallofif 0]l f de) (6.20)

uniformly bounded. For both-limits the #-convergence occurs on the domain (6.18) and similasiderations
apply tor}; ;(f). Furthermorep;; ;,(f) andnj; ;(f) can be defined whenevf|y; < *co.
(b) Using (2.19) in order to estimat#,, , we have from (6.16),

1
”(pﬁ,g(f)ﬂx,g”# + ””ﬁ,g(f)ﬂu,g”# < |f|1(|Ex,2g - Ex,g| + 1)2' (6-21)

but the bound on the right grows in the diametahefsupport of.
Theorem 6.4 [18] Let |14, be the#-norm|fly, = ¢ (Ext- f.ous {Ilf G Olluz + S0 0], } d¥e).

3
Let |f|4 is finite. Then on the domail ((H,f,g + b)f), ), the fielde# () satisfies the following equation

(0F @) (f) = —0(0¢f) = me(f) = [iHy g 0 ()]. (6.22)

Proof Note that the first equality in (6.22) is the défon of a distribution#-derivative. The out the difference

f(x+et)—f(x,t)]
£

quotientA, f (x, t) to #-derivative 9] f readsA, f (x,t) = [ ,€ = 0, notethat



1
#-lim,_, .0 Af (x, t) = 0 f(x,t). Note that for any vectap such thatp € D ((H,flg + b)f) by canonical

consideration we get

#-lim{ @20 v — wi(8.f G )Y, = 0.
We have fonp € D ((H,f,g + b)g) that
oi(Af (x, 1))y = (I — Ext-exp[icH]) {Ext- f*mﬁ oi(x, t —&)f(x, t)d#3x1pd#t}+

+&7t {Ext- Jogrs A (£, t)(Ext-exp|ieH,, 4] — 1)1pd#t}. (6.23)

Here the last tern¥-converges as -, 0 and it#-limit is: i(Ext- f*]m#s A, (f, t)H,{,gz,bd#t).

Sincep(A.f(x,t))y #-converges as - 0, the remaining term in expression & (A.f (x, t))y
#-converges also to#limit y,. Fory € D(H, ;) we obtain that

o) = 1-'2_1);%1 (x,e (I — Ext-exp|ieH, 4]) {Ext- f*Rﬁg o, t —&)f(x, t)d“xd;d“t}) =
(i, g2 9% ().

SinceH,, ; = H;, 4, it follows thatej: ; () € D(H,.,) andy, = iH, 4} ;(f)P and therefore:
—@i Y = [iH, 5 02 (O]
From the above equation we obtain
i, 5 (OF YY) = Ext- [y (Hyap (6), Ext- [.pus 03 (x, 0)f (x, )™ xip(8) ) d¥t —
Ext- f*]mﬁ (Ext- f*Rﬁs @i (x, 0)f (x, )d*3xp(t), Hy gp()) d*t. (6.24)
Herey(t) = Ext-exp|itH, ,|i. Note thatp(t) € D(H,,) n D(H,,,4). and
14100 @ =¥ )], < all(Hg + D)@ O = p)]], =4 0,

as|t — s| -4 0. Therefore we may substitukg,, + H; ,, for H,, , and consider each term separately. Note that
the operatorsl; ,, andExt- [.4s @} (x, 0)f (x,t)d**x commute and therefoii, ,, contribute zero to equality
(4

above. The following identity by canonical compigatholds for anyy € D(H,,,), in particular forp(t) =
Ext-explitH ]|y € D(Hy,,)

(Hosh, Ext- [ s 03 (e, 0)f (e, A" 1) ) = ([ Ext- [y 08 Cx, 0)f (x, ©)d*x |, Hoptp) =
(W, =i [Ext- [ s mh G, 00 (x, )P x | ).
Therefore finally we get
€4, PEOF ) = Ext- [y P(6), —IExt- [y h(x, 0)f (x, )A™xtp ) d*t = (p, —im ().

This equality finalized the proof.
Remark 6.2 (a) in exactly the same fashion one proves that

aftz(pf:,g(f) = af”ﬁ,g(f) = _ﬂﬁ,g(aff) = [iH}f,ng[ﬁ,g(f)]



if 97|, is also finite or hyperfinite. The commutator ibitinear form orDf ; x D ;, D, = C(Hyy),

namely
e 0kg(f) = BiZ1 0350k () = 3ot g (F) — 4Ext- s t 5 (x,8)  f(x,)g(x)d*x d¥t. (6.25)
Here we define theg}3 (x, t) i product by
i3 (x,0) i= (Ext-exp|itH, 4]): @i% (x): (Ext-exp[—itH,4]), (6.26)
which we now prove is an operator valued non - Angldean distribution. First we note that
Ext- f*m,&.&3 Pk () f(x, )dBx

is a sum of monomials in creation and annihilatperators with kernels ik, and theirL% #-norms are
#-continuous irt. Thus by (2.9)

Ext- [ous 032 (x,0) i f(x, ) g(x)d*?x
is a bilinear form onD} ; x D ;. By (2. 3),
(H+b)! {Ext- Jopps P 92300 8 f(x, t)g(x)d#Bx} (H+b)!
is a bounded operatat;norm#-continuous irt. Thus onD (H,, ;) X D(H,4).
F g (f) 1= Ext-[pes g (x,8)  f(x,0)g(r)d™x d¥t

is defined as a bilinear form. Hence (6.25) holsequation for bilinear forms &{H,, ;) x D(H,, ). But

1
each term except the last is an operator defined (((n‘il + b)E). Thus: <pf§,3;, (f) i is actually an operator on
1 1
D ((H + b)E), and in fact for real f(x, t) it is essentially s&tadjoint. Furthermore, ob ((H + b)E) X

1
D ((H + b)E) each term in (6.25) except the last is a bilineamfwhich is a distribution of order two. Thus the

same is true fofy, : @3 (x,t) i P)+. We have used (6.26) to define the cube of treraiting field. It would be
interesting to determine whether this definitiomesg with conventional notions involving the sefiaraof
points. We shall see in this section and the falhmwone that thg (x) in equation (6.25) can be removed if
f(x,t) has#-compact support angi(x) = A on a sufficiently large set. Then (6.25) becomes

j=30"2

6#2 . .
(3 + Zi=255 + md ) o2 () = —41: 02 (1)

which is a non-linear equation for a séHadjoint operator valued distribution.
(b) The identityr (f) = [iH,g, @i (f)] implies

B4 (t) = [iH, g, AL 4(8)] (6.27)

provided that the right and left sides of (6.27kmaense and atecontinuous irt. They are certainly defined
and are#t-continuous as bilinear forms @(H,, ;) x D(H,,4). To see that (6.2akes sense as operators

3 3
onD ((H,,,g + b)E) we need only show that? ;(t) mapsD ((H,,_g + b)E) into D(H,,4). We choose a hyper

infinite sequence;(x, t) = f(x,ty)d;(t — to),j € "N wheres;(t — t,) is a hyper infinite sequence #fsmooth
functions#-converging ta5*(t — t,) in thew* #-topology on#-measures and with thbnorms|j3|#1,
uniformly bounded. Then the bilinear forshsconverge, which means that the inner products



0,iH 7, ol g (NP = (0,10 g (NH, 1+(0,7fg(H)s

#-converge fod € D(H,, ;). However thet-norms

(Hieg + b)*

1172, 0k, < ioko R ]| + ks Ovll, + 171,

,
are uniformly bounded, and so the inner prodéet®nverge for alp € F#. Thus the#-limit A% (¢t) = weak

3
#-lim @} (f;)y is inD(H;, ;) = D(H,,,) which proves (6.27) on the domd)r((H%,g + b)z).

Corollary 6.5 Letf € S, (*R**). ThenD} ; = ¢**(H,,,) c C'* ((pﬁ,g(f)), ande} ,(f) Dft, < D}t .
Proof Using Theorem 6.4, we prove by hyper infinite iction onm € *N thatqofﬁ,g(f) Dﬁ_g cD (HTQ) and
that fory € D}

n,g’
H 0o = b (DH + Ext- 278, (7) V0o (0 F)H T .

This formula is a special case of the identt} B = Ext- )i, (']") [(@dAYB] A™/, m € *N Thus we obtain

1
(g +5)"""2y

|1, oo, < Bxe-5 () 10171, |#. (6.28)

Theorem 6.5. Let f € C(:°° (B, that isf is C;°° with support in the¢-open region of space ting§. LetH, 4
be a Hamiltonian foB, so thatg(x) = 1 on a large set. Then

o5 o(f) = i (f) andn} ,(f) = n}(f) are independent gf/A.
Proof The spectral projection; (4, ») of the sharp time field

AO,J{(t) = E'xt- f*]R#3 (p;j,g (x' t)f(x, tO) d#3x = EXt- f*R# Ad# E#t#(ﬂ'l %)
are given by the formula
Ef(4,%) = (Ext-explitH, 4])E§ (A, %) (Ext-exp[—itH, 4])
and are independent gf ThusA, ,(t) is independent of and so isA, (t). By (3.1.7), for allg,
1
Do, =D(HY2)nDN,) < D ((H,,_g + b)Z) c D (phy(N)

o) thakpﬁ_g(f) I' Dy, is independent of. Thus to complete the proof, we only need to shwat the domain of

1
ol o (f) = #- ((pf;g(f) D ((H,f,g + b)5)> is independent of. SinceH,, ; is essentially self-adjoint on the

1 1
domainC " (Hy,.) € Dy, SO iS(H,4 + b)? Thus by (6.16)} ,(f) I D ((H,{,g + b)f) c #-(f(F) 1 Do)

Therefore#-(#(f) I Do, ) = @f 4 (f), S0k ,(f) = @i(f) is independent of. Similarlyr} ,(f) = mk(f) is
independent of.

Theorem 6.7 Lety € Dj; ;, with H,, , a Hamiltonian foB}. Then

W, @f (x4, t1) = @f (X, )Py

is a distribution iMD# (B x-+x B)
Proof This follows directly from our previous estima{és16) and (6.28).



7. Essential self-#-adjointness.
The main result of this section is the proof thmtreal test functiong = f(x, t) with #-compact support, the

field o} (f) is self#-adjoint, and essentially seff-adjoint onD,,, = D(H;_f) N D(N,), or on anyD,, , where

H, (g) is a Hamiltonian for the support ff We see furthermore thatfifis real and|f |4, defined by (6.20) is
finite or hyperfinite, thenqoff‘,g (f) is self#-adjoint and essentially se#-adjoint onD,, ;. The proof has three
main steps. First, we assume tfias a regular function of; in that case we use an analytic vector argument to
show thatcpf,‘_g (f) is essentially self-adjoint onD,, ;. As a second step, we takdimits in the resolvents

(91 4(f) — z)™* asf tends to a more general function. In this wayolv&in a self#-adjoint operatop;; ; (f).

As a third step, we show thaﬁ,g (f) is essentially self-adjoint dil( H, (g)). The regularity we impose ghis

the requirement that its Fourier transform bsmooth function witht-compact support, or more generally
that for the#-norm|f |4, of (6.20) there exist constants= a(f) andg = S(f)

IDI f| < aB”,r € *N. (7.1)
For a vectorp, we consider the conditions
ICH,(g) + b)Y Ylly < ad”,r € °N. (7.2)
Lemma 7.1 Assume (7.1) and (7.2). Then
|CH. () + b)Y 0t s ()|, < aade(d + BT (7.3)

for some constant independent of, ¥, f.
Proof . By (6.28) and (7.1)-(7.2)

ICH(9) + b)Y 0l g (NI, < Ext- 250 (7) cap || Hy(g) + B o0l (Fwl, <
< Ext-Y7_, (;) caflad™ I+ < aadc(b + B)".

Lemma 7.2 Assume (7.1) and (7.2). Th@nis an#-analytic vector fomﬁ,g (). In particular for reaf (x, t),
@3 4(f) is essentially self-adjoint onD,, .

Proof We applying the preceding lemma successively. \Welsat multiplication bxoﬁ_g (f) changes the
constantst andd of (7.2) as follows= aadc - d + 8. Thus

[CHt) + 0Tl DIV, < atao) [Bxe-Tiz3 @ + i) + kb,
and
|z w|, < aB k"

for some constar®, which proves thap is #-analytic for<pf§_g (f). The essential se#-adjointness otoﬁ_g (H
follows from generalized Nelson's analytic vectordrem, see ref.[17]-[18}Ve can draw more information
from (7.3). If we writeH,,(g) + b = Ext- f*R# Ad* E4(4,%), then (7.2) is equivalent tap € Range{E,(d, )}

and (7.3) gives that
@4 o(f)Range{E,(d, %)} c Range{E4(d + b, x)}. (7.4)

Becausep;: ;(f) is self+#-adjoint we have

of ;(f)Range{(I — E4(d, %))} c Range{(I — E4(d — b, »))}. (7.5)



These two inclusions have simple physical integii@hs. We imagine thatﬁ,g (f) is written as a sum of two
operators, one creating physical wave packets ededavithH, (g), and the other annihilating them. Because
of (7.1) the wave packets have energy at fipsind scxpfj,g (f) can increase or decrease the total

energyH, (g), by at mosp.

We note thatp}; ,(f) is essentially selft-adjoint on the domaity; Range{Ey (I, )}, by the proof of Lemma 7.2
and the remarks above. Our next step is to #akmits with respect tgf in the resolvent® = R(f,z) =

((pf;g (f) — z)~1. As preparation, we now prove thRpreservest-regularity, which means

ICH (o) + B /2REF, 230, < M || (o) + BYew | (7.6)

Lemma 7.3. Let f be real and satisfy (7.1). Then the estimate (7o&)s forlm z #+ 0. The constantaf andb
depend only om, g, and|f|;.

Proof To prove this lemma, we obtain uniform estimatespproximating operatof,. If (7.6) holds forRr,,,
with M independent of € "N, and

R = strong#-lim R,,, (7.7)

then (7.6) also holds fat. In fact” (H,(g) + b)%dj”# defines a#-norm on the domaip (( H,(g) + b)%) =

£, which makes it into a non-Archimedean Hilbertapal he inequality (7.6) in equivalentRg, being a
bounded operator i, and the#-norm||R,[l4, 1, Of R,,, as an operator frof; to itself is defined by

L SM. (7.8)

IRalls11 = || (Hu(9) + DY2Ro(H(g) + D)

From the strongt-convergence (7.7) di*, we conclude that on#dense set of vectors #f,, R,,
#-converges weakly tB. Since the operato,, n € *N are uniformly bounded aH}, R,, —4 R in weak
operatort-convergence off;. Thus the#-norm||R, |4, is bounded by thé&-lim sup of the||R, |4, , and
(7.6) holds forR. Let

H,(g9) + b = Ext- |, 4 Ad* E,(4, »). (7.9)

RE

We approximatep;; ;(f) by the bounded se-adjoint operato€,, = Ey(n, )¢} ;(f)E4(n,x),n € *N. From
(7.4) it is clear thaf,, -4 (pf:,g (f) on vectors with#-compact support in the energy. Sim;jég (f) is essentially
self+#-adjoint on this domain, the resolvents adsoonverge strongly [18]

#-1im,,+ R, (2) = #-lim,,_,+o,(C, — 2)™ = R(2),

proving (7.7). We now show that (7.8) holds anid gufficient to prove
1 1
|CH () + DYRaCHy () + D) 20| < Ml (710

1
for 1 in the#-dense seb,, ;. Since( H,(g) + b) "2 andR,, both mapD,, , ontoD,, , we need only prove that on

the domaimD,, ; X D, 4,

H,(9) + b < M*(C, — 2)(H,(9) + b)(C, — 2) = D1
= Mz(Cn - X)( Hu(g) + b)(Cn - X) + (MY)Z( Hu(g) + b) + l'MZ}/[H,{(g),Cn],
wherez = x + iy. As the first term is positive, it is sufficierd show that

0 < [(My)? = 1](H,(g) + b) + M2y[ iH,(g), C,]- (7.12)



But

[lH}{(g)l Cn] = E#(n' H)[ lHH(g)' (pﬁ,g(f)]E#(n' H) = E#(Tl, %)T[ﬁ,g(f)E#(nl %)'

By Theorem 6.3,

[, [ iH,(9), Chl)| = |(E#(n, )P, ”ﬁ,g(f)E#(n' ”)¢)#| < 1Yy ||7Tﬁ,g(f)E#(n, ”)l/)”# <

< Wplla - 1fls - [| () + BBy 509 ||, <3 1f 1o - {2 @, (o) + DYy + &7 )

for anye > 0. Furthermore, thé-norm |f|,; of (6.20) can be chosen independent &dr largeb, since for
b, < b, we have thatH, (g) + b, < H,,(g) + b,. Therefore (7.12) is valid as long as

0 < {My)? = 1= IM%ye fly} (Hu(g) +B) =22 IfLn.

For each|f|41,y # 0, we can pidM large so thaMy)? > 3, € small enough so thétMZys |fls1 < 1, andb

large enough so that the inequality is valid. Tdugpletes the proof.

We now show that the resolvents of approximatel figleratorst-converge. We use the spectral projections
E4(n,x),n € *N defined by (7.9) to cut-off the field. Mﬁ,g (f) is a#-closed symmetric field operator, then
Ey(n, 0@ o (f)Ey(n, ) is a bounded, se#-adjoint approximation tg} , (f).

Lemma7.4. Let f,,,n € "N be a hyper infinite sequence of real functionssgang (7.1) withg depending on

n. If the graphs; ((pf;g (fn)) #-converge to the graph offadensely defined operator, if

[CHCo) + DY 2oty () = 0o ()} HicCg) + B) 2

, ¥ 0 (7.13)

and if the#-norms|f, |4, are uniformly bounded, then the resolvents
Ry(2) = (Cp—2)7} (7.14)
of
Cn = E4(n, 2095 s (f)E4(n, 20). (7.15)

#-converge strongly to the resolvent of a selkdjoint operatort.
Proof This result is a special case of [ref.[19], ThnBl &or. 6]. See that paper for notation. Recall tha
#-measurd, (n, »)is defined by (4.3.9). Note that

1) + 072 (G = 0k () (Hlg) + 5|, < (7.16)

#

| CEv (.20 = D(H(9) +b)2

- {”‘Pﬁ,g(fn)( H,(g) +b)2

R [CRORDEE R N

< w2 ([0t () (@) + )], + [[CHeo) + 020, (0]}

By Theorem 6.3 the operatof; , (f,) (H,(g) + b)_% and its#-adjoint are bounded with

0t o) + B2, < ¢ Ifalan

which is bounded uniformly in, € *N. Then



| CHo) + 5372 (Cu = 08 (5)) CHi(9) + B2, = 0(n172) (717)

and so by (7.13),

|CH(@) + DY = Cu) () + B, 4 0

asn,m — *ooThe required uniform boundedness of the resolvigf@s — z) * |4, 1 < const follows from
Lemma 7.3.
We now discuss when the hypotheses of Lemma 7.dagisfied. If the<p,§,g () #-converge strongly on a

#-dense domain, then the graphsonverge. Th@ﬁlg(fn) will #-converge o, , if f, &4 f asn - "coin
the #-norm|-|4;; they will also #-converge for some hyper infinite sequeriger € *N

fo 24 Ext-2Z0 FC0)6% (8 — ) (7.18)

with £(-,t;) € SE, ("R#*). We can choosg(x, t) to have the form

f(x' t) = Ext- ;z?f(' ti)(sn (t - ti)'

wheres, (t) = 0 has support ift| < n~1, andExt- [ &, (t) d*t. For such a sequendg, |4, is uniformly
bounded in mn € *N. From (6.9) we see that* #-convergence of th&,(t) as boundedt-measures implies
(7.13). Thus the hypotheses are satisfied forél@eance (7.18). They are also satisfied ifffh#-converge in
the#-norm |-|4,, and evenyf, with finite |f;, |4, is the#-limit of such a hyper infinite sequence.

Theorem 7.5. Let f be real andlf|4, finite. Then the operatqmﬁ_g (f) is self#-adjoint and essentially self-
#-adjoint onD,, ;. A real linear combination of sharp time fieldgiwieal test functions i}, (*R*3),

Ext-Y'Z7 A, 4(t;), is also essentially seif-adjoint onD,, ;.

Proof The two cases are similar and we only cons@i?!;(f). We first prove that the operatérof Lemma 7.4
extendsp ,(f)

(pf:_g(f) cC. (7.19)

As in the proof of Theorem 6.6, we have

0t o (1) = (9 g(N 1 D,)" " = (f o) 1 Do)* (7.20)

where(A)# is #-closure of the operatdrandD, = D(H;/Z) N D(N,,). LetR, (2) be defined by (7.14), where
f» approximateg’ and satisfies the hypotheses of Lemma 7.4. Rfay = # — lim R, (z) exists and is the

resolvent of a self-#-adjoint operatorFory € D,, 4, C,tp = E(n) @5 (HEMY =4 @} ,(f), and
#-convergence can be shown®((H(g) + b)*?). Fory = (¢f ,(f) — 2)¥,

R(z)xy = #— lim R,(z2) x = # — lim R,(2) (C, —2)¢ = .
Thus we obtain thatC — z)™*( ¢f ,(f) I D;) = I I D,. And therefore by (7.20), (7.19) is valid.

We now show thatpf,“,g (f) is equal taC, which completes the proof. We need only showithgt € D(C) ,
then Y € D ((pf;g(f)). We first notice that

R@)D ((Hy(g) +b)2) < D ((Hy(g) + b)?) 7.40)



and that (7.8) is valid faR (z). The argument for this is the same as the probkaima 7.3, but the
approximate operatdt, = Ey(n, x) @ ;(f,)E4(n, ») replaces th€,. of the former proof. The remaining
calculation is the same since tlfgl4,, n € N, are assumed uniformly bounded. We now introdhee t
smoothing operator

B= (142 () + b)) (7.22)
with the propertied{P;|, < 1
strong #-lim,,_o, P; = I, (7.23)
and forr < 2,
IP,CH(9) + Y]], = I Hu () + b)Y B, < /. (7.24)

Lety € D(C) andy = R(z)x. ThenPy = 1; >, P,asj - “co andy; € D(H,,(g)) cD ((pﬁ,g(f)). If
@3 o (H; #-converges and thepis in the domain of thé-closed operatap); ;(f), so we prove this

(0 s (N = 2)9; = (f ,(f) — 2) Py = (¢} ,(f) — 2) PR(2)x = (7.25)
= (¢t ,() —2)R@) Px + (¢f ,(f) — 2)[ P,R@)]x.

The last equality is valid since?;x € D( H,(g)?) < D(( H,(g) + b)*/?) and by (7.21)

R@) Px € D ((Hu(9) + b)) < D (o).

SinceC extendsp} ;(f), (¢4 ¢(f) — 2)¥; = Pix + (9hg(f) = 2)[ B, RD]x. AsPix =4 x=(C -2y to
conclude thaty € D ((pﬁ,g(f)), we need to show that

A= (9hg(f) = 2)[ P, R@)]x =4 0. (7.26)
We now claim that

Aj = #-limy,_o, (Cy — z)[ Pj,Rn(z)])(, (7.27)

where(,, andR,, are defined in (7.14-(7.15). Sin¢&, — 2)R,(z) = (C — 2)R (z) = I, we need only prove the
existence of the limit (7.27) with the commutatemoved. As observed in the first part of the prémf,

¥ €D ((Hy(g) +b)2), 16 — Clly = |Cuth — 0 (D W]l —4 0. SinceP,R(2)x € D(H,(9)?)
D((Hy(g) + b)*/?), asn > "o, (C, — 2) BR (2)x ~4 (v 4(f) — 2) PR (2)x. Also R, (2)x —4 R (2)x, and

by Theorem 6.3 and (7.24)(C, — 2) Bj||, < const+ |fylsy ]% which is bounded uniformly in € *N.
Therefore

(Cp — 2) PR, (2)x ~4 (0k 4(f) — 2)PR (D)1,

and (7.27) is established. Thys= #-lim A; ,, where

J,n’
n-*oo

Aj,n = (Cn - Z)[ Pj'Rn(Z)]X = (Cn - Z)Rn(z) Pj[Pj_lr (Cn - Z)] PJR (Z)X =

= j 7 P [(Hy(g) + b)2, (C, — DIPR (D)1 =



= j ' B{(H,(9) + D) Hy (), Cnl + [ Hy(9), Crl(Hy(g) + B} PiR (2)x =

= _ij_l P]{( H}{(g) + b)E#(Tl, H)T[ﬁ,g (fn )E#(n' %) + E#(Tl, H)T[ﬁ,g (fn )E#(n' H)( H}-{(g) +
b)}PR (2)x.

Now by (7.24) we obtain
P CHy(g) + D), = [|(Hulg) + BB}, < j~2/2
and

1Es (r20m] 5 (f )Ew(n, 20) By, + || PiEw(n 20w g (fu )Ex(n, 20|, < const- |flgq - j*7/*

< const- j1/*

as the|f; |4, are assumed uniformly bounded. The constant epeddent of andn. Therefore
I Aj,n”# < const- j~1/* and

#lim|| 4], < ﬁj;g(ﬁ;liga” Ajln||#> = 0.

Thus (4.3.26) is established and the proof is cetapl

8. Thefield asatempered distribution in S, (*R**).
In the previous sections we studied the quantuld ftjgjg (f) corresponding to the Hamiltonidh, (g). We
found that if ¢} ,(f) is localized, namely if has finitely bounde#-compact support i& and H,.(g) is a
Hamiltonian forB, then <pf§_g(f) = @}(f) is independent of the spatial cut-gffin this section we show that
there is a cut-off independent fietg# (f) defined for all f € Sf (*R**), and ¢} (f) agrees with the previous
one whery has#-compact support. The domain @ (f) includesD,, = D(H;_f) n D(N,, ), and on this
domain ¢f(f) is a tempered distribution &}, ("R**).
Lemma8.1. LetD,, = D(Hg,2) N D(Ny,). Fory € Do, , (4, @i (x, ¢ ), is a#-continuous, polynomially
bounded function and

|Ext- [, ot 0 G690} DJ'f (2, £ )d%x| < OIS C, Oz b, (Hose + N + D)y (8.1)

Proof We divide space time into a number of similar regiwith a partition of unity. Lef(x,t),x =
(x1,X,,%3), be aC™* function satisfying

0<&(xt)<1, (8.2)
supp(§) < {(x, O)[lx| < 1,[t] <}, (8.3)
and such that
Ext-¥;;&ij (x,t) = Ext-3;;§(xq — i, %, —i,x3 —i,t —j) = 1. (8.4)
Thus if f(x,t) € Sf, ("R**),
f=Ext-%; fij (x, t) = Ext- 3 f (%, £ )& (x,t) 53

with f;;(x,t) aC ™ function with support in the cube

Bij ={(x,t)|lx; —i]| < L|x; —i| <1, |xz —i| < 1,]t —j| < 1} (8.6)



We also pick & functiong,(x) such that

go(x) = A, if |x| <2, (8.7)
and

Jo(x) =0, if |x| = 3. (8.8)

Thus H,,(g;;) is a Hamiltonian foB;; when

90 = 90 (3157 557 55 (8.9)

Furthermore
1+ No) ™ Hieg (14 N0,) || = 00 (8.10)

as the kernels of operators contributingHg,{,gij haveL} #-norms with are) (j). For(x,t) € B;; andy €

Dy ., We have by Lemma 6.1, thah, ¢f(x, t)y), is #-continuous and

I, 0f (x, D941 < const- (W, ( Hy(gi;) +BCO)) )y (8.11)

where the constant is independenkgf, i, andj. Hereb (i) is hyperfinite constant proportional to the lower
boundb(x) of H,(gi;), see (2.19). Note that that the lower boun#gffg;; ), is proportional to the diameter of
the support ofy;;, namely0(j)). Thus (8.11) gives the bound 0, t) € B;j,{ € Dy,

[0, @ (x, )yl < (8.12)
2 - - ~
const - {[[Ho 2|, + (7 + Nos)ll, - | (7 + Nos) ™ Hysegy, (1 + Now)™ ||# + 56 Iz} <

< const - [If C, ) llua{h, (Hop + N&y + D)y - bGo) - 0(),

by (8.10) and the above discussiorb(k). Since0 (j) = 0(|t]), we have proved polynomial boundedness.
Thus, as in Lemma 6.1,

|Ext- [ s, 05, P DEf (x, €)% < OONF G Oz, (Hose + N + D),
which yields (8.1). We now define the sharp tinetds
Ay (f, ) = Ext- [i4s @i (2, t)f (x,t)d"3x (8.13)
and

By (f,t) = Ext- [.gus mi (x,t ) f (2, )d*x. (8.14)

Lemmas8.2 Let f(x,t) € ¥, (*]R#‘*) be real. Ther,, (f, t) andB, (f, t) define self#-adjoint operators, and
their domain includeB,,,. Fory € Do, [ A, (f, OYlls + 1B (f, OPlls < [FC, 1wz - |1Eall 4, where

E, = (Hon + N&, + 1),
and [f (.l = (1 + 1ED {IlFC, Oz + [DF FC 0], }
Proof The proof is similar to that of Lemmas 6.2 and 8.1
Theorem 8.3 Let f(x,t) € S, ("R**) be a real function i§f,. The vectorsi,,(t)y andB, (t)y, where



Y € Dy,,, are#-continuous and rapidly decreasing irT heir integrals ovet exist and defingt-closed
symmetric operators;: () and /() with domains containing, .. The fields ¢} (), 7f (f), A, (f, t) and
B, (f,t) are all independent gf(x). For any vectot) € D, , we have

Il @i (OPlls + I me(HYlle < If lsz - 1EANI,

where|fly, = Ext- [|f (- t)|ypd*t andE, = (Hy, + N&, +1)"°.

Proof This proof is based on the proofs of Lemma 8.FdFam 6.3, and Theorem 6.6. The fielgé(f) and
ni(f) are defined as thel-closures orD,,,.

9. Locality
In this section we derive locality of the field sators. Locality means that two field operater(f) and
@(h) commute provided the supportsfoéndh are spacelike separated. In other words, whenever

(x,t) € supp(f) and(y, s) € supp(h),

we have that
lx —y| > |t —s|.

Under this hypothesis a signal originatingupp(f) (caused, for example, by the process of perforrifieg
measurement o} () cannot be recorded by the measurement’éh ). Thus one expects that the
measurement o} (f) does not interfere with the measuremenpfh ), and that the joint measurement of

0 (f) andgf(h) can be performed in either order. The rigorousherattical statement that the measurements
can be performed in either order is that(f) andef(h) commutes. For an§-closed operatod, a#-core

D*(A) of A is defined to be &-dense domain contained i{A) such tha#l = #-(A I D) .

Self+#-adjoint operatord andB commute if and only if for any spectral projecti®mf B, and#-coreD of A,

ED c D(A) and foryy € D, EAy = A EY.

Definition 9.1 (i) Let y € D*(A), we say thavectory is a near standard vectol|ip||, € *RE,.
(ii) A near standard-coreD/f, (A) of A is defined to be a subdoman, (4) c D*(A) which contains all near
standard vectorg such that: (ay € D*(A) and (b) vectoAy is a near standard vector.

(ii) A near standard domaib;, (A) of A is defined to be a subdomdig,, (4) < D (4) which contains all near
standard vectorg such that: (aj € D (4) and (b) vectoAy is a near standard vector.

Definition 9.2 Self+#-adjoint operatorg andB ~ -commute on domaiff,, (4) n DE, (B) if for any near
standard vectorp € Df, (A4) n D{, (B) the following condition holddBy ~ BA.

Lemma 9.1 Self+#-adjoint operatord andB ~ -commute on domaif/ (4) n D{, (B) if and only if for any
spectral projectioi; of B, and near standatttcoreD/ (A) of A, EzD{, (A) c Dy, (A) and for ally €

Df?n (4), EgAY ~ AEgy.

Theorem 9.1 If supp( ) andsupp( k) are spacelike separateg(f) and ¢} (h) ~ -commute.

Proof Let

Ay y(f,s) = Ext- f*@m @i t)f(x, t)d™x
and
By g(h,t) = Ext- [, i (x,t ) f (2, t)d*x

be the sharp time fields obtained from the testtionsf andh correspondingly. First we prove théf ,(f, t)
andB, 4 (h, t) commute. For an§-open sef§ in space, we define the algel&(3) as the wealk¢-closure of
the finitely bounded functions of the= 0 fields

Ext- [.zss 95 (%,0)fo(x)d®x and Ext- [.oys 1l (%, 0) fo(x)d®x



asf, runs over th& - functions with support i§. If 3, and3, are disjoint#-open sets, then elements of
¢*(3,) and€*(3,) commute, and it was shown in [17] that

[Ext-exp(—io H,(9))]|C*(I)[Ext-exp(—io H,(9))] © C#(3,), 9.1)

where3,; is the set of all points in space with distanas lhano| from 3. The proof in [17] is valid whether
or notg(x) = const on the seB. If J; is a small neighbourhood efipp (f) N {time = s} and3J, is
similarly defined with respect th at timet, then3; and(3,);_s are disjoint. Since the finitely bounded
functions of4,, ,(f, s) belong to [Ext-exp(—is H,(9))]|C*(3,)[Ext-exp(—is H,(g))]

and the bounded functions Bf ;(h, t) belong to
[Ext-exp(—it H,(9))]|C*(3,)|Ext-exp(—it H,(g))] c
c [Ext-exp(—it H,(9))]C*((32)s—)[Ext-exp(—it H,(g))],

A, 4(f,s) andB, 4(h,t) ~ -commute. LeE be a spectral projection &f, ;(f,s) and letp € D, , ¢, @ near
standardt-core forwﬁ_g (h). ThenEy € Dy, (B,,,g (h, t)) for all t and

(@ g(h)0, Ep)y ~ Ext- [(6, B g (h, )E)yd*t =~ (0, E[Ext- [ B,y (h, )0pd*t])y ~ (6, E@f ()4 (9.2)

forall & € D, 4n. Thus
Pug(MEY =~ Egg ()Y,

and4, ,(f,s) =~ -commutes withp}; ;(h). Now letF be a spectral projection fex; ;(h).
ThenFy € Dy, (A%,g(f, s)) for all s and

( (pﬁ,g (f)@, El/))# ~ Ext- f(H:Ax,g (f' t)El/J)#d#t ~ (6' F[EXt' f An,g (h: t)l/)d#t])# (93)

as before in (4.5.2), so thét) € Dy, (95 4()) = Din (95 o(f) ) andef ;(NEY = Ef o (H.
Therefore, ¢ (f) and ¢ (h) ~ -commute.

10. Space time covariance
Space time covariance means that the field tramsfan the expected fashion under the space time
translationr’ = (xg, x5, x5),t',

or(xt) = pi(x+x',t+t") (10.1)

By its canonical definition the field transformseetly under time translation. L&t(x") be the unitary
operator orF# which implements the free field space translaior x + x'. By definition,U(x’) acts on
each vecto®;(k;, ..., k;) in thej particle subspacg; by

Ux)0(ky, ., k;) = (Ext-exp[i(x’, 3 _, k)])0(ky, ..., K;). (10.2)
We use the convention théi{x") is the Schrddinger picture operator. On a suitdblaain,
U(—x")a*(k)U(x") = (Ext-expli{k, x")])a*(k), 0(3)

U(—x")a (k)U(x") = (Ext-exp[i{k,x")])a (k), ap



and from the definition (2.10) we have
U=xNpi (U ) = pfi(x+ x). (10.5)
Now U(x") does not commute with,,(g), but in fact
U(=x) H,(9U(x") = H,(g"),

whereg’(x) = g(x — x'). Butg#(x, t) is independent of the space cutoff functigify) provided that
g@) =Afor|lx—y|>|t]. Thusifg (y) = A for|x+ x' —y| > |t],

U(=x") i (x, U (x") = U(—x")[Ext-exp(it H,(g))]psh (x)|Ext-exp(—it H,(9))|U(x") =
= [Ext-exp(it H,( g")]pk(x + x")[Ext-exp(—it H,(g"))] = pi(x + x',¢) (10.6)
on a suitable domain, for example Bg), x D, ,.. ThusU(x") implements the space translation for fiedgf{f).

11.The algebra of local observables

To each#-open regioB c *R#* of space time, we associate a non-ArchimedgaalgebraG* (B) in such a
way that the sel#-adjoint elements df*(B) are exactly the operators corresponding to expriswhich
may be performed iB.

Definition 11.1 Let A € €*(B), we say that operator is near-standar¢jAf|, € *]R?_ﬁn andst(]|A|lx) # 0. The
sub algebra of the all near-standard operato (#) will be denoted bg? (B).

Definition 11.2 The C* algebra of standard local observab&6C* (B)) is defined by

st(CL(B)) = {st(4)|4 € CL(B)}.

Remind that the requirements for a local quantuso are: to each bounded open redioof space time,
there is an associated non-ArchimedéanalgebraG* (B) containing the identity.

(@) Isotony: ifB;  B,, thenC*(B,) o C*(B,).

(b) Locality: B; andB, are space like separated, tse(€* (B;)) commutes witlst(C%(B,)).

(c) The algebra of local observablg is defined as th&-norm#-closure of the union of th&*(B).
(d) The algebra is primitive; in other words, it has a faithful, irreducible representation.

(e) Lorentz covariance: Leia, A} be an element of the inhomogeneous Lorentz gtQuihen there is a
representation, 5, of L', by a group of* - automorphisms o&*, such that for a bounded regin

oran Gt (B) ~ €t ({a, A}B). (11.1)

In this section we consider several possible dging for the non-Archimedean algeli(B). The different
definitions undoubtedly lead to differefif algebras. In order to arrive at a natural anthadis definition, we
prove that all reasonable candidates@b¢B) have the same wedakclosure; we take this weakly #-closed
algebra as the definition df*(B).

Definition 11.3 €*(B) is the weakly#-closed operator algebra generated by the operators

{Floi(DNF € LY, supp(f) < B, |f |41 € "Rign}.

The definition is unchanged if we replae,, by some non- Archimedean algebra which igt-dense in the
weak operator topology. It is also unchanged ifre@ace the class of test functions by another (for
exampleD{! (B)) having the samé-closure in thd:|4; #-norm. In fact, ifl f, — fls1 —4 0, then(pf (f,) —



z)™t -, (pf(f) — z)71 in the strong operator topology by Lemma 7.4 apthle generalized semigroup
convergence theoreBxt-exp(ip# (f,)) —4 Ext-exp(ipf(f)) ThusExt-exp(ips(f)) andF (¢} (f)) belong

to the weak#-closure if eaclf,, n € "N is admitted as a test function in definition ohparchimedearC;
algebraG*(B). The same algebi®*(B) is generated by the finitely bounded functionshudrp time fields

A, (t) = =Ext- f*@§3 e (x, t)f(x,)d*x, f € DE,(B). In fact, using a hyper infinite sequengen € *N such
as (4.3.18), we have the resolvetitsonverging(o}i (f,,) — z) ! =4 (4,(t) —2)~*, and s (4,(t)) €
€*(B).Thus the sharp time fields generate a smallebaigdiowever, if € Df, (B), we can approximate
ipf(f,) by the following hyperfinite surixt- ¥:=% A, (t;)At;, with strong#-convergence orD;‘. By Lemma
4.3.4the resolventg#-converge, S(F(qoff‘ (f)) belongs to the weakly-closed algebra generated by the finitely
bounded functions of hyperfinite linear combinatiaf the sharp time fields. We now see that alhsuc
F((pﬁ(f)) belong to the algebra generated by the finitelyroled functions of the sharp time fields themselves
Let F be a finitely bounded operator commuting witj(t,), A,,(t,),..., and4, (t,),n € *N. Then by the
generalized spectral theoremcommutes wittExt- Y% A, (t;)At; on the domaiﬂDﬁ_g, which by Theorem
4.3.5is a#-core forExt- Y:=% A, (t;)At;. ThusF commutes wittExt- Yi=7 A,,(t;)At;. Thus the commutant of
Ext-Y=" A, (t;)At; is larger than that dfxt- Y= A,,(t;)At;, and the double commutant smaller. Therefore,
the sharp time fields generdfé(B) as asserted.

Theorem 11.1 With mentioned above definition 6 (B), the axioms (a)-(f) are satisfied

12. Estimates on the interaction Hamiltonian

Let F# be the Pock space for a massive, neutral scaldriGevo-dimensional space-time. The element bf
are sequences of functions on momentum spacehéetrinihilation and creation operators be normalize
the relation

[a(k),a* (k)] = 6% (k — k). (12.1)
Thus the free-field Hamiltonian is
Hy, = Ext- flklsx a*(k)a(k)w(k)d*k. (12.2)
Thet = 0 field with hyperfinite ultraviolet cut-oft is
0 (x) = Ext- fIkISH Ext-exp(—i{k,x))[a*(k) + a(k)] d*3k (12.3)
The spatially cut-off interaction Hamiltonian reads

H,;,(g) = Ext- f*@iﬁ: it (x): g(x) dPx = (12.4)

Sio () {Ext- [, o Pk - Ext- [ Pk @ Ueq) = a” (k j)a(—Kjar)

x a(~k)d (Tia b, Ty k®, Ty k® )Tl )17 2dP k.. d kL),

where we lek ; = (k&, k@, k®),i = 1,2,3.
The total Hamiltonian reads

H,(9) = Hox + Hix(g) (12.5)
We let

N, = Ext- [

i @ (RDal)d®k, (12.6)

and



Dg,u = n;oio D(Hfrll,%)'

12.7)

Theorem 12.1 For anye € *Rf,, and for fixedg(x) € Sf,(*R#®) there is a constantsuch that as bilinear

forms onD{,, x D§,

< eH§, + b,

1 1
Hg,{: |:H(§ »n’ HI,H(g)]

= [N [N, Hine(9)]] < eNZ +b.

Theorem 12.2 Let W: F# — F# be an operator of the form

W = Ext- |, APk, w(ky, ..., k) a*(k 1)~ a(=k,,),

" o @k Ext- |

[ km|<3
wherew(ky, ..., k,,) € L% ((*R*jm)). Then

|V, + D=2wW (N, + 1)—(m—f>/2||# < constllw(ky, .., kp) 4,

(HO,,+1) (N, +1

IA

( HO,H

OH’[ OH’W]

#

Sconst”w%( 4 k(l), 1k(2) 1 ki(S) )W(kp---,km)”L#,
2

(N, + D™™2|| < const X »*|| X1 1w(kl)w(k1,...,km)||L§.

1
Hé}{'[ OH'W]
#

Theorem 12.3 Let the operatoW be as above. Then

HZ

0%‘[ OH’W]

(N, + D™™2|| < const|lw(ky, ..., k)l -

#

Proof of Theorem 12.1.Introduce thie= 0 field <pfj (x) with an hyperfinite ultraviolet cut-oft < »:

o) = Ext-f Ext-exp(—i(k,x))[a*(k) + a(k)] d*3k

|klsp

The spatially cut-off interaction HamiltoniaH, , (g) corresponding to the= 0 field (pff(x) reads
Hl,x(g) = Ext- f*@iﬁ: §0§4(x)5 g(x) a*x.
Note that

H;,(g) = strong #-lim,_,,, H;,(g).

(12.8)

(12.9)

(12.10)

(12.11)

(12.12)

(12.13)

(12.14)

(12.15)

(12.16)

If we write H;,,(g) as a sum of five operators of the fowhin (12.10), then by Theorem 12&ken for the

casem = 4 we get

(Ho. (Ho, + 1)

1
OH’[ OH’W]

#



1
< const [|wz (Tiy kP, Ty kP, Tk kY )w(kl,...,k4)||L#. (12.17)
2

L

i i

Since the kernab(k,, ..., k,) has an over-all factcj‘( kD Y k@ v k® ) whereg (k) is the

Fourier transform of the spatial cut-gffx), the fast decrease §fk)) ensures that

1
w2 (T kD, T k®, Tk Ywiky, .. ky) € L

i

Thus the kernel for the corresponding cut-off iatgion termw, approximatesv,, in the sense that

asy —4 x. This is holds for eaci making up H;,.(g), so we infer that there existsig such that for anyu
such thatu, < u < x

1
a)z( kD v k®, v k@ )(Wk(kl,...,k4)—Wu(kl,...,k4)>||L# 40 (12.18)
2

1 1 -
(Ho,+1)" |HZ,, [Hgﬁ,(ﬂ,,,,(g) - H,#(g))] (Ho+ D) <3e. (12.19)

#

13. Self #-adjointness of the interaction Hamiltonian

For a real spatial cut-off(x) in the Schwartz spac&d, ("R#®), the interaction part of the Hamiltoniat ,,(g)
is self#-adjoint.

Theorem 13.1 If g € S#, (*R¥#3) is real, then

Hi5(9) = Ext- [.gua: 3" (x): g (x) d™x (13.1)

is essentially self-adjoint onDf,, = N, %, D(HZ,).

Let us introduce a domaiy,, obtained by applying any polynomial of the= 0 fields ¢ (f;), for real
fi € S{.("R#) the no particle stat®,. ClearlyD{,, c D§,., and any vecto2 in Df,, is an entire vector for
@2 (f), which means that the hyperinfinite power series

o lofr 00, ,
n=0" 1 2

Ext-), (13.2)
defines an entire function of s. SinB¢, is #-dense in Fock space, Generalized Nelson's anaitior
theorem (see [19] Chapt.vi, sect.5) shows thatdalf, ¢ (f) is essentially self-adjoint onDf,,. A similar
argument can be made for the canonically conjugate fields(f). Let M, denote the von Neumann
algebra of operators generated by the spectraggtions of all the = 0 field ¢ (f), f € Sf,(*R¥#3). The
algebranm?, is maximal Abelian. In other words, a bounded ap@rwhich commutes with all operatorsia?

is itself inM?. Let us considerp?(f) for supp(f) € 0 c *R¥3, where0 is an#-open region of space. (The
support of a function is the smallgstlosed set outside of which the function vaniskestically.) Define
€#(0) as the von Neumann algebra of operators genegtéfte spectral projections of all the fielgg ()
andr?(f) with supp(f) c 0. Since

@l (x,t) = Ext-exp(itH, ) @i (x)Ext-exp(—itH,,) = (ap

o

= Ext- [ A"y {84 (x =y, 65m) mh(9) — [Sr 80(x — 3, 5m)| 0E )},

whereA(x, t; m) is the solution of the generalized Klein-Gordonatipn with Cauchy data,(x, 0; m) = 0,
a#

a#tA#(x, 0;m) = §%(x). (see [15],Eq.111 ) andl,(x, t; m) vanishes outside the light cone, we infer that



Ext-exp(itHy, )CE(0)Ext-exp(—itH,,) € €L(0,), as.

whereO0; is the regior0 expanded by.
Theorem 13.2If g(x) € Sf?n(*@?) is real and has its support in #wopen rectangular parallelepip@dc
“R¥3, then for theH, ,,(g) of (13.1)

Ext-exp (itH,,,,(g)) € € nmE.

Theorem 13.3 Let T be any operator with domaibf,, such that

T Df, < D(@i™(f)), (13.5)
TDf, cD((T ' DL,)), (13.6)
[T, 9™()] D, = 0. (13.7)
Then
mipf, cD(Tt Df,), (13.8)
[#-T, m%] Df, = 0. (13.9)

Proof ForQ € Df,, from (13.5) and (13.7) we get

T i™(HQ = @i"(f)TAQ.

But by (13.6), for reaf

IT @™ (HAZ = (TQ, @i (TR = (T*TQ, i (g < IT Tl @2 (HQl 4.

Thus the#-convergent power series (3.2) shows that¥e Df,,,
#-T (Ext-exp( ipf (f))) Q = Ext-exp( ipf (f))TQ. (13.10)

It is clear that (13.10) is still valid Witﬂxt-exp( i<pﬁ(f)) replaced by strong-limits of sums of such
exponentials, and hence (13.8) and (13.9).

Theorem 13.4 Let M is a maximal Abelian algebra of bounded operatora non-Archimedean Hilbert space
J with a cyclic vectof),. LetT be a symmetric operator with domalifi(),, and letl' commute

with M. ThenT is essentially self-adjoint.

Proof Without loss of generalityr = L% (X) andH = L%(X) for some#-measure spadg, X, 1), andQ, is
the functionl. Let f € L%(X). Thent € L%(X) andT is multiplication byt, with domainL?_ (X). Let f € L4(X)
and supposef € L5 (X) also and lef,,(x) = f(x) if |f(x)| < n,n € *N andf,,(x) = 0 otherwise. Then

fo € LY, = D(T) andf, - f, tf, =« tf in L norm by the bounde#i-convergence theorem. Th{)§ tf} is in
the graph of thet-closure ofT. Thus thef-closure ofT is self#-adjoint, andr’ is essentially sel#-adjoint.
Remark 13.1 LetT,,,n € "N be a hyperinfinite sequence of operators withpitoperty ofT in the Theorem
13.4. ThenT,, —4 T strongly on the domaii (), if and only ifT,,Q, =4 TQ,.

Proof of the Theorems 13.1 and 13\&e apply now the Theorems 13.3 and 13.4 with tis&E = H;,,(g), M
in Theorem 13.4 as in Theorem 13.3, the non-Arcteae Hilbert space Fock spa€é, and(, the Fock no-
particle state. The hypotheses (13.5) and (136)eaverified by a direct computation. THHis,(g) is
essentially self-adjoint onD{, c D{,,, and hencél, , (g) is essentially sel§-adjoint onD{ .

If we assume thatup(g) c 0, then a9 is an#-open regionsup(g) c 0, where0, is O contracted by some

small amount > 0, ¢ ~ 0. SinceH, ,,(g) commutes wittM', andM is maximal Abelian;exp (itH,‘,{(g))



€ M. Furthermore the argument in the proof of Theol@3, can be repeated to show tHa} (g) commutes
with €(0 | ), where0 | is the complement of thiée-closure of0;. Since€}(*R#?) is irreducible and; , (g)

commutes witt€#(0 ’1) Ext-exp (itHM(g)) € €%(0,) where0, is 0, expanded by any amousit> 0.
Takinge' < €, we haveExt-exp (itH,‘,{(g)) € €%(0), which completes the proof.

14. #-Self adjointness of the total Hamiltonian
Theorem 14.1 (a) For real (x) € S&,(*R%?), the total Hamiltoniat,,(g) = H, ,.(9) + H; ,.(g) is self

#-adjoint with the domai (H,(g)) = D (Hoyn(g)) nD (H,,,,(g)).
(b) The total Hamiltoniat,, (g) is essentially sel§-adjoint on the domain

Dg,u = n;c:oD(Htr)l.H)'

Remark 14.1 In order to prove the sef#f-adjointness ofi,,, we combine the estimates of section 14, the
#-self adjointness aff;,,(g) proved in section 15, and a singular perturbatieory developed in [19], see
also section 21 in this paper. We need the follgwasult which is a special case of Theorem 2@ fsection
21 in this paper.

Theorem 14.2 Under the hypotheses+(jjii) below, the operatoH,, = H, ,, + H; ,z is self#-adjoint.

(i) Both H,,, andH,, are self#-adjoint. The domaiy,, is contained in the domain Hf ,,, andH, ,, is
essentially self-adjoint onD{,,.

(i) Let N,, be a positive self-adjoint operator, commuting witt, ,,, and such tha,, < const H,,,. Suppose
that the operator@V,, + I)~*H,,,(N,, + )~ and(N,, + )™*H,,,(N,, + I)~3 are bounded.

(iii) Suppose that for any > 0, there exists a numbére *R# such that as bilinear forms &, x D, ,

—H;, < &N, + bl, (1)
1 1

- Hg,}f |:H§,}{H1;H =< gHg,;f + bl' (14.2)

[N [N Hyl]| < N3 + b1 (14.3)

Proof of Theorem 14.1 In order to prove that,,(g) is self#-adjoint, we apply Theorem 16.2 in the case that
H,, is the free Hamiltoniam,, is the number operator, afgl,, is the interaction HamiltoniaH; ,,(g). Thus
we need to verify (i)-(iii). Condition (i) was deabith in Theorem 13.1, while condition (ii) is artsequence of
(14.11).In refs.[15] and [17] it is shown that Bnrye > 0, there is a numbér € *R¥ such that

_HI,J{(g) S €H0_H + bI.

By following that proof, but using the smoothingeoatorExt-exp(—tN,,), in place oExt-exp(—tH,, ), one
arrives at the estimate (16.1) required in (iilieTremaining estimates (14.2) and (14.3) were ksitalol in
Theorem 14.1.Thus we conclude from Theorem 14 2Hhég) is self#-adjoint on the domaiD(HO,%) n

D (H,_,,(g)) . We now show thaft, (g) is essentially sel§-adjoint onD(H,,,). We first show that,,(g) is
essentially self-adjoint onD, = D(H,,.) N D(N2). By (14.11) it is clear that the domainif(g)
containsD,. Fory € D(H,(g)) = D(H,,) N D (H,_,,(g)), consider hyperinfinite sequenge € D,,n € *N
defined by

P, = n(nl + N,) 1. (14.4)

ThUS”#’n - 1!’”# + ”Ho,xlpn - Ho,ull’”# 4 0 asn - "o,



We need to study the following differences
Hp,bn — Hp,p = =N, (nl + N,)™* Hy,p + n[H, ., (nl + N,) "]y, n € *N. (14.5)

SinceN,,(nl + N,,)~1,n € *N is a uniformly bounded hyperinfinite sequericeonverging to zero on the
#-dense seb (N,,), it #-converges to zero arfi, (nl + N,) ™" Hy, ||, asn — *co. But for the second term in

(14.5) we get
n[Hy,, (I + N) " = [Hy,., (nl + N,)7t|(nl + N)n(nl + N,) "1 = (14.6)
= (nl + N,) [Ny, Hp o [n(nl + N,) Yy =
= (nl + N2 + N,)U + N,) 7N, Hy ] %
x (I + N,) *n(nl + N,)"*(I + N, ).

Note that as — *co, hyperinfinite sequencé, = n(nl + N,,)~*(I + N,))¥,n € *N #-converges strongly to
(I + N,)y, that by (14.11)(I + N,) [N, H,,|(I + N,)™* is bounded, and hyperinfinite sequepge=

= (nl +N,)~*(I + N,)y,n € "N #-converges strongly to zero. Thus we fjfef; ., (n + N,)"'9]||, -4 0 as
n — *o, and sq|H; , Yy, — Hy, ||, —4 0 @sn — “eo. Thus we can to conclude thd} (g) is the#-closure of

H, (g) restricted tdD,, soH,(g) is essentially sel#-adjoint onD,. LetD, be a Hilbert space endowed with the
#-norm ||-||% such that

’ 2
Ulpl)? = 1pllF + [[Hoxwl, + NI (14.7)
From (14.11) we infer that

1H,(9) Yl < constl|ip]l},

so thatH,, (g) is essentially sel-adjoint on any subset db, which is#-dense in the Hilbert spade,. For
anyy € Dy, 1, = Ext-exp(—AHy, )Y € D&, = N, 2, D(HE,,), and|[y — Wallps, =4 0as 2 -4 0. Thus
H,.(g) is essentially selft-adjoint onD,.

15. Removing the spatial cut-off and locality

For the reader's convenience, we sketch a progéiéralized Segal's theorem that the #edfljointness of
H,.(g) allows the removal of the spatial cut-off. In fa€td is a bounded function of the free fields localized
a bounded region of spacetat 0, then

0:(A) = Ext-exp (itH,, (g))AExt-exp(—itH,, (g))

is independent of (x) provided thag(x) = 4, the desired coupling constant, on a sufficielatge region,
depending on. Furthermore, if4 is localized in the region of spaGetheno,(4) is localized in the regio@,,
where0; is the regior0 expanded by. (We have taken the velocity of light to be ona.pther words, the time
translationo; gives rise to a local theory. If one chooseslieraperatod a spectral projection of the= 0

field @#(f), one can piece together the time translationatpefor the fields themselves. In section W8,
showed thatf,, = H,,, + H;,,, which is sum of two self-adjoint operators, is itself sefadjoint. As a
consequence of this fact, the generalized Trotedyrct formula (see [19] Chapt.6, section 5.1@¥ghat for
ally e F#

Ext-exp(itH,(g) )i = #-limp_ o ([Ext-exp (M)] [Ext-exp (itHI,u(g))]) "

n n

And therefore we obtain



o (A)yY =
#- lim ([Ext-exp (%)] [Ext-exp (@)Dn A ([Ext-exp (M)] [Ext-exp (M)Dn Y.

n-*oo

l.et O be the region of space defined|ay < M,t = 0, and letd € €%(0 ), where€?(0) is defined above in
section 13Given an arbitrary, positive split g(x) into two infinitely #-differentiable partg, (x), g,(x) such
that

gx) = g1(x) + g,(x),

wheresupp(g, (x)) < 0, andsupp(g,(x)) N 0= = @ is empty. Write now
2

H;,(9) = Hy,.(g1) + Hy,(g2),

so that as a consequence of theorems 15.1 and Hp,2g,) andH;,,,(g,) commute, and

Ext-exp (%) = [Ext-exp (M)] [Ext-exp (itHI,Z(gz))]'

n

Furthermore,
Ext-exp (@) € €%(0, ),
andExt-exp (@) commutes witt€% (0., ). Therefore,

A = [Ext-exp (—imo‘;‘(gl))] [Ext-exp (—itH"Z(QZ)ﬂ A [Ext-exp (— —itH"Z(gl)ﬂ [Ext-exp (— —imo‘”(m))]

n

depends o (x) only in the regior0,, and by the free propagation property (15.4),

Al € Ei(o(t/nﬂs)

We continue step by step, and aftee *N\N steps by using hyperinfinite induction principdee ref. [10], we
conclude that

a0 = ([Bxt-enp (“222122)] [Brt-exp (“*222)] )" x

x ( Bxt-exp (_ w)] [Ext_exp (_ itHO,:l(gz))D

depends o (x) only in the regioro, .. and

A1 () € €4(0p4ne)
Sincee can be chosen arbitrarilg,, (t) depends og(x) only in the regior#- 0,, the#- closure of0,, and
An(t) € ns>0 (gﬁ(oﬁs)-

ThusA,,(t) commutes with any local observalidocalized in#-open region of spad®’ such tha’ and 0,
are disjoint. As this is true for eanhe *N\N, it is true for

0:(A) = strong #-lim,,_,+o, A, (t).

Henceo,(A) is local and it depends gr(x) only in the regior#- 0,, where we choosg(x) = A. Thus we
conclude that the spatial cut-off has been remavebithe resulting theory is local.



16. Semi-boundedness of the total Hamiltonian
16. Reduction to a Problem with Discrete Momentum We use the non-Archimedean Fock space
representation for our fielgd? (x), x € *R#3. The Fock non-Archimedean Hubert sp&&eis a direct sum

F* = Ext-@®, 2 FE,

whereF} is the space of non-interacting particles, i.& is the space of symmetric squairéntegrable
functions, i.eL§ (*R#?) functions ofn variables. Lek = (ky, k,, k,) € *R#

p(k) = (K> + pu)'? = (kf + k3 + k3 +m)'/2,
o~ (x) = Ext- f*f&?3 Ext-exp(i{k, x)) a(k)0(|k|, »)[u(k)]~/?d*3k, (16.1)
it (x) = Ext- f*@? Ext-exp(i(k, x)) a*(—k)O(|k|, ) [u(k)]~?d*k, (16.2)
0(Ikl, %) = 1if |k| < » and(|kl, ) = O if |k| > 1,
and ¢f(x) = @~ (x) + ¢f*(x), wherea(k) anda*(k) are the annihilation and creation operators,
l[a(k), a* (k)] = 6*(k - k). (16.3)
By definition,
Lo () =35 (7) ot @) ol (P. (16.4)

Remark 16.1 Remind thawick product differs from the ordinary product hat all the annihilators are placed

to the right and the creators are placed to tl’le:lqaifl”‘J (x): is not an operator, but it is a densely defined
bilinear form. We take Fourier transforms to congput

Ext- f*f&gs : op? (x): h(x)d"3x = Y (5’) Ext- f*ﬁzmp a*(—ky) - a*(—k;j)a(k;) - a(k,) x (16.5)
x Ext-R(ky +- +k,) T, 0kl 20 [k )] 7 d*3k;,

whereExt-h is the Fourier transform df. We assumé is in L% and saExt-h is inL¥ also. Since: (k) ~ |k
for large|k|, one can show that

Ext-R(ky +- +k, ) T, 0kl 20)[u(k; )] % € LA (16.6)

It is well known that (16.6) implies that each &l on the right side of (16.5) is an operatoiirtef on the
domain D(N?/?) of NP/2. This domain is the set af = 1,1, ..., ; € Ff  with

Ext- Y n?/? ||Ext-TTZ; 0 (1Kl 20) nllF, < “oo. (1P

Thus (16.5) is an operator defined DW?/?). Similarly Hy ,, + Ext- [.z4s P(: @f(x)): d**x is an operator

defined on thet-dense domaim) (H,,,) N D(Nd/z), whered is the degree of the polynomidl We
approximate now (16.5) by a hyperfinite sum. Chansmberss =~ 0 andx € *R?\*Rﬁ_ﬁn. We define now an
hyperfinite approximation in configuration spacendér this approximation, the momentum space variabl

k = (ky, k,, k3) € *R¥ is replaced by a discrete varialie T’
Fé:')) = {k = (klﬁ kZP k3)|kl = 6niﬁni S *le’ = 1l2l3} 6(3)

Thus we defing?, the Fock space for hyperfinite voluiié = 5732 as



7 = ¢ (4@) = ‘T Ol DU B (T}

(16.9)

We choose now one to one correspondettes *Z§ x *Z§ x *Z8 = I's given by vector-functiogo (m)

(m) = {ky(m), ky(m), ks(m)} = k(m)
and such that
p(-m) = —p(m).
And we define now
I35 = (k € T3l < x}.

We set now

as(k(m)) = (8)*/ [Ext- [ d*ly Ext- f} d*1, Ext- [} d*1y a(k(m) + D),

a5(k(m)) = (6)7%/2 |Ext- [} d*l, Ext- [} d*L, Ext- [} d*l; a’ (k(m) + D).

Then one obtains

11fm1 = mz
0ifm, #m,

[ 5 m2)), a5 (k)] = By, = |
Let
Ho 5 = EXf'Zkerilali(k) a 5(k)as (k).
One can check that eaghin D(Hy,,) is in D(H,,s) also and that
#-lim(;_,#o Hy,, s = Hy,, 1.

Next we approximate (16.5) by

; (pﬁ%(x): = &%y, (IJJ) Ext- Zkerj_a as(—ky)a 3("‘1’)“6("]) a6(kp) X

x Ext-h(lky] +- +[e,]) Tl Clied Y12

where

hs(k) = Ext- f_n;:fa _n;:fa f:f:fa(Ext-exp(i(k, x)))h(x) d*3x
and[k] = ([k4], [k.], [ks]), where
(k] = sup{ly|(y, 1, I3) € T3, 1y < ky}, [kp] = sup{ly| (L, 1, 13) €T3, 1, < Ky},
[k3] = sup{ls|(Ly, L, 13) € T3, 15 < k3}

is the integral part ok relative to the lattic€. Sinceh € L¥, hy is #-continuous and

Ext-h([ky] ++ +[kp ) Tl ([ki] D1 >y Ext-h(ky ++ +ky, ) T, (U1K 20 [w(k; )]

(16.10)

(16.11)

(16.12)

(16.13)

(16.14)

(16.15)

(16.16)

(16.17)

(16.18)

uniformly. LetD# be the set of stat@s= {1y, ¥y, ...} Withy,(ky,...,k,) = 0 forn < *oo or Ext- Y;|k;| <

*oo large. Ifg, € DF then



#-lims,o(®,: @5 (0: )y = (B, Ext- [.gps + 07 (0): d¥xyp). (16.18)
Thus the bilinear form of
Hy5 = Hops + Spby @5 (h): (16.19)

#-converges tdf,, onD x D§ whereb,, ..., b, are the coefficients oy, y; , ..., y, in the polynomiaP (y).
Hence if thefl,, s are semibounded with a lower bound independedttbénH,, is semibounded also. L&y
be the subspace 6t consisting of functions which are piece wise cansbetween lattice points. In other
words,

W = {Yo, Y, e Py, .} € FL
lpn(kll -t kn) = lpn([kl]: ] [kn])

Let F)} 5 be the subspace B defined by the restriction
Un(key, . k) = 0if [k] € T

for somei,1 <i<n.
The operatora 5(k) anda s(k), k € )5, leaveF,; 5 invariant and act irreducibly df} 5. We set nows = 277,
» = 2" and observe tha}y ,-v increases monotonically withand that

D§ =D§ nU, Fiv,—v
is #-dense irF* andH,, c #-(H, I D¥'). Thus it is sufficient to prove the semiboundedress
daj/2 #
Hy5 T (D(Hon) N D(N,™) N F s

with a lower bound independent &f
17. Diagonalizing the potential. In this subsection we give a new representatidﬁ,’jgf in which the

interaction term of: ¢.? (h): is a multiplication operator. Let
q (k(ImD) = (22uCk(m)))""* [a5 (k(m)) + a; (k(m)) + a 5 (—k(m)) + a; (—k(m))],
q (k(=ImD) = i(272u(k(m)))""* [as (k(mD) + a; (k(imD) + a s (~k(ImD) - a; (~k(mD)]
p (k(ImD) = i(272ulke(m) )" [a5 (k(m)) - a; (k(m)) + a , (~k(m)) — a; (—k(m))],
p (k(=ImD) = (272u(k(m)))"* [a5 (k(ImD) + a5 (k(ImD) = a 5 (~k(mD) — a; (—k(mD)],

Pm =p (k(M)), qm = q (k(m)),

q (k(lml)) ifm >0,
q (—k(lml)) ifm <0,

q (k(m)) = {
for 0 # k € T3 and let
90 = (o/2V? a5 (0) + a; (0)],

Po = i(u/2)? [a5 (0) — a5 (0)]



Using the equations mentioned above one can contipaite
HO,J{,6 = Ext- Zme*l,lk(m)sxl 2_1 [przn + #2 (k(m) )qrzn - u(k(m) )] (171)
We replace now,,, andg,, by unitarily equivalent operators. Let
# #
Hes = Ext-®uers Hi,
where ;! is L4 (*R¥) with respect to the Gaussi&rmeasure

pi@d*q = (u(k)/my)"? (Ext-exp(—u(k)q®))d*q. (17.2)

There is a unitary equivalence betwéé;ﬁﬁ andﬂ-"jf,(S which sends,,, into multiplication byg in the factor
Hyimy @ndp,, into the operator

b @i (52) @

again acting in the factdi’. The proof of this statement is essentially gelimzd von Neumann's uniqueness
theorem for irreducible representations of the cartation relations. We identifyt,; s andF;; s and we
identify g,,,, etc. with its image, multiplication hky, etc. Let

a#

Hao = 27997 @ |- () + utk)a?| dua) = ay.3

d#q
= 271 (4) 4 utioq (&)

acting on#(}f. Now —H, ) is the #-infinitesimal generator of a known Marfkafocess and furthermore the
operatorExt-exp(—Hﬂ(k)) is an integral operator and the kernel can be ctedpexplicitly. In particular

(Ext-exp(—Hy ¥ ) (@) = Ext- .0 * (4,0 (a3 (a)d*q’ (17.4)

for Y € H}, where

¢ N1 ) _ ) _u(q’—(Ext-eXP(—ut))q)z] ,2}
p*(q,q") = [1 — Ext-exp(—put)] {Ext eXp[ Chrrem(zny | THACT (17.5)

Let g now denote a variable in a Euclidean spgceand letg have coordinates,, = gq (k(m)). Then
¢ (@)d*™q = Ext-Tliers , ¢ (a(K))d” q (k) @y
is the product of th¢-measures (17.2) and
Hys = (@2 (@)d* ).

In addition to the function spa¢#, we will have to considei’.(¢p2(q)d*q). SinceExt- [ $p2(q)d*q = 1, we
haveLf, c L} ifr, <r..

Lemma 17.1. Ext-exp(—H, . s) is a contraction operator @i, 1 < r < *oo. If T <t,1 <p andr < "o itis
a contraction frorrL*; to L¥, for someT not depending o#. If p is bounded away from one ands bounded
thenT does not depend gnorr.

Now we show that the interaction termvf:fg(x): is a polynomial in thg's. Let

Ph5() = 82 Ext- By myers, Ext-exp(ilkm), x) e[k (m) D12 (a5 (k0m) + a5 (~k(m) ) (17.7)



Since

q (k(ImD) + iq (~k(ImD) ifm > 0
[aCTheCm) DI (5 (e 0m)) + a5 (—kem)) ) = VZa ifm = 0
q (k(m])) — iq (=k(ImD) if m < 0

@k 5(x) and<pzfg(x) are polynomials in the's. We use the canonical formula

(27) —2j
ol @) = SRR EC L o (o) (17.8)

to conclude by induction gm that: (pjfs(x): is also a polynomial in thegs. In (18.2.8) the coefficient

p!(27))
-2)))!

is just the number of ways of selectihgnordered pairs from objects and,, is defined by the formula
G = 6% Lyers [l D] 2
we have the bound
c, < Kpa? (17.9)

whereK; is independent of andé. Thus

# /6 /6 /8 #
() = Ext- [T [T [T s @ (0):h(x) dx

is a polynomial in the' s, as desired.
Let

P(y) = bO + bly + A + bdyd
be the polynomial iy and let
Vies = Yospsa bp + 035(h): (17.10)

denote our approximate interaction term, as inl(1®).
Lemma 17.2. For some constati, , independent of andx, we have

— Kyn® < V. (17.12)
Proof We use (17.8) to remove the Wick ordering in (1Y dftid obtain
/8 /8 /8
Vies = Zp () {Ext- [T [T [T % (x): h(x) d%x]

wherea, (c,,) is a polynomial irt,, of degree at mog{d — p)/2]. The coefficients of, depend only on the
coefficients ofP, and so we have an estimate

|ap(c,,)| <K'Xx c,(fd /2]
Sincea,; = by > 0 and sincel is even by hypothesis, it follows that

0<Y,a,(c)y? forK"(1+¢c,) < |yl|?



and
_CJSd/Z]K,” < Zp ay (C;t) yp

for all y. We bound,, by (17.9) and the proof is complete.
Lemma 17.3 FunctionV,, s € for allr < *co and if 1 < x, then

2j . ; .
[Vies = Vasll,y; < (@1 x K] x Ge*® = 224Y, 7(12)

where K; is a constant which is independentot ands.
Proof We use the particle representatifif,s, in place of the representatisfy,s = L§(¢2(q)d"q). Now
1 € H,s corresponds to the vacuum stte= {1,0,0, ...} € F*#

SO

Vs = Vaslis, = Ext- [ (Vs = Vas)” $2(@)d"q = (17.13)

. . : 2
= (Vs = Vas) 20, (Vies — Vis) Qods = ” (Vies = Vas) Qo ”#-
We setl = 0 above and get
2j 2j 2
Viesllyz; = Viesoll,
and soV, s € L¥ for allr < *oo. We return to (17.13) and note thgts — V; s is a sum oti2? terms of the form

A = by 83PExt- 5 i [Ext-R(SL, kei)a (k) T, [l )] 7 (17.14)

where in the summation ovkr we havek; € Fj_a forl1<p<d,p<d andk; ¢ l"fjs for at least oné
Summing again over the same rangéofve get

83 Ext- S ciiqjen [Ext-R(S, deo) T [k )] %] < Ky x (22— 224) (17.15)

andK, is independent of, » andd.
Lety be a state with at mospatrticles. It follows from (17.15) and the formA4that

1AQlIE < (U +P)/1Y) X4x G4 = 229 |IplI

and furthermorely is a state with at most+ p particles. Thus if we have operatars..., A; of the form
(17.14),

4, -+ 459" < () K[22%.
Hence
. 2 i .
||(V,,_5 - V,Ltg)]ﬂ()”# < (d)! X KJ x (24 — 124)],

and the proof is complete.

18. Path space and corresponding #-measure
Letg now denote a variable in a Euclidean spBfe= "R amd letC* be the space df-continuous paths



q = q(s) € E2,0 < s < *o0. There is at-measure o€ * intrinsically associated with the
semigroupExt-exp(—tHy,.s ). To define this¢-measure we sef, = q(k) and

Pk ai) = Pk (@) d” g = Prige®) = q;|qx(0) = qi} (18.1)

the probability thaty, (t) = gy, if it is known thatg, (0) = gy - pL is defined by (17.5) we have added a subscript
k to indicate the dependence pr- u(k). Let

Px(q,q") = Ext-Tliers ; Pic(qio 9i0)- (18.2)
Theo*- field [19] of #-measurable subsets ©f is generated by the sets
q(s;)) EB;,1<i <, (18.3)
whereB; is a#-Borel subset ofE2. The#-measure of (18.3) is
Ext- [ o 5, EXE- T, 2y (q(s) , a(sie0) ) 92 (a(s))d* q(s)p2(q(0))d* q(0) (18.4)

if s; =0<s, < <s;. The definition (18.4) is forced by the definiti¢tB.1) together with the Markov
character of the process, the stipulation that eaohdinatey,, of g defines an independent process and the
specification ofpi (q)d*q as the probability distribution of the initial pig(0) of the pathy.

If Vi, ...V, € LA(E2, ¢ (q)d*Q) then we compute

Ext- [ Ext-T1;Vi(q(s) d*Q = Ext- [ V1(q(0))$%(q(0))d*q(0) x (18.5)

X
[Ext-exp(—(s1 — so)HO.m;)VzExt-exp(—(s2 — sl)Holmg)(... (Vj_lExt-exp(—(si — si_l)HO.,{,g)Vj) ...)](q(O))

and
|Ext- [ Ext-T1; Vi(q(s)) d*Q| < Ext-TTilIV;lly; (18.6)

using (18.4) and the fact thﬂxt-exp(—Ho_,,_a)) is a contraction of? . Furthermore (18.5) and (18.6) remain
valid when some of the timas coincide.

Lemma 18.1 LetV be a polynomial function o} . Then Ext- fotV(q(s ))d*s € Lh(c*,d*Q) for all
p < *oo. and

||Ext- fOtV(q(s))d#S”#j < tlIVilly;

for j € *N an even positive integer.
Lemma18.2 Letr € [1,2). There is a finitd’ independent of such that it > T and if¢ andy in

1% (L4(02(9)d")) theng(q(0))¥(q (1)) € LE(C*,d*Q) and

lp @Y (@) ler < Pllsz X [[Pll42-

TheT can be chosen independentlyrgirovidedr is bounded away fror.

19. The generalized Feynman Kac formula. The generalized Feynman Kac formula states that

(¢, Ext-exp(—tH, 5 )}y = Ext- [ ¢(q(0)) {Ext-exp (— [Ext- fot V,s(q(s)) d#s])}lp(q(s))d#Q. (19.1)

The RHS of (19.1) is bounded by



o (a@)w(at)l,,, x [|Ext-exp (= [Ext- [y va(at) a's]), <

< pllvz X Il || Bxt-exp (= [Ext- [ Vs (a() as])|
forp > 2 and fort large, by Lemma 18..2. Thus

||Ext-exp(—tHK,5)||# < ||Ext-exp (— [Ext- fot Vs(q(s)) d#s]) ”#p

and therefore
t™! {Ext-ln [”Ext-exp (— [Ext- fot V,s(q(s)) d#s]) ”#p]} < H,s. (19.2)
Let
1, = Ext- fot Vis(q(s)) d¥s.
Then by Lemma 17.2 we have
—tK,A% < 1.
LetKs , . .. denote positive constants depending only and the polynomia? and letPr{q| -} denote the

#-measure defined Q.
Then by Lemma 18.1 we get

Pr{q|l, < —tK,2% — 1} < Pr{q|[l,, — I;,]1 = 1} < Ext- [[I,, — ;1Y d*Q < t¥||I,,5 — 11_5||§]2'],. (19.3)
From (19.3) by Lemma 17.3,see (17.12) we get
Pr{q|l, < —tK,2% — 1} < [(d)!] X t2 x KI x (324 — 224)], (19.3)

Lemma 19.1 Let f be*R#- valued function on a probability-measure spad@, =#, u*), see ref.[19], and let
ms(x) = u*{q|f (q) = x}. LetF:*R¥ - *R{ be a bounded positive, monotone non-decreasfhdunction.
Then

Ext- [, F(f(@)d*u* = Ext- [ = F(x)d*my(x) = —F(="e0) + Ext- [ = m;(OF¥ (x)d*x.  (19.4)
In particular, by the generalized monotone convergeheorem:
Ext- fM[Ext-exp(f(q))]d#u# = Ext- fjfw[Ext-exp(x)]mf(x)d#x. (19.5)
From (18.4.3) we get
Pr{q|—1, = K,A% + 1} < [(d))!] x t2 x KI x (329 — 224)J. (19.6)
From (19.6) and (19.5) finally we get
Ext- [ [Ext-exp(—pl,(9))]d*Q < [(d))!] x t¥ X KJ Ext- f:[Ext-exp(x)](zz‘i —x?D)d¥x < "o, (19.7)

ThusExt- [ [Ext-exp(—pl,.(q))]d*Q is bounded independently &fand combining this with (7.2) we have

H, s bounded below by a constant which is independedif according to section 18.1this proves Theorem
19.1.



Theorem 19.1 Let h be a nonnegative function ifi N L%. Suppose that the polynomalin ((18.2.10)) has
even degree and that the leading coefficient igigesThen HamiltoniarH,, is bounded from below.

20. Alternate derivation without the use of functional integration
We will give an alternate derivation of the resultentioned in sections above without the use oftfanal
integration, central in section 19. We consideraanitonian of the form

H, =Hy, +V, (20.1)

whereH,,, is the free Hamiltonian of a particle of magsexpressed in terms of the neutral scalar figldx)
and its momentum conjugate (x):

H,,, = Ext- fol d*x, (Ext- fol d*x, (Ext- fol d*xy: [Vi?(x) + ud e (x) + nf?(x)): )) (20.2)

As is evident from (17.2) we are working in a pditoboxB = [0,1]3. Vj, is a polynomial function of the

o (x). We denote by H,, and"V,,, N € *N\N the parts of,,, andV,, depending only on the creation and
annihilation operators of th& lowest-energy modes of the free Hamiltonian arahghat|k| < » . We always
imagine we are working withH, ,, and™V,,, but derive inequalities independent\af

Theorem 20.1 Assume for each finite > 0 that there is aM, such that
(0|Ext-exp(—a("V,))[0) < M,
where|0) denotes the vacuum of the free field. Then theesBisuch that
NHy, + NV, = B, for allN.
Actually as will be seen it is not necessary tisgathe condition above for all, but only for some sufficiently
largea that one can calculate. We refer to section 1&.3hfe result that the conditions of the theoreen ar

satisfied for a large class of self-interactions.
We apply the notation

Prs(X) = Ext-Tyers  Ext-exp(i(k, x)) (aa () +a; (_k)) (202)
and define fok € T}
qo = (o/2)*/? [615 0) +aj (0)]' po = i(ko/2)'? [a5 (0) —a; (0)]' (204)

q (k(Im])) = (2~2u(k(m)))"” [a(g (k(m) +a; (k) + a 5 (—k(m)) + a’ (—k(m))],

q (k(=ImD) = i(272u(k(m)))"* [~as (k(ImD)) + a; (k(mD) + a s (~k(mD) — a s (~k(mD)],
p (k(ImD) = i(22ulke(m) )" [a5 (k(m)) - a; (k(m)) + a , (~k(m)) — a; (—k(m))],

p (k(=ImD) = (272u(k(m)))"* [as (k(imD) + a s (k(ImD) — a s (~k(mD)) — a ; (—k(mD)]

q (k(lml)) ifm>0,

o = (), an = a (k). (k) = { TR

In terms of these variables,



Hosus = Ext- Ymezjeemysn) 27 [pm + 12 (k(m) )qs — u(k(m) )] = Ext- ¥omesz k(m)<n| Hm-  (20.5)
We represent these operators onltigpace of R#Y with #-measure: the product of thét-measureg,,
d* i = (W /7s) V2 (Ext-exp(—0nq2))d* qm (20.6)
with g, a multiplicative operator and
Pm = 1(0%/0%q,) — W om- (20.7)
Where
Wm = (K2 (m) + ud)? = (kf(m) + k3 (m) + k3(m) + u§)'/2.
A complete set of eigenfunctions fHy, is given by
Pmn(@m) = 2" 724, (g (@n)?),n € N, @p.

n!* = Ext- H0<psn p, 2" = Ext- H0<psn 2,

da#n

An(2) = (-1)"(Ext-exp(z?)) (Ext-exp(—z?)).

d#zn
The chief inequality we will exploit is the followgj numerical inequality for,y € *R¥,y > 0:
xy < Ext-exp(x) + Ext-In(y). (20.9)
The expectation value of the interactignin a state witHC#-functionF is given by
(FIV,IF) = Ext- [(IF|?V,)d*p. (20.10)
We apply (18.3.10) witk = rV, andy = r~1F? to derive the inequality
—(FIVy|F) < Ext- [ (Ext-exp(—7V,))d*u + = [Ext- [IF|2(Ext-In(|F|?))d*u] - = (Ext-In(r)). (0.1}
Herer is a numerical factor to be fixed later. Note that
Ext- [(Ext-exp(—1V,))d*u = (0|Ext-exp(—1V},)|0). (20.12)

We intend now to bound the second term on the siglg of (20.11) by the expectation valugdgf, in the
stateF. We consider the following equation:

[Ext- [IF|?(Ext-In(|F|?))d*u] = (20.13)

1d*

oL (Ext-f[(Ext-exp(—tHO.,,))*(Ext-exp(—tHO.,,)) ]1+Md#/,t)| ,

= %(Ext- [F*Hy, Fd*u) + -

which easily follows for functiong nice enough so that all the integrals exist aeddifferentiation may be
moved inside the integral, a dense subspaéd.ie do not discuss domain questions. We rewrldel® using
(20.13):

—~(F|V,|F) < Ext- [(Ext-exp(=1},))d*u + j—r(F|HO_,, |Fy— l (Ext-In(r)) + (20.14)
+ ,117% (Ext- J[(Ext-exp(—tH,,)) (Ext-exp(—tH,,,)) ]1+Md#u )|

t=0



The theorem we are after is established providedt 2 and we can bound the last term in (20.14). The
remainder of the paper is devoted to a study of

. 2
Ext- [[(Ext-exp(—tH,,)) (Ext-exp(—tH,,,)) ]1+ td#/,t = Ext- [|Ext-exp(—tH,,)|**?*d*p. (20.15

We consider, corresponding to agyn L% (1), its expression as a sum of products of the fanstin (20.8):

9(q) = Ext-%i, iy Ciy iy {Ext- TIs(2351,1%) 7 (Ext-exp(is) Ay, (45 (00)/2) )} (20.16

Theg, are merely the, in some order. The coefficient, _;, are now considered as functions on the discrete
space whose points are the indices ofctte To the pointi(. . iy) is associated the point mass
Ext-[15(Ext-exp(2i,)) . With this measure, the transformatibthat carries a set @f's into the corresponding
function g as in (20.16) is norm preserving as @ fram [} to L%. We will later show thaT is norm decreasing

as a map fronf to L%. Assuming this for a moment, we complete the poddhe theorem. We apply the
generalized Riesz-Thorin convexity theorem to taagformatior” obtaining

Ext- [|Ext-exp(—tH,,)|**?*d*u <

1+3At

2(1+At) 2(1+At)
S 1+3At >]

(20.17

Ext- (Zi1-,--,i1v Ext-[1s(Ext-exp(2is)) X |(Ext-exp(—wi1_,"‘iNt)) X Ciy...in
with
Wi, iy = Ext- Y isws. (20.18)

In the right-hand side of (20.17) we apply the galiwed Holder inequality to obtain an expressiovoiving
the weighted sum of the squares of the absoluteegadf theC's which is equal to one:

Ext- [|Ext-exp(—tH,,)|**?*d*u <

21t
, vl
< [Ext- <Zi1.,..‘iN Ext- HS(Ext-exp(le)) (Ext-exp (_wi1-,..,iN x 2(12+/1 t))))] ) (20.19)

It follows that

d#
d*t

(Bxt- JIExt-exp(~tHo, 0 d"u )| <

24 % {Ext-ln [Ext- (Zil-,--,iN Ext-15(Ext-exp(2is)) (Ext-exp (_wi1-,-.,i,v x 2(12;/10)))]}. (20.20)

If uo/A > 2, this gives an inequality with finite right handisiin the#-limit N — *co. It is clear that the
theorem is now reduced to establishing hig #-norm decreasing frorf to L¥.

Lemma 20.1. LetS be the space of sequen¢€s}, y=0,1,..., N with #-measure at, Ext-exp(2y); and Y the
space of functions ofR? with #-measure

(1/my)Y?(Ext-exp(—x?))d*x, (20.21)
andT the operator fron§ to Y given by

exp(¥))Ay (x)

T{C,} = Ext-3, C, (Bt ]

(20.22)



with A, (x) they-th Hermite polynomiall, (x) = (—1)"(Ext-exp(x?))

#n
;#xn (Ext-exp(—x?)) ; then, T is

#-norm decreasing fronf to L.
It is easy to see that this lemma would follow frestablishing the inequality

(ni#)é (Ext-exp(—a—b —c — d)) X

(Ext- [ a2+ (@) (b1 (e 1) (d1)] 212 Aa(¥)Ap (A (X)Aq () (Ext-exp(—x?))d*x )| < 1.5 (20.23)

for all integersa, b, c € "N andd = 0; actually, it is sufficientto let = b = ¢ = d. We use the generating
function

N
Ext-exp(—t? + 2tZ) = Ext- zNE*N#AN(Z) (20)24

to obtain

(n—lﬁ) (Ext- f*Rg(Ext-exp(—xz))Aa(x)Ab(x)AC(x)Ad(x)d#x) (20.25)

%(a+b+c+d)
pick-a-power

# # # # 1

= Ww X 2*@5(““”‘1) X (rs+rt+ru+st+su+tu)
*RE c

2@

(a+b+c+d)'*

where pick-a-power means to find the coefficienthaf monomiat®s?t‘u? in the expansion of the expression.
Note thata + b + ¢ + d is even or the integral vanishes. We make theecagtimate

Lla+b+c+a
(rs+rt+ru+st+su+ tu)lzo(i‘;: a_;:vjr < (26)
_1 l(a+b+c+d)
< 24 XY X (b s+ Wi power
Now we get
1
S(a+b+c+d) (a+b+c+d)*
(r+s+t+ u)lzDick_a_pOWer = @) o) () (@) (20027
Denoting the left-hand side of (20.23) Hyand using (20.26) we obtain
\# —1(a+b+c+d)
S < (Ext-exp(—a— b — ¢ — d)) x —LerbrerdThe 2 . (20.28)
[(a®)(b!#)(ct#)(at#)] [E(a+b+c+d) #
It is easily verify that
S<1o, (20.29)

The inequality (20.29) finalized the proof of theo.

21. Strong #-conver gence of operators

In this section we study the sutrt B of two #-selfadjoint operators on a non-Archimedean Barspeites
over fieldC#, and we find sufficient conditions far = A + B to be#-selfadjoint. Our technique is to
approximateB by a hyper infinite sequence of bounde®h #-selfadjoint operatorgB, },n € *N and so to
approximateC by #-selfadjoint operator€, = A + B,,.We answer these three questions separately:1.\dhen
the operatorg,, have &#-lim C? 2.When isC a #-selfadjoint operator? 3.Whends= A + B? In Theorem 21.8



we give a set of estimates on the relative siz& afidB which ensure a positive answer to all three qaesti
Hence these estimates show tiat B = C is #-selfadjoint. In another paper [17], we used Theo?4..8 to
prove the existence of a self-interacting, causahtum field in 4-dimensional space-time. Form#iig field
theory is Lorentz covariant and has neinial scattering; this application was the motivation for the present
results. In order to investigate the meaningt-6fm,,_, -, C,,, we give a new definition for the strotg
convergence of a hyper infinite sequence of opesat@onsequences of this definition are workedmthis
section below and we give also estimates on oparétowhich are sufficient to ensure that the

#-lim,,_, -, C,, = C exists and that operat@ris maximal symmetric o#-selfadjoint. This result is given in

Theorem 21.5 and Corollary 21.6. We investigate alsether#-lim,,_, «,, C,, = C is equal tad + B. We

combine this work in Theorem 21.8, our second rtiaéorem, where is a singular, but nearly positivie
selfadjoint perturbation of a positiseselfadjoint operatad. To illustrate this theorem, ldt > I and letB be
essentially#-selfadjoint on domainD* =n,,c « D(A™). Assume now that, for sone> 0 and somex,

A~(-ABA~(=P) andAPBA* (21.1)

are#-densely defined, boundedRf operators. Also, for some positiuge € R¥, satisfying:2a + ¢ < 1,
suppose that there is a consta@ R¥ such that, as bilinear forms di* x D#,

0<aA+B+hb, (21.2)
0 < A% + [AY/?,[AY?,B]] + b. (21.3)

ThenA + B is # -selfadjoint. We see from this example that neitheroperatoB nor the bilinear fornB need
be bounded relative t4. While it may not appear evident, the conditia®k.{)-(21.3) are closely related to a
more easily understandable estimateDénx D¥,

A*+B*c(A+B)*+c. (21.4)

In fact, estimates (21.1)-(21.3) are chosen bectngseallow us not only to prove (1.4), but alse fimilar
inequality whereB is replaced by,,. Let us now see that#f + B is #-selfadjoint, then (1.4) must hold for
every vector inD(A + B) = D(A) n D(B).

Proposition 21.1 Let A andB be#-closed operators. Theh+ B is #-closed if and only if there is a constant
c € R¥ such that for alhp € D(A + B)

1AYIls + 1B 1ly < I(A+ B)Ylly + clllly (21.5)

and (21.5) is equivalent to (21.4) biiA + B) X D(A + B).
Proof: Certainly (21.5) implies that+ B is #-closed. Conversely, assume tha# B is #-closed and introduce
the #-norms o (A + B) = D(A) n D(B),

l1ls1 = 11l HNAPIs + [1BP]4, (21.6)
1¥lls2 2 1114 +ICA + B)Plly (21.7)

ThenD(A + B), ||Y]|4, is @ non-Archimedean Banach space becduse is #-closed. The identity map from
D(A + B), ||Y]|la2 to D(A + B), ||Y]l41 has a#-closed graph becausg B, andA + B are#-closed. By the
#-closed graph theorem, the identity mag-isontinuous; hence

lPlle1 < c [Pllse- (21.8)

Proposition 21.2 Let A > I, B be#-selfadjoint operators with* c D(B) and suppose that (21.2) and (21.3)
hold. Then (21.4) is valid on domai@f x D¥.

Proof The operator4?, B2, AB, BA, andA/2BA'/? define bilinear forms o®* x D*. Using (21.2) and (21.3),
we have the inequality:



A*+ B2= (A + B)? — 2AY2BAY? — [AY2[AY%,B]] < (A+ B)* + (2a + €)A* + 2Ab + b,
which establishes (21.4).
Let AC) be the graph of the operatorFor any hyper infinite sequengé,},n € N of #-densely defined
operators we define

L+ (C) = {@ . xlo=#lim,_, o @n € D(Cr),x =#-lim,,_, *o, Crpp} (21.9)

In general £ -, (C) will not be the graph of an operator. If the hyjpdinite sequenc€C,},n € "N
#-converges strongly on#&dense domai® to an operato€*, namely, C*y = #-lim,,_, +,, C;; ¥,y € D,then
L «, is the graph of some operatdt. In particular, if eacl, is self #-adjoint, and if th&, #-converge on a
#-dense sdb to an operatof is defined orD,thenf «,, = L «,(C +,,) andC =, is a symmetric extension of

C.
Definition 21.1 G-#-CONVERGENCE. The hyper infinite sequence of opg={(,,},n € “N #-converge
strongly toC «.in the sense of graphs, written

Co =6 C oo (21.10)

if L+, isthe graph of a #-densely defined operétey, .

Remark 21.1 Note that for a hyper infinite sequence of uniftyrimounded inR? operator<;;,n € *N such
thatC,, —4¢ C *o, C o is the usual strong #-limit of the operatf€s},n € *N and is everywhere defined.
Definition 21.2.R -#-CONVERGENCE. Let the resolverng(z) = (C, — z)™%, n € "N exist for some

z € R¥, and be uniformly hyper boundedrnnThe operator§,, #-converge strongly t6 -.,in the sense of
resolvents, written az

C = ur C oo (21.11)

if the resolventR,, (z) #-converge strongly to an operator R(z), which &#-densely defined inverse.
Remark 21.2 Note that in that case, the operafot, = R™*(z) + z exists for alz € C¥, for which the strong
#-limit of the R,,(z) exists, andR™*(z) + z is independent of.

Remark 21.3 Note thatG -#-convergence is weaker thAn#-convergence, in the cagg, = C,, at least,
because, as we shall show, in this agses,i C +, implies C,, =4 C +»- It SEEMS likely that

G -#-convergence is strictly weaker thRn#-convergence; this could be established by giving an example for
which C;; = C,, =4¢ C +» With C ~, not maximal symmetric. The importance 6f-#-convergence is that it is
technically easier to verify-and gives less infotimaabout the #-limit-tha® -#-convergence, while
automatically selecting the correct domain in thsecthaR -#-convergence also holds. The most familiar
examples ofG -#-convergence occur where ther€,jstrong #-convergence on a #-dense domain.

A less trivial example occurs where therd®{g,,) is independent ok € N, but apparently

D(C) n D(C,) = {0}. We have the following connection between G &ndt-convergence for a hyper infinite
sequence of #-selfadjoint operators.

Proposition 21.3 LetC,, € "N be#-selfadjoint.

(&) The domai -, = {@|{p, x} € L ~ for somey} is #-dense inH and only if C, =4; C -, and in this
caseC -, is necessarily symmetric.

(b) If R, (2) = (C, — z)"%, n € "N #-converges to a boundediRf operatorR(z) for an unbounded set of z's
with ||zR (2) ||+ bounded uniformly iz € C?, andn € *N and ifC,, =4 C *o, ,then eaclR(z) is invertible.

(c) If R, (2z) #-converges to an invertibRYz), thenC,, =4 C *.

(d) If €, = 4R C +onthenC,, =46 C oy L +o = L(C), andC is maximal symmetric.

(e) Conversely, i, =4 C +», WhereC is maximal symmetric, thef, -4z C «.

Proof. (a) Suppose that-, is #-dense and €0, ¥} € L +, . Then, for somé,, in eachD(C,,), 6,, =40,

Cn On =5y



Letp € L+, o=#-lim,_, *, @, x =#-lim,_, v, C@,.
Then,0 = (0,y)y = #- lim (0, Che,)s = #- lim {(C,,0,, ) = (P, @)y, SOY € D*%_ andy = 0. ThusL -,
n— oo n—- oo

is the graph of an operat6rwith domainD ~,,, and since =, #-dense by hypothesi§, —4; C .
Conversely, if C, =45 C o, We haveD «, = D(C «,) and, since&, is assumed to bie-densely defined)
is #-dense. The expectation valugs C -, @)s = #- lim (@, C,¢,)s are real and s6 -, is symmetric.

n— oo

(b) Letz, andz, be any twaz's for which#- lim R, (z) exists. TherR(z) satisfies the resolvent equation
n— oo

R(z1) — R(z2) = (z1 — z2)R(z1)R(z) from which it follows that? (z) has a range and a null space which are
independent of. If the null space is zer®&(z) is invertible, and it is sufficient to show thédy large|z|,
1ZR(2)Y + Y|lx < |[Y|lx. SinceD « is #-dense, we choosg € D «,, so thatl|yy — ¢l|ls < e = 0.
Then)|zR(2)Y + Y||s < |IZR(2) W — @)ll4 + ||1zR(2)p + @ll4 + ll¢ — Y||4. For thez under consideration,
IzR,,(2)||+ and||zR(2)||+ are uniformly bounded ifR# by a constan¥ € R¥,. Thus,||zR(2)Y + Y|4 <

(M + De + ||zR(2)p + ¢||4. Sincefyp, x} € L -, there existsp,, € D(C,) such thaf¢,, — ¢]||z =4 0 and

|C0r, — Xl =4 0.Thus IC_{n}e_{n}I_{} is uniformly bounded in n€ | "{*}N |.Thus
IzZR(2)¢ — @lls < l2(R(2) = Ru(2))@lls + [1ZRn(2) (@n — @)l4 + |2ZRn(2)@n + @ulls +
+lon = @lly < |2III(R(2) — Ru(@)@lly +(M+1) llp — @plly + 1(Cr — 2) 7 Crpnlly-

We can choosfz| sufficiently infinite large so thgt(C — z)™ ||y < M |z| is infinite small, then the last term
above is small, uniformly in € *N. With this fixed value of;, we choose n large enough so that the first two
terms are infinite small, and we conclude thjaR (z)¢ + ¢||4 is arbitrarily infinite small for infinite larggz|

and that the null space df(z2) is zero.

(c) In order to show that, =45 C «s, We need only show th&t= R(z)™* + z is #-densely defined. We show
that{rangeR (z)}* < nullR(z) which implies (c). To prove the inclusion we mayppose thay = Im(z) #
0,becaus,(2) + R(z) for z in an#-open subset of the complex plaiie If Y*{rangek(z)} and if¢

nullR(2), then||Y|lx < |liyR(2)Y +Y|ls = #-nlirpm||ian(z)¢ + Ylls < ||Y]l4, which is a contradiction.

(d) LetC, =4z C o, and let{p, 8} € L£(C).Then, for somg € H* and somez, ¢ = R(2)y = #- lim ¢, =
n— oo
#- lim R,(2)x andC,@, =(Cy-2) @ +z@,x+@z, =yxtze = Ce.Thus, L(C) € AC -,,) soD(C) € D -,and
n— oo

sinceD(C) is #-dense by assumptiad,:,, is#-dense also. By (all,, 24¢ C . andC «,. is a symmetric
extension of. However(C -, - is#-closed and it has a resolvéi(z) ; therefore, C has defect indice®, n)
and is maximal symmetric. ThuS, .= C. (e) Suppose thdt «,,, =AC +,,) is the graph of a maximal
symmetric operator. For non-reaive have||R,,(2)|| «bounded uniformly im € *N. Lety € H* and writey in
the formy = (C «, * i)y for somey € D(C +,). Then,y = #'nllmmlf’n’c oo Y= #'nlimoocnlp" and

x = #-lim (C »o. %)Y, = #- lim Y,,. Therefore
n—- oo n— oo

-1
#- lim Ry (Fi)y=#- lim Ry(Fi)pn =1 = (C o £1) and $0C, >4z C oy
n— oo n—- oo

Remark 21.4 In case thet-limit of the C,,,n € *N is actually#-selfadjoint, there are further connections
between; andR #-convergence.

Theorem 21.4 Let C,, be #-selfadjointThe follouiing conditions are equivalent; (a) C, =4 C, andC = C*. (b)
C, —ur C, andC = C*. (c) The hyper infinite sequencBs(z) and[R,,(2)]*, n € *N #-converge strongly and
#-nl_i)rpw R, (2) is invertible for some. (d) Statement (c) holds for all non-reat C¥.

Proof. The theorem follows from Proposition 21.8 @ect.24.

Now we give estimates which are sufficient to asgbat itG #-convergent sequence of operatorB ig-
convergent, and that thelimit is maximal symmetric o#-selfadjoint. In order to measure the rate of



#-convergence, we introducetaselfadjoint operatoN > I and the associated non-Archimedean Hilbert spaces
H, with the scalar product

W, )i = (N2, NY2ap),. (21.12)

By standard identifications we have & 0: Hy ¢ Ho € H_y andH, = H. If D: H, - Hp is a #-densely
defined, bounded ii# operator fron¥, to Hg, we let||D||4q g denote its#-norm. Settind|D|[4 = ||D]l40,0
we obtain

IDIlsap = IINF/ZDN=E/2]|,. (21.13)

LetC,,n € "N be a hyper infinite sequence#felfadjoint operators, and consider the followihigee
conditions.

(i) Suppose thaf, — C,, is a#-densely defined, bounded Rf operator fronH, to H_;, for somel,and that
asn,m - oo

D152~ =4 0.z (21.14)

(ii) Suppose that, for some p and for an unboursi¢afz = x + iy € C# in the sectofx| < const X |y]|,
IR (D l4pr < M(2), (21.15)

where the boun® (z) is uniforminn € *N.

(i) Suppose that, for the above z's,
IRn (D42 < M(2). (21.16)

Theorem 21.5 LetC,,,n € N be a hyper infinite sequence#iselfadjoint operators with a common domain,
such that C,, -4 C +. If the conditions (i) and (ii) mentioned abovdddhen C,, =4z C +,, andC is

maximal symmetric.

Corollary 21.6 If in addition to the hypothesis of Theorem 21 &ndition (iii) also holds, thefl is #-selfajoint.
Remark 21.5 (1) If ¢ = 0 in (ii), then the resolvent$-converge uniformly. (2) If thé€,, are uniformly
semibounded ilR? from below, then we may choose tha condition (i) to be infinite large negative
numbers. In that case the conclusion of the The@®#is that,, -4z C = C".

We consider now a singular perturbat®mf a#-selfadjoint operatod. We give estimates ai which ensure
that the sund + B is #-selfadjoint.

Abbreviation 21.1 We abbreviatel ™ instead #4.

Definition 21.3 A #-core of an operataf is a domairD contained irD(C) such that = (C I D)~
Lemma?2l1.7 Let,A,,n € "N ,B,B,,n € "N and(, = A+ B,,n € "N be #-selfadjoint operators with a
commoni-coreD. Assume the hypotheses of Theorem 21.5 and Cor@ia6 for C,,, n € "N and suppose
also that, fo® € D,

I(A — A0l + (B — BBy >4 0 @asn > "o, (21.17)
I1A6]|3 + ||BO||5 < const.x ||8]|4 + const.x ||C,0]|3, (21.18)

with constants independentof ThenA + B is #-selfadjoint andC,, =4 (A + B).
Proof. Lety,, = R, (z)x. We have the inequality

lAntnlls < const.X |yl + const.X ||Cuibylly < const.X ||(Cr, — 2)in|l4 = const.x || x|l



Thus, (46, ¥)s| < |AOl4llY — Pnlls + 11(A = An)Olly X [[Wnlly + const.||0]]y X |[¥|l and therefore
[(A0,Y)4| < const.||0]||x X ||Y]||4 for 6 € D andyp = R(z)y. It follows thaty € D(A 1™ D) = D(A) and
similarity we obtain that) € D(B). SinceD(C) is the range ofR(z),we have shown thdl(C) = D(A + B).
Since (6, (A + B)Y)y = (A + B)6,Y)y = #- lim (Cr6,Yn)y = #- lim (6, Cuhn)s = (6, CY)y we have

C c A + B.Thus4 + B is a symmetric extension of teselfadjoint operato€, and s4 + B = C.
Remark 21.6 As hypothesis for our next theorem, our secondnesult, we assume th#t< A and thatvV and
A commute. Let

D *(A) = NpenD(A (21.19)
the elements ab "*(A) are calledC " vectors ford. Assume thaD "*(A) is a#-core for thef#-selfadjoint
operatorB. Also assume that, as bilinear forms Pn® x D " and for somer ande in the indicated ranges,

0<aN+B+const,0<a<1r/2 (21.20)

R
*RCI

0 < €A% + const X B + [AY/2,[AY/?,B]] + const.,2a + £ < 1 (21.21)

*ﬁg-
Let B be a bounded iR¥ operator fronH, to H_,, and fromH,, to Hg for somea, f and, § > 0, where {, is
defined following Theorem 21.4. if > 2@#, assume that for adl > 0

0 < eNH*2 4 [NWHD/2 [NWHD/2Z B1] + const. (21.22)

as bilinear forms o® " x D *°°, for someu > v — ey
Theorem 21.6. Under the above hypothesis;+ B is #-selfadjoint.
Proof LetN = Ext-f1 “Ad*E, , and leBB, = (E,BE,)"*", A,=A. E, leavesD invariant and so the domain of

B, containsD. Forf € D
2
0, BaOYsl = { En, BE,OY4I< [1Bllya-2 X [IN"/2En0]|,<n” |Bllya x 16113 (21.23)

and soB, is bounded irR# operator and essentia¢selfadjoint onD. By Corollary 21.8(,, = A + B, is
essentially#-selfadjoint onD andD(C,) = D(A).

Let Dy c D be those vectors with-compact support relative to the spectraheasure of the operatdr In
other words, iy € D,, there exist constantsandf such that, for alk > 0, ||A#y||3 < aB*.Itis clear that the
vectors(C, + b)D, are#-dense inH* and are#-analytic vectors foN#/2 for anyu. Thus by generalized
Nelson's theorem [19N*/? is essentially#-selfadjoint on(C,, + b)D,, and hence(C,, + b)D,

is #-dense il } every p. In terms of#

N¥2(C, + b)D o N*2 (C, + b)D, (21.24)

is#-dense inH* for everyu. Ford > v and form <n
A-v
1B = Bllon =INH2 (B, = BN 421 2 [N 750 - B | Ivr2ne),
#

< 2m~ /2 |B|lyaa (21.25)

The inequality (21.21) is preserved under the $wibisin B — B,,. To see this, we multiply (21.21) &, on the
left and right and notice that

cE,A’E, + const.X E, < gA”*+ const. (21.26)

Similarly we see that (21.20) is preserved understibstitutiorB — B,,. Thus the bounds (21.18) follow from
Proposition 21.2 applied to the operatdrandB,. To prove (21.17), léd € D. Then,



I(B = Bu)Olly <(IlI = Ex)BO|ly + |1BU = Ep)0l4 <
nP2|Bllag XI|N*26||, + nYBllap X IN**/20 ||

We setu = v + 2 and use Lemma 21.7. Because of the uniform lowand (21.18), we can find infinite large

negative numbersc bounded away from the spectrum@f If v < 2*@, then we sett = 0*@,/1 = 2*@, and,
because of (21.18), we have
IRn (= llua X [INRp (=) llpua X [|ARR (=€)l 2 < conmst. (21.27)
Now we assume = 2 and we use (21.22) to bound
IRn(=O)lpa = [INWHD/ZR, ()N TH2]| 5. (21.28)
Since a bounded iR¥ operator is determined by its action on #glense domain and sind&/?(C,, + c)
maps onto d-dense subset ¢f, it is sufficient to show that
N#*2 < const.x (C, + ¢) N*(C,, +¢) (21.29)
as a bilinear form o® x D. We expand the right side as
(Cn + )NH(C,, + C) €2NH+2 +
+P +¢e(A—&eN+ B, + c)N**{(A—¢eN + B, + ¢)}+eN**1 (A —eN + B, + ¢) (21.30)
with 0 < P and so it is sufficient to show that, for some 0, = 0
0 < eNHF2 42NWHD/2(4 — eN + B, + ¢/2) NWHD/2 4 [NWFD/2 [ N@+D/2 B 1] (21.31)

on the domairD x D. In these inequalities, may be chosen independentlysadind hence is an arbitrarily
large constant. By (21.22), the sum of the fitsitdtand fourth terms are positive and, by (21.#%,second
term is positive. We have verified the hypotheddseonma 21.7, and the tbeem follows; A + B is

# -selfadjoint.

Definition 21.4 Let M, N, ... bea #-closed linear manifolds of a non-Archimedean BarggaceZ. We denote
by S, the unit sphere af (the set of allk € M with ||u||, = 1). For any two #-closed linear sub manifolds
M, N of Z, we set: (1J(M, N) = sup,es,, {dist(u, N), (2)6(M,N) = max[§(M,N),5(N, M)].

Remark 21.7 Note that (1) has no meaningf = 0; in this case we define §(0, N) = 0 for anyN. On the
other hand5(M,0) = 1 if M # 0, as is seen from the definitiofi(M, N) can also be characterized as the
smallest numbes such that (3Ylist(u, N) < §]|ul|4 for allu € M.

Definition 21.5 § (M, N) will be called the gap between the manifoig4/.

Lemma21.8 (1)6(M,N) = 0 if and only ifM c N. (2) § (M,N) = 0 if and only ifM = N.

(3) § (M,N)= & (N,M). (4)0 < §(M,N)<1,0<6(M,N) <1.

Proof. Directly from the definitions.

Definition 21.6 We set: (1M, N) = supyes,, dist(w, Sy), (2)d(M,N) = max[d(M, N),d(N, M)]. Note that
(1) does not make sense if eitiéror N is 0. In such cases we set ()0, N) = 0 for anyN; d(M,0) = 2
forM + 0.

Lemma 21.9 d andd satisfy the triangle inequalitie§t) d(L, N) < d(L, M) + d(M, N),

(2) d (L,N) <d (L,M) +d (M,N).

Proof. The second inequality follows from the finghich in turn follows directly from the definitio
Definition 21.7 We say that hyper infinite sequeriggn € *N #-converges to operatdr (T, —44 T) in the
generalized sensedf(T,,T) —4 0.

Theorem 21.7 LetT: H — H be a#-selfadjoint operator. Then there i§ & 0,6 ~ 0 such that anyt-closed
symmetric operata§ with §(S,T) < & is #-selfadjoint,whered (S, T) denotes the gap betwegmndT.



Corollary 21.8 Let T, T,. be #-closed symmetric operators andTe$,n € *N #-converge td’ in the
generalized sense, see Definition 21.7T lis #-selfadjoint, therT,, is #-selfadjoint for sufficiently large

n € "N\N.

Corollary 21.9 With the hypothesis of Theorem 2146+ yB —4; A asy —4 0.

Proof. This is a special case of Corollary 10(a)

Corollary 21.10 Let B, B; be singular perturbations df each satisfying the hypothesis of Theorem 21it, w
constants independent jf

(@) If B; — B, is a#-densely defined bounded iR# operator fronH, to H_, for a sufficiently largel, if

|1B; = Bull,,, _, =+ 0 andB; —4; B, then

A+Bj >4z A+B. (21.32)

(b) If (a) is true ford < 2 and if there is &-coreD of C with c njD(Bj) , then the resolvents df + B;
#-converge in#-norm to the resolvent of + B.

22. Congtruction of *R#

Definition 22.1 Leta,,n € N be*R#- valued countable sequeneeN — *R¥ such that:

(i) there isM € N such tha{an};":M is monotonically decreasiri@®?;,, - valued countable sequence
a:N—"R¥; \{0-g#}, We denote these sequences{by};-o, {bn}n=0, €tC.

(ii) there isN € N such that for ath > N, a,, # O-pt

(iii) forall n € N, a,, # gt and for any such that > 0,¢ # 0-gst there isN € N such that for ath >
N: a, < ¢ and we denote a set of the all these countableesegs byl '°.

Definition 22.2 (i) We define a sed;'° by a, € 4;'° & —a, € A}'°.Note thatt}'® = —4}!°.

(i) We define a set$ D' by a, € A" o ;1 € 4% Note thauts V' = (450) 7"

Definition 22.3 Leta,,,n € N be*R#- valued countable sequeneeN — *R¥ such that:

(i) there isM € N such tha{an};":M is monotonically decreasir@®?. - valued countable sequence
a:N—"RE, . \ {052},

(ii) there isN € N such that for ath > N, a,, # O-pit

(iii) we denote a set of the all these countabtpisaces byl 1.

Definition 22.4 (i) We define a sed'? by a,, € 430 & —a,, € A0 Note thatA;'0 = —A+0.

(ii) We define a setG 9" by a, € A" o a5 € 452 Note thatAS DY = (430) ™

Definition 22.5 Leta,,, n € N be*R#- valued countable sequenzeN — *Rf\{o*mg} such that:

(i) there isM € N such tha{an};":M is monotonically increasintR¥;,, - valued countable sequence
a:N—"R¥. \{0-g#}, We denote these sequences{by};~o, {bn}n=0. €tC.

(ii) there isN € N such that for ath > N, a,, # O-pit

(iii) for all n € N, a, # 0.g# and for any such that > 0,¢ € “R¥;, there isN € N such that for ath >
N: a, > ¢ and we denote a set of the all these countableesegs byl} '™

Definition 22.6 (i) We define a sed'* bya, € A;'® © —a, € A7'°.Note thati;'® = —A}'*.

(i) We define a setS ' bya, € A5 o a;t € 4319 .Note that§ '™ = a%bo.

Definition 22.7 (i) We define the ordering relatiqi<-) on a sefi};'® x A5 by: let{a, }>_, € 4% and
(b} € A4 then{a, }o, < {b,}r., iff there isN € N such that for ath > N: a,, < b,,.

(ii) We define the ordering relatidp<-) on a sef1;'® x 4'° by: let{a,}*_, € 43° and {b,}2., € 43'°, then
{an oo < {bnn, iff there isN € N such that for ath > N: a, < b,

(iii) We define the ordering relatiofi<-) on a sett;? x A% by: let{a, }>., € 410 and{b, }2., € 41\ then
{an )}z < {bnn-, iff there isN € N such that for ath > N: a,, < b,,.

Definition 22.8 (i) We define the ordering relatiqr<-) on a sett}'® x *R¥, by: let{a,}>., € 4%'° and
x € "R¥,, then{a,}>_, < x iff there isN € N such that for ath > N: a,, < x.

(ii) We define the ordering relatidp<-) on a sen}? x *R¥_, by: let{a,}%., € 452 ande € *R¥_,, then



{a 7o < eiff there isN € N such that for alh > N: a, < ¢.

(iii) We define the ordering relatiofi<-) on a setR¥., x A5 by: let{a, }>_, € 4} ande € *R¥.,, then

€ < {a,}n-, iff there isN € N such that for ath > N: ¢ < a,,.

Proposition 221 Let{a,}%_, € 4}'° and{b,}>_, € 4}'°, then

() {an)izo + (bnkzo 2 {ay + bylig € A45;

(i) {an}eoo — (bn)ooo 2 {a, — by )%, € AI}OUA;,“’U{O*M}::O, Where{O*Rﬁ;}::0 is a countabl@.g+- valued
sequence;

(”I) {an}n 0 X {bn}n 0 — = {an X bn}n 0 € A+l0
Proof. Immediately from definitions.

Proposition 22.2 Lefa,}*_, € 45 and{b,}., € 45 then
()50 X {bp)%0 2 {an X by}, € AZ,“’UAE‘,_l)wUAI,le{l*Rg}:zo, where{l*Rg}:zo is a countable .-
valued sequence;

Proof. Immediately from definitions.

Definition 22.9 (i) Let{a,}*_, € M, = Aj,lOUA;,wUAZ,lwA;}""U{O*Rg}:zou{l*m}: ,and let{4,}.”

{a,}%_, be a hyper infinite sequence

nO—

{An};oio = {—a;}‘z;ﬂ = (aO' Aqy ey Ay oeey {an}:ﬁ:o' {an}‘;'lo=0' )' (221)

i.e. for any infinitem € *N\N, 4,, = {a, }r-o-
(ii) we define a sebl,, by

{AndZo € Moy & ({AnhZg = Tandio) A (andin, € M) (22.2)

Definition 22.10 (i) Let ¥: "N - MU (*]Rff *N> be a hyper infinite sequence and we denote thgser h

infinite sequences byWw,} =, {®,}.7,.etc.,

(ii) we denote a set of the all these hyper infirsiequences g+, Note thatM,, ¢ R,

(iii) Let g0: "N - M, be a hyperfinite sequence and we denote thesaffhymesequences bYE Jrzttm e
“N\N, {0, 72k, k € *N\N, etc.,

(iii) Let {F,}rZ0 be{F,}rZit,m € *N\N, we define hyper infinite sequem{é?;}\fi’o’1 b

for n < m, {Tn v ={FJz, and forn > m, F, = m.

(iv) We denote a set of the all these hyper indisikquences byF-,.

(v) Let € *R¥ Ypea hyper infinite sequence and we denote thgser linfinite sequences by

{l'l‘ln}noioi {(I)Tl}noioi {en}noioietc'

(vi) Let y € *R# w be a hyper infinite sequence .Assume that theggisgs N € *N such that],, # gt for

n > N. Define hyper infinite sequen@n};‘jo of hyperreal numbers fronR¥ as follows: fom < N, ¢,, =

I*Rg
O*Rg, and forn > N, ¢, = v

n

* 1. 1.
BudiZo = (Ouap Ougps o Ougyp, 25, 5L ) (2.3

Yy YNtz

This definition (22.3) makes sense since,ifos N, an is a nonzero hyperreal number,]s%g/‘{’n exists. Then
U, X ¢, is equal tal,, X Oupst = Oups forn < N, and equalgs,, X ¢,, = Y, X Lagst/Wn = Lgs forn > N.

Thus hyper infinite sequenéqxn};‘jo is invertible in the following sense

(WihZo) % ({budnzo) = (0ugt, Ogty o, O, Lot T, ). (22.4)



If the equality (22.4) holds we say that hypernité sequence{lpn};"i0 multiplicative invertible and{¢n};°:0

is multiplicative inverse or reciprocal for hyper infinite sequenc{eljn};":0 and denote it by
oo \ " Lept# oo
(WahZy) ™ 2 (udyZo. (22.5)
Note that
o\~ Lt _1*11&*2 *oo
(({wn}n=0) C) = {lpn}n:O' 2(8)

Definition 22.11 Let {wn};‘ﬁo € *R¥ Yhea hyper infinite sequence such W};‘ZO % {0uge) , and
c/n=
{z/)n};‘jo is not multiplicative invertible. This meant theseexists hyper infinite subsequen{:¢ni}:o such

thaty,,, # Owgs, i € "N and y, = Oupy if Yy, € {lpni}:oo. Define now hyper infinite sequen(:ebn};":0 of
1,
hyperreal numbers fronR# as follows: for=n; , ¢, = q}Rg and ¢, = O0-pt if Y, & {¢ni}

ny

000. Thus hyper

i=
infinite sequencéljjn};‘:o is invertible in the following sense
WidiZo X {bndnZy = (@n}azos (22.7)

where w, = Logs if n =n; andw, = 0-pyt if n+#n;i € *N. If the equality (22.7) holds we say that hyper

infinite sequence{y,,},-, multiplicative semi-invertible and¢, },.-, is multiplicative semi-inverse or semi-

reciprocal for hyper infinite sequenc{epn};‘zo and denote it by
*o0 -1, #m *oo
(WahZy) ™" 2 (Pudnzer (22.8)
Note that
*oo \ "~ Legtim _1*]R§' *o0
((ahze) ™) ™ = w2 (22.9)

Definition 22.12 (i) Let {a,}%o, (bn}io € A5PUAZOUAL A U0 5} OU{LR#}"’ ,andx,y € “RY,
c/n= c/n=
then we define

{an}nzot{bn}nzo £ {an  bulizo (22.10)
x + ylapdnzo = {x L yan}unzo- (22.11)

(ii) Let (¥, )2, {®,}.7, € R, andx, y € “R¥, then we define

(Watezo & {@nh20 2 (o £ 0,07, (22.12)
Watnzo X {@udZp 2 (W X @, 1,720, (22.13)
X+ y{WahZy 2 {x £ yW, 12 (22.14)

Definition 22.13 Let hyper infinite sequenc{e‘iln};"i0 be inR:,,, i.e. for alln € "N,¥,, € MU (*]Rff *N) . Say
{‘Pn};‘ﬁo #-tends t% 2 0.5
numberN € *N\N, N = N(¢) such that for any > N, |¥,| < €.

Definition 22.14 Let {‘Pn};‘ﬁo be a hyper infinite sequence such that fonadl *N,¥,, € M,,.We call{l}'n};‘joa

as n — *o.iff for any givene > O-ptt) € = Oupy there is a hypernatural



Cauchy hyper infinite sequence if the difference between its terristends t00.gs. TO be precise: given any

€ > 0.y, € = Oy there is a hypernatural numhére "N\N, N = N(e) such that for ampn,n > N, |¥, —
Y| <e.

Theorem 22.1 Let {‘Pn};‘ﬁo be inR-, If {‘Pn};‘jo is a#-convergent hyper infinite sequence (that is,

Y, -4 ®asn - *o for someb € R+, ), then{‘Pn};‘ZO is a Cauchy hyper infinite sequence.

Proof. We know th&¥,, —, ®. Here is a ubiquitous trick: instead of using O0-pt in the definition, start with
an arbitrary infinitesimat > 0, ¢ = Ot and then choos¥ € *N\N so thai¥,, — ®| < £/2 whenn > N.
Then ifm,n > N, we have |¥, — ¥,,| =|(¥, — ?)—(¥,, —P)K ¥, — | +|¥,,—P| <¢g/2+¢/2 =¢.
This shows tha{‘Pn};‘ZO is a Cauchy hyper infinite sequence.

Theorem 22.2 If {\Pn};c’:o is a Cauchy hyper infinite sequence, then it isnated in*R¥; that is, there is some
numberM € *R¥, such that¥,| < M for alln € *N.

Proof. Since{\I’n};":O is Cauchy, setting = 1 we know that there is somé € *N such that|¥,, — ¥,,| < 1
whenevem,n > N. Thus,|Wy,, —¥,| < 1 for> N . We can rewrite this aly,; — 1 < ¥,, < Wy;, + 1.This
means tha¥,,| is less than the maximum PPy, — 1| and|¥y,, + 1|. So, seM € *R¥, larger than any
number in the following hyperfinite listf|Wo|, [¥1], ..., |¥nl: [¥ye1 — 1, [Wy41 + 113 Then for any tern¥,,
if n < N, then|¥, | appears in the list and $#,| < M; if n > N, then (as shown abové¥], |is less than at
least one of the last two entries in the list, aod¥,,| < M. HenceM is a bound for the sequence.
Definition 22.15 LetS be a set of objects. A relation among pairs afelets ofS is said to be an equivalence
relation if the following three properties holdt) Reflexivity: for anys € S, s is related ta. (2) Symmetry: for
any s,ES, if s is related to then t is related te. (3) Transitivity: for anyst,r €S, if s is related to t and t is
related to r, then s is relatedrto

Remark 22.1 The following well known proposition goes mosttbé way to showing that an equivalence
relation divides a set into bins.

Proposition 22.3 Let S be a set, with an equivalence relation arspd elements. ForeS, denote by [s] the set
of all elements in S that are related to s. Themfty s,ES, either [s]=[t] or [s] and [t] are disjoint. Tisets [s]
for s€S are called the equivalence classes, and thahatsns.

Corollary 22.1 If S is a set with an equivalendatien on pairs of elements, then the equivaletasses are
non-empty disjoint sets whose union is all of S.

Definition.22.16 Let {‘Pl,n}::() anc{‘l’z_n};jo} be inR-,. Say they are equivalent (i.e. related)4, , —

q’z,nl =4 Oy @SN — “oo.

Proposition 22.4 Definition 22.15 yields an equivalence relation®, .

Proof. We need to show that this relation is reflexsymmetric, and transitive. (1) Reflexivg;,, — ¥, ,, =
O-p#,n €N, and the hyper infinite sequence all of whose teaney. py clearly#-converges @y -valued

hyper infinite sequence S{H’Ln}::o is related t({q’z,n};jo- (2) Symmetric: Suppose ﬂ'{alﬁ,n};io is related
to {‘szn}::o, SO|Wyy — Won| =4 Oep, @S 1 = "00. But Wy — Wi = —(Win — W2n), and since only the
absolute valug¥, , — ¥, | = |¥,,, — ¥1,| comes into play in Definition 22,15 it follows tha

|W2m — Win| =4 Oeps, @S — "0 as well. Hence{,‘l’z_n}::0 is related to {11—'1_,1};0:0. (3) Transitive: Suppose
{Wl‘n};io is related t({WZ,n};O:O, and{‘l’zrn}::ois related t({%rn};czo. This means thgt, , — Wy | =4 O-gs
and|Wyy — Wsn| =4 0.5, @s n — *oo. To be fully precise, let us fix infinite smadt “R%, ; then there exists an
N € "N\N such that for ath > N, |‘P1_n - ‘Pz_n| < &/2; also, there exists an M € *N\N such that for all
n>M,|¥,, — ¥s,| < e/2. Well, then, as long as> max(N, M) , we have that

|lp2,n - Lp3,n| = |(l'pln - l'pz,n) + (lpz,n - lp3,11)' < |l'pl,n - l'pz,nl + |lp2,n - Lp3,n| <gf2+e/2=e

So, choosind. equal to the max d¥, M, we see that given infinite small> 0 we can always choodeso that
forn > L] |W1n — Wsa| < & This means thgt; , — W3 | —4 O-ge , i-e-{‘l’l,n},:o is related K{l}'&n},:o-



So, we really have equivalence relation, and sGdupllary 22.1 the seR-,, Is partitioned into disjoint subsets
(equivalence classes).

Definition 22.17 The hyperreal numbet®? are the equivalence class{é‘s*.J } ] of Cauchy hyper infinite

n=0’
sequences of, as per Definition 22.16.That is, sach equivalence class is a hyperreal numb&Rin
Definition 22.18 Let{a,}>, € *R¥ . We define external countable st - ¥"=% a,, by:

(i) Ext - Y728 ay 2 (bg, by, ey By ooy 1P} o0, (b} gy ) = (B} (22.15)
whereb, = ay, ..., by,..; by, = Ext-Y"=Ka,,, k € N.
(i) We set
Ext - Y"=2 a, = Ext-Y'=5 a,,. (22.16)

Remark 22.2 Note that in non-Archimedean fieltR# external countable sufxt-Y"=% a,is not preserved in
general case under the substitutign= b,,n € N, i.e. a, = b,,n € N =, Ext-312¢ a, = Ext-Y32¢ by,.
For example in non-Archimedean fiel®? for countable sequence;ar, ar?, ....ar™, ...,n € N,r < 1 we get

La#t —
_ _ & =
Ext- Ynzg ar™ = Ext - Y8 ar™ = a - pos (Loge — mIRzy
*RC

However in non-Archimedean fieldR# one obtains that

1*]R§

Ext- =0 ar" =«

1, #—T
*[RC

see Example 22.1.
Example 22.1 Consider countable sequenegar, ar?, ....ar™, ..,n € N,r < 1.

n=oo

1* n n=ee 1*’“ n 1*’“
Ext - YP=e ar® a{ RE-r } =a- LA —a{l . } " {r"} . (22.17)
= n=1

1 -r =#—T -r lzu—1 1 -
*]Rg n=0 *]Rg *]Rg *Rg *]R#

Notice that{r™}I=% € A7t
Definition 22.19 Let {a,}'=" € GF+,, m € *N\N. We define external hyper finite sufxt - Y= a,, by:

() Ext - $30 ay 2 (Bo, by, v, by oo, (b Yol (bR, ) = (bRl (22.18)
whereb, = ay, ..., b, .., by; b = Ext-Y*=Ka,,, k € *N.
(i) We set
Ext-Y'=maq, = Ext-yiMa,, (22.19)

whereExt-Y*="q, 2 ¢, c,, = Ext - YT q,,.
Example 22.2 Consider hyper finite sequenegar, ar?, ...,ar™,m € *N\N,r < 1.

n=m

. B Lig#_m n=m Lap#t rn Lap#t
Ext-Yr-har™ = a{—— =a—<—ajy; e —_{mrar. (22.20)

l*lRﬁ_r *]R;g—r *]Rgcf—r *]Rgcf—r 1*]R# r

n=0 n=1

From (22.17) and (22.20) we obtain

EXt -Ypern\nnsm @™ = # (r™R=f = 1™) > Ouge. (22.21)
o



Example 22.3 Consider hyper infinite sequencer, ar?, ....ar™,...,n € N,r < 1.
n € *N.Type equation here.

n=m
— . — n=m Lt . rn
Ext =Y esyar™ £ #-limy, o (Ext — Y0zt ar™) = as N#ir = #-limp o - e =
*Re *Re n=1

1.~
.. 2(22)

1*@?}—7”
From (22.17) and (22.22) we obtain

EXt Tpeen ar™ = GrIREE > 0. (22.23)

Definition 22.20 Lets, t € *R¥, so there are Cauchy hyper infinite sequerﬁﬁeg;":o and{d)n};‘zo with
S = {lpn}no:() andt = {(Dn}noio .
(i) Define s + t to be the equivalence class of the hyper infiséquencé¥,, + d>n};°20.

(i) Define s x t to be the equivalence class of the hyper infisgguencg¥,, x CDn};‘ZO.
Proposition 22.5 The operations-,x in Definition 22.18 (i),(ii) are well-defined.

Proof. (i) Suppose théﬂ’n};‘ﬁo = {‘Pl_n}::0 and{d)n};‘ﬁo = {‘Dm},:o .Thus means that,, — Wy , =4 O-gs,
and®,, — @, , =y O-gs asn — “o. Then(W, + @,) — (Wyn + D1p) = (W — Win) + (P — @yn)- Now,
using the familiaé trick, you can construct a proof that this #-temje*m, and S({{\I’n + d)n};czo] =

(Wi + @1}, |

(ii) Again, suppose tha[tPn};‘ZO = {lplrn},:o and{d)n};‘ﬁo = {‘Dm},:o- We wish to show tha{{l}’n X

<Dn};°:0] = [{‘Pl_n X ¢1,n},:0] ,or, in other words, thal, X @, — Wy X @1, =4 O-ps @sn - "0, Well, we
add and subtract one of the other cross termspgay ¥ ,,:

WX Dy =W XDy =W XD+ (D X Wy, — Py X W) =Wy XDy = (W X P — Dy X W ,) +

F(Pp X W — @ X Wy ) + (P X W — Wy X Py ) = Dy X (W, — Wy p) + Wy X (P, — Dy )

Hence, we haveW, X @, — W, X &, | < || X [¥, = Wip| + [Win| X |@n — @1p| < R(|W, — Wrn| +
|®, — ®1]). Now, noting that botW,, — ¥, ,, and®,, — @, , #-tend t00-g# asn — “o and using the/2

trick (actually, this time we'll want to us¢2R, we see tha¥,, x &, — W, , X O, >4 0: @sn — “oo.
Theorem 22.3 (i) Given any hyperreal numbere *R¥, s = {‘Pn};‘ﬁo such that +# [O*Rg] and there i&V such
that for alln > N, ¥,, is multiplicative invertible, then there is a hypedreambert € *R¥ such thas x t =
1*]R{{f £ 1*@?'
that for alln > N, ¥, is multiplicative semi-invertible, then there itigperreal number € *R# such that
s Xt = [w,], where w,, = 1.y if n = n; andw, = 0.gs if n #n;,i €N,

Proof. (i) First we must properly understand wihat theorem says. The premise is tha& nonzero, which

(ii) Given any hyperreal numbere *R¥, s = {l}’n};‘jo such thak # [ﬂa and there iV such

means that is not in the equivalence class Ofmvg £ 0. In other wordss = {\l’n};":o Where{llln};:’:0 — 0.
C (o

does not #-converge . as n — *co. From this, we are to deduce the existence ofpefgal number
C
t= {CDn};‘ZO such thak x t = [{ll’n X CDn};‘ZO] is the same equivalence classigs. Doing so is actually an
C
easy consequence of the fact that nonzero hypemaabers fromfR¥ have multiplicative inverses, but there is
a subtle difficulty. Just becausés nonzero (i.e{an};":O does not#-tend to0,, asn — “oo, there's no reason
(o

any number of the terms {H’n};ﬁo can't equal.gs. However, it turns out that eventual{wn}:f:0 # 0. by
c



Lemma 22.1.
Proof. (ii) Immediately from definitions and by Lema 22.1.

Lemma 22.1 If {\Pn};c’:o is a Cauchy hyper infinite sequence which doestreind t00+gs#, then there is an

N € "N such that: (i) for ath > N, ¥, # 0.5+ or (ii) there is hyper infinite subsequent, } = {Wn};ﬁo

ni=
such tha{‘Pni}nizM # 0., i € "N, M € "N\N.
We will now use it to complete the proof of Theor2fh3.
Let N € "N be such tha¥,, # Ot forn > N. Define hyper infinite sequen({@n};":o of hyperreal numbers

Lio#
from *R¥ as follows: fom < N, ®,, = [ and foomn > N, ¢, = qJ'R”

. Thus we obtain hyper infinite sequence

n

1*Rg I*Rg

*o0 . . .
{Pn} o0 = (0*@, O-pt wvvs Ot T ) This makes sense since, for> N, an is a nonzero hyperreal

number, SOL.ps /Wy exists. TheW,, x @, is equal td¥, x Ospt = Oupy forn < N, and equal¥,, x ®,, =

Wy X Ligs/Wn = Lugs forn > N. Well, then, if we look at the hyper infinite seqoel.ps £ 1 we have

*E@g )

Logt — {¥, x <Dn};°:0 is the hyper infinite sequence whichligs — 0.p# = 1*@ forn < N and equalsl*@ —

1*@ = O*ﬁg forn > N. Since this hyper infinite sequence is eventuadjyal 100 g, it #-converges t0-p# as
n - *oo, and S({{‘Pn X <Dn};°:0] = 1.z This shows that = [{d)n};‘ﬁo] is a multiplicative inverse to =
[CANN

Definition 22.21 Lets € *R¥. Say that s is positive i # 0,~,, and ifs = [{‘Pn};";o] for some Cauchy hyper

Y
infinite sequence such that for somg¥, > O-pt for alln > N. Given two hyperreal numbesst € *R¥, say
thats > t if s — t is positive.

Theorem 22.3 Lets, t € *R¥ be hyperreal numbers such that t, and let- € *R¥. Thens +r >t +r.

Proof. Lets = [{Wn};‘zo],t = [{CDn};‘ZO] andr = [{@n};ﬁo]. Sinces > t, i.e.—t > 0.# , we know that there
is anN € "N such that, fon > N,¥,, — &,, > Ospst .SOW), > Dy forn > N. Now, adding?d,, to both sides of
this inequality, we hav®#, + 0,, > ®,, + 0, forn > N, or(¥,, + 0,,) — (¥, + 0,)) > Ospt forn > N. Note
also that(¥, + ©,,) — (¥, + 0,,) = ¥, — ®,, does not #-converge By4 asn — oo, by the assumption that

s — t > 0.g#, Thus, by Definition 22.19, this means thai r = [{‘Pn + (E)n};‘io] > [{ll’n + CDn};‘:()] =t+r.
Remark 22.3 There is canonical imbedding

‘R¥ o, *R¥ 2(24)
defined byi: a - [a].
23. Generalized conver gence of hyper infinite sequences of #-closed operators
When we consider various perturbation problemsedlto#-closed operators, it is necessary to make precise
what is meant by a "small" perturbation. This cardbne in a most natural way by introducing a raétrithe
setW (X,Y) of all #-closed operators froki toY. If T,S € W(X,Y), their graph<: (T), G (S) are#-closed
linear manifolds in the product spadex Y. Thus the "distance" betwe&randS can be measured by the
"gap" between the closed linear manifol@§T), G(S). In this way we are led to consider how to meathee
gap of twot#-closed linear manifolds of a non-Archimedean Barggace. In this paragraph we shall consider -
closed linear manifold®, N, ... of a non-Archimedean Banach spac&Ve denote by, the unit sphere aff
(the set of alu € M with||u||4 = 1). For any two#-closed linear manifold#f, N of Z, we set

0(M,N) = supyes,, dist(u,N), (23.1)

S(M,N) = max[§(M, N),5(N, M)]. (23.2)



Note that (23.1) has no meaning4f = @; in this case we define §(0, N) = 0. for anyN. On the other hand
6(M,0) =1 if M # @, as is seen from the definitiofi(tM, N) can also be characterized as the smallest

number§ such that
dist(u, N) < §||ul|4 (23.3)

forallu e M.
Definition 23.1 The quantity§(M, N) is called the gap betweéf, N.
The following relations follow directly from the fieition.

§(M,N) =0, if and only ifM c N. (23.4)
5(M,N) = 0. ifand only ifM = N. (23.5)
5§ (M,N)= 6 (N,M). (23.6)

0oy SS(M,N) < 1.4,0 <SM,N) <1 (23.7)

RY *R# *RE

(23.5) and (23.6) suggest thiHtM, N) could be used to define a distance betwdeandN. But this is not
possible, since the functigf(X, Y) does not in general satisfy the triangle inequattuired of a distance
function'.This inconvenience may be removed by riyaaj the definition (23.1)-(23.2). We set

d(M, N) = supyes,, dist(u, Sy), (23.8)
d(M,N) = max[d(M,N),d(N, M)]. (23.9)
(23.8) does not make sense if eitheor N is 0. In such cases we set
d(0,N) = 0. for anyN;d(M,0) = 2, for M # @. (23.10)
Furthermored andd satisfy the triangle inecqualities : )
d(L,N) < d(L,M)+d(M,N),d(L,N) < d(L,M)+d(M,N). (23.11)

The second inequality of (23.11) follows from tlirstf which in turn follows easily from the defiidh. The
proof will be left to the reader. The case whenesafl., M, N are 0 should be considered separately; note
(23.10). The set of a#t-closed linear manifolds of Z becomes a metric sgamlowed with*R¥*-valued metric

if the distance betweeM, N is defined byi (L, N).
Definition 23.2 A hyper infinite sequencl,,,n € *N of #-closed linear manifoldg-converges td/ if

d (M, M) -, 0.7s @sn — “co. Then we writeVl,, —4 M of #imy,+w M, = M.

Remark 23.1 Although the gap is not a proper distance function, it is more eamient than the proper

distance functior for applications since its definition is sligh8impler. Furthermore, when we consider the
topology of the set of all closed linear manifolttse two functions give the same result. This is tluthe
following inequalities

8(M,N) < d(M,N) < 25(M,N), (23.12)
§(M,N) < d(M,N) < 25(M,N). (23.13)
We set

8(T,S) = 8(G(T), G(S)),8(T,S) = 8(G(T), G(S)) = max[8(T,S), 5(S,T)]- (23.14)



The quantitys (T, S) will be called the gap betwe&hands. Similarly we can define the distandé€T, S)
betweerl” andS as equal (G (T), G(S)). Under this distance functid#f (X, Y) becomes a non-Archimedean
metric space endowed wittR#-valued metric. In this space tieconvergence of a hyper infinite sequence
T, € W(X,Y)toaT € W(X,Y) asn - *o is defined byd(T,,, T) =4 0.5- But since 8(T,S) <d(T,S) <

28(T,S) in virtue of (23.13), this is true if and onlyd{T,, T) =4 0., asn — “oo.
Definition 23.3 LetT, € W(X,Y),n € *N. If §(T,, T) =4 0.z% asn — oo we shall say that the operaf@r

#-converges t@ orT,, - T in the generalized sense.

Theorem 23.1 Let T: H* — H* be a#-selfadjoint operator. Then there i & 0 such that any-closed
symmetric operata§ with §(S,T) < & is #-selfadjoint, wherd (S, T) denotes the gap betwegmndT.

Corollary 23.1 LetT, T,,. be#-closed symmetric operators and let hyper infifijten € *N. #-converge td in

the generalized sense Tfis #-selfadjoint, thelf,, is #-selfadjoint for sufficiently larga € *N.

24, Strong conver gence of the resolvent

LetT,,n € "N, T,, € W (X, X) be a hyper infinite sequenceibfclosed operators in a non-Archimedean Banach
spaceX. In this section we are briefly concerned with gaheonsiderations on strosigconvergence of the

_1~
resolventR,,(¢§) = (T, — &) "®¢. We remind the fundamental result on theonvergence i#-norm of the

resolvents: iR, (§) #-converges irdt-norm to the resolverR(§) = (T — E)_l*“@? of a#-closed operatdF for
someé € P(T), then the same is true for evérg P(T) (see Theorem 23.2 and Remark 23.2). There is no
corresponding theorem for strofigconvergence of the resolvents. Nevertheless, weoave several theorems
on the set of point§ where theR,,(¢)are strongly#-convergent or bounded. Let us define the region of
boundedness, denoted by, for the hyper infinite sequendg, (¢) as the set of all complex numbérs *C*
such tha€ € P(T,) for sufficiently largen € *N and the sequenck R, (§)||4 is bounded [for so infinite large
that the R, (&) are defined]. Furthermore, l&f be the set of aff such that $#-lim,,_,-, R,(§) = R'(¢)
exists.4; will be called the region of stroryconvergence foR, (¢). Similarly we define the regios, of #-
convergence i#-norm forR,,(¢). Obviously we havd, c 4, c 4,.

Theorem 24.1 4, is an#-open set in the complex plah@&. Operatorr,,(¢) is bounded in@ﬁ uniformly inn
and¢ in any #-compact subset 6f.

Proof. Letéo € 4; for [§ — §o| < L/l Ru(§o)lls = (Il Rn(fo)ll#)_lﬁ we have the Neumann hyper infinite

series

Rn(8) = Ext-Y,20(€ — &o) [l Ru(&o)ll41%. (24.1)

— -1~
11l Ru(Eodlls < Mo, thenll Ry(€0)lls < Mo(1.y — Mo € = &l ) for € — &o] < M, ™ The theorem
follows immediately.
Remark 24.1 Theorem 24.1 implies thdt, consists of at most a hyper infinite numbe#efonnectedt-open
setsdy,, 4p,, ... (the components af,).
Theorem 24.2 A, is relatively#-open and¢-closed ind, (so thatd, is the union of some of the components
4, of 4,). The strong #-convergende,(§) —4 R($) is uniform in each-compact subset of;.
Remark 24.2 For convenience we call, also the region of boundedness for the sequeriberié is no
possibility of confusion. Similarly fod; and4,,.
Remark 24.3The strong #-convergend, (¢) —4 R(§) is uniformingif |[R,,(§) —R(&)|lx =4 0

uniformly in & for each fixedu € X.
Remark 24.4 The strongt-limit R'(€) of R,,(¢) for & € A, need not be the resolvent of an operator. In asg,.c
however,R'(¢) satisfies the resolvent equation

R
“RY

R'(§1) = R'(§2) = (§1 = E)R'(§)R'(§2), 61,82 € 4, (24.2)

as the strongt-limit of operatorsk,,(¢) which satisfy the same equation.
Definition 24.1 For this reason ) is called a pseudo-resolvent. Note tRg¢;) andR’(¢;) commute.



Remark 24.5 The Eq.(24.2) implies that the null spaée= N(R'(¢)) and the rang® = R(R'(§)) of R'(¢) are
independent of. In fact, it follows from Eq.(24.2) th&'(¢,)u = 0 impliesR’'(é;)u = 0 and thatu = R'(§)v
impliesu = R'(&)w withw = v — (§; — &)u.

Remark 24.6 The pseudo-resolveRr{(§) is a resolvent of a#i-closed operatdF if and only if N = 0.
Theorem 24.3 Let 4, be nonempty. There are the alternatives: ei@) is invertible for n&f € 4, orR'(¢) is

equal to the resolvenk (§) = (T — &) ThRE of a unique operatdr € W (X, X). In the latter case we have
A; = P(T) N 4,

Proof. Only the last statement remains to be prowedhaved; < P(T) n 4,} sincedg c P(T). To prove
opposite inclusion, we note the identity

Rn (§) =R = (Lgs + (€ = $0) Rn (£)) (Rn (o) — R(E))(Ls + (§ = $0)R(£)) (24.3)

for &,&, € P(T) n 4, this is a simple consequence of the resolvent emsforR,,(¢) andR(¢). If &, € A,
we have s#-lim R, (&y) = R'(&y) = R(&,) so that Eq.(24.3) gives#sdim R, (§) = R(§) by the uniform
boundedness of hyper infinite sequentgé), n € *N.This shows thaf € 4, and completes the proof.
Corollary 24.1 LetT,,n € *N andT be sebe #-selfadjoint operators in a non-Archiraad¢ilbert space, with
the resolventsR,, (¢) andR(§). If s-#dim,,_,+,, R, (§) = R(&) for some complex numbére *C#, then the

same is true for every nonregat *C*.
Proof. Since| R, (§) |l# < 1.7#/|Imé], all nonreal number$ are included i, as well as irP(T). Thus

P(T) n 4, also includes all nonregl and the assertion follows from Theorem 24.3.

Definition 24.2 When the second alternative of Theorem 24.3 iszezh we shall say thaR,, (§) #-converges
strongly toR (§) on4,, and thaff,, #-converges strongly t in the generalized sense.

A criterion for generalized strong convergenceiveq by:

Theorem 24.5 LetT,,,T € W (X, X) and let there be a #-cobeof T such that each € D belongs tadD(T;,) for
sufficiently infinite largen andT,,u -4 Tu. If P(T) N 4, is not emptyT,, #-converges strongly tb in the
generalized sense add = P(T) N 4,.

25. Conclusion

A new non-Archimedean approach to interacted qumaritelds is presented. In proposed approach, d fiel
operatorp (x, t) no longer a standard tempered operator-valuedtditibn, but a non-classical operator-valued
function. We prove using this novel approach thatquantum field theory with Hamiltonid{¢), exists and
that the canonical™*- algebra of bounded observables correspondingdartbdel satisfies all the Haag-Kastler
axioms except Lorentz covariance. We prove thafae), quantum field theory model is Lorentz covariant.
For each Poincare transformation4 and each bounded regiénof Minkowski space webtain a unitary
operatorJ which correctly transforms the field bilinear fam(x, t) for (x,t) € 0. The von Neumann algebra
€(0) of local observables is obtained as standardgbfatternal nonstandard algel®a(0).
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