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 Abstract.  A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, 
a field operator ���, �� no longer a standard tempered operator-valued distribution, but a non-classical operator-
valued function. We prove using this novel approach that the quantum field theory with Hamiltonian 	���
 
exists and that the corresponding �∗- algebra of bounded observables satisfies all the Haag-Kastler axioms 
except Lorentz covariance. We prove that the ���
�
 quantum field theory model is Lorentz covariant.   

                                                              

1.Introduction                                                                                                                                                               
Remind that extending the classical real numbers ℝ to include infinite and infinitesimal quantities originally 
enabled D. Laugwitz [1] to view the delta distribution ���� as a nonstandard point function. Independently A. 
Robinson [2] demonstrated that distributions could be viewed as generalized polynomials. Luxemburg [3] and 
Sloan [4] presented an alternate representative of distributions as internal functions within the context of 
canonical Robinson's theory of nonstandard analysis. For further information on classical nonstandard real 
analysis, we refer to [5]-[7].The technique of nonstandard analysis (NSA) in constructive quantum field theory 
(QFT) originally were considered in P. J. Kelemen and A. Robinson papers [8],[9]. The methods of nonstandard 
analysis are demonstrated for the construction of the nonstandard �: ��
:  model. J. Glimm and A. Jaffe's results 
[10],[11] were analysed from the nonstandard point of view. For further information on methods of classical 
nonstandard analysis in QFT, we refer to [12],[13]. However methods of classical nonstandard analysis cannot 
resolve this problem in physical dimension � = 4, in particular for the case of simplest scalar QFT model with 
interaction : ��
: , see concise explanation in ref. [15 Introduction, Remark 1.4] and ref.[17 sect.1, Remark 1.4].                                                                                                                 
Cardinally novel approach has been developed in author papers [14]-[19].This approach based on non-

conservative extension of the model theoretical NSA. In this paper we consider a some-what different 
hyperfinite cut-off theory, namely the ��

  theory in a periodic box. This gives a cut-off interaction 
which is translation invariant, and therefore it is useful for the study of the vacuum state.  In a 
hyperfinite interval we prove that the total Hamiltonian is self #-adjoint and has a complete set of 
normalizable eigenstates. 

Abbreviation 1.11In this paper we adopt the following canonical notations. For a standard set � we 
often write ���. For a set ��� let ��� �  be a set��� = � � ∗ |� ∈ ���  � . We identify ! with ! �  i.e., ! ≡ ! �  

for all ! ∈ ℂ. Hence, �$% = ��� �  if � ⊆ ℂ, e.g., ℂ � = ℂ, ℝ � = ℝ, 	 � = 	, '(↑ � = '(↑ , etc. 
Let ℝ ∗ ≈ , ℝ ∗ ≈( , ℝ ∗ +,- , ℝ ∗ ., and ℕ ∗ . denote the sets of infinitesimal hyper-real numbers, positive 
infinitesimal hyper-real numbers, finite hyper-real numbers, infinite hyper-real numbers and infinite 
hyper natural numbers, respectively. Note that ℝ ∗ +,- = ℝ ∗ \ ℝ ∗ . ,  ℂ = ∗ ℝ ∗ + i ℝ ∗ , ℂ ∗ +,- = ℝ ∗ +,- +i ℝ ∗ +,- .  Note that there is a natural imbedding  ℝ ↪ ℝ ∗ , see ref. [5].                                                                         
Notation 1.1 We denote #- completion of the non- Archimedean field ℝ ∗  by ℝ ∗ 4#, see ref. [18],[19].                  
Abbreviation 1.2 Let ℝ ∗ 4≈#  , ℝ ∗ 4(#  ℝ ∗ 4+,-#  , ℝ ∗ 4.#   denote the sets of infinitesimal hyper-real numbers, positive 

infinitesimal hyper-real numbers, finite hyper-real numbers, infinite hyper-real numbers in a non- Archimedean 
field ℝ ∗ 4#. Note that there is a natural imbedding  ℝ ↪ ℝ ∗ 4#, ∗  see ref. [18].                                                                         

Notation 1.2 We denote by ℝ5 ∗ 4# special extension of a non-Archimedean field ℝ ∗ 4#, see ref. [19] and section 22 
in this paper.                                                                                                                                                   

Abbreviation 1.3 Let  ℝ ∗ 4≈#  , ℝ ∗ 4(#  ℝ ∗ 4+,-#  , ℝ ∗ 4.#   denote the sets of infinitesimal hyperreal numbers, positive 



infinitesimal hyper-real numbers, finite hyper-real numbers, infinite hyper-real numbers in non- Archimedean 

field  ℝ ∗ 4# respectively. Note that ℝ ∗ 4+,-# = ℝ ∗ 4#\ ℝ ∗ 4.#  ,  ℂ4# = ∗ ℝ ∗ 4# + i ℝ ∗ 4#, ℂ4+,-# = ∗ ℝ ∗ 4+,-# + i ℝ ∗ 4+,-# .  
Abbreviation 1.3 Let  ℝ5 ∗ 4≈#  , ℝ5 ∗ 4(#  ℝ5 ∗ 4+,-#  , ℝ5 ∗ 4.#   denote the sets of infinitesimal hyperreal numbers, positive 

infinitesimal hyper-real numbers, finite hyper-real numbers, infinite hyper-real numbers in non- Archimedean 

field   respectively. Note that ℝ5 ∗ 4+,-# = ℝ ∗ 4#\ ℝ5 ∗ 4.#  ,  ℂ64# = ∗ ℝ5 ∗ 4# + i ℝ5 ∗ 4#, ℂ64+,-# = ∗ ℝ5 ∗ 4+,-# + i ℝ5 ∗ 4+,-# ,  see ref. [19].  

Note that there is a natural imbedding  ℝ ∗ 4# ↪ ℝ5 ∗ 4# , see ref. [19].                                                                 

Definition 1.1 The Schwartz space of essentially rapidly decreasing ℂ64# ∗ - valued test functions on ℝ5 4#7 ∗  , 8 ∈ ℕ ∗ ∗  

is the function space defined by   

S: +,-#  ; ℝ5 4#7 ∗ < =  S:=>7#  ; ℝ5 4#7 ∗ , ℂ64# ∗ < = 

       ?@ ∈ � . ∗ ; ℝ5 4#7 ∗ , ℂ64# ∗ <|∀�B, C�;B ∈ ℕ ∗  7, C ∈ ℕ ∗  7<∃EFG;EFG ∈ ℝ5 4,+,-# ∗ <∀�;� ∈ ℝ5 4#7 ∗ < HI�F J K  #G @  ���LI <
EFGNO.   

Definition 1.2 Let P be a non-Archimedean Banach space endowed with  ℝ5 ∗ 4# - valued #-norm ‖°‖#. Let S be a 

linear operator S: P → P. We say that operator S is bounded in ℝ5 ∗ 4# if there is positive constant � ∈ ℝ5 4(#7 ∗  such 
that for any � ∈ Pthe inequality ‖S�‖# ≤  �‖�‖# holds.                                                                                                                                         

Definition 1.3 The Fock space ℱ # is the non-Archimedean Hilbert space #- completion of the symmetric 

tensor algebra over '�#; ℝ5 ∗ 4#W< 

                                                 ℱ # = ℭ J'�#; ℝ5 ∗ 4#W<L = ���-⨁7Z[. ∗ ℱ7#,                                                          (1.1)                                         

where ℱ7# is the space of 8 non-interacting particles, 

                                           ℱ7# = '�#; ℝ5 ∗ 4#W<⨂]'�#; ℝ5 ∗ 4#W<⨂] ∙∙∙ ⨂]'�#; ℝ5 ∗ 4#W<.                                           (1.2)                                          

The variable _ = �`a, `�, `b� ∈ ℝ5 ∗ 4#W denotes momentum vector. For c = �c[, ca, …  ∈ ℱ # = ℱ[#⨁ℱa#⨁ ∙∙∙ 
We define on Fock space ℱ # the ℝ5 ∗ 4#W- valued #-norm ‖∙‖#  by ‖c‖#� = ���- ∑ ‖c�‖#�� ,. ∗7Z[  where ‖∙‖#� is a 

#-norm in '�#; ℝ5 ∗ 4#W< The no particle space ℱ[# = ℂ ∗ # is the complex numbers, and 

                                                              Ω[ = �1,0,0, …  ∈ ℱ #                                                                       (1.3) 

is the (bare) vacuum or (bare) no-particle state vector. We define operators i and  j[,k by 

                                                  �ic�7 = 8����- ∏ m�‖_>‖, n�7>Za c7�,                                                      (1.4) 

                            ; j[,kc<7�_a, … , _7� = ���- ∑ m;o_po, n<q;_p<7pZa c7�_a, … , _7�,                        (1.5)               

where n ∈ ℝ5 ∗ 4(# \ ℝ5 ∗ +,-(#  and 

            m;o_po, n< = 1 if o_po ≤ n and ;o_po, n< = 0 if o_po > n, q;_p< = s〈_p , _p 〉 + v[�          (1.6)                    

Here i is the number of particles operator, and  j[,k is the free energy operator (the free Hamiltonian). The rest 

mass of the non-interacting particles is v[ , and q�_ � is the energy of a free particle with momentum vector _ . 
We use the standard annihilation and creation operators w�_� and w∗�_�,    

                                               �w�_�c�7xa�_a, … , _7xa� = √8c7�_, _a, … , _7xa�. 



As a convenient minimal domain for w�_�, we use the set ℰ# of vectors c ∈ ℱ # with c7 = 0 for large 8 ∈ ℕ ∗  

and c7 ∈ {|+,-# ; ℝ5 ∗ 4#W<  for all 8 ∈ ℕ ∗ .  

          �w∗�_�c�7(a�_a, … , _7, _7(a� = √8 + 1}~/� ���- ∑ �#;_ − _p<7(apZa c7;_a, … , _�p , … _7<.                     (1.7)             

Here the variable _p is omitted. While a*((k) is not an operator, it is a densely defined bilinear form on  ℰ# × ℰ#.  
Remark 1.1 Note for a ℂ6 ∗ 4#- valued function or ℂ6 ∗ 4#- valued distribution �  we can define  ℂ6 ∗ 4#- valued bilinear 

form   P = 

���- � ��_a, … , _�; _a� , … , _7� �w∗�_a� ∙∙∙ ℝ5 ∗ �#W∙×∙ ℝ5 ∗ �#W∙ w∗�_��w�−_a� � ∙∙∙ w�−_7� ��#b_a� … �#b_7� .     (1.8)                                                                                         

The integration helps in (1.8) and P is not only a bilinear form, but often an operator. This is the case if, for 

example, � is the kernel of a bounded operator P[ from ℱ7# to ℱ�#. In this case  

                                       o� ik + ��xF/�P� ik + ��xG/�o# ≤ const ∙ ‖P[‖#,                                          (1.9)            

provided that v + 8 ≤ B + C. The constant depends only on B, C, v and 8. Intuitively we think of P 

as being dominated by ik�� (7�/�
; in particular P is an operator on K J ik�� (7�/�L the domain 

of ik�� (7�/�. The inequality (1.9) is one of our basic estimates and in using it we will often dominate 

‖P[‖#  by the Hilbert Schmidt #-norm  ‖P[‖#�� ≤ ‖�‖#�, ‖P[‖#�� = ����- ∑ ‖S�>‖#>∈ . ∗  , and 

where ��>|� ∈ ∞ ∗   is an orthonormal basis in ℱ #.  By definition the field with hyperfinite momentum 

cut-off �k#���, � = ��a, ��, �b� ∈ ℝ5 ∗ 4#W, n ∈ ℝ5 ∗ 4(# \ ℝ5 ∗ +,-(#  is  

                         �k#��� = ���- � ;���-exp�−�〈_, �〉�<�w∗�_� + w�_� �q�_ ��xa/��#b` = |_|�k                            

                           = ���- � m�‖_ ‖, n�;���-exp�−�〈_, �〉�<�w∗�_� + w�_� �q�_ ��xa/��#b`. ℝ5 ∗ �#W      (1.10) 

We also define the bilinear form  

                        �k#��� = ���- � �;���-exp�−�〈_, �〉�<�w∗�_� + w�_� �q�_ ��~��#b` =  |_|�k                                

                            ���- � �m�‖_ ‖, n�;���-exp�−�〈_, �〉�<�w∗�_� + w�_� �q�_ ��~��#b`, ℝ5 ∗ �#W               (1.11)     

the conjugate momentum to �k#���. Since the kernels ��_� = m�‖_ ‖, n�;���-exp�−�〈_, �〉�<�q�_ ��x~� in '�#  

the bilinear forms (1.10)-(111) define operator-valued functions  �k#���: ℝ5 ∗ 4#W → '�ℱ #� and �k#���: ℝ5 ∗ 4#W →
'�ℱ #�. For real @���, ���� such that m�‖_ ‖, n��q�_ ��x~�@���� ∈ '�# and m�‖_ ‖, n��q�_ ��~�� ��� ∈ '�# , , the 

bilinear forms �k#�@� and �k#��� define operators whose #-closures on K ¡ ik
~�¢ are self-#-adjoint. They satisfy 

the canonical commutation relations                                                           

���-exp J��k#���L ���-exp J��k#���L = 

                            ���-exp��〈@, �〉#� ?���-exp J��k#���L ���-exp J��k#���LO.                                      (1.12)                              

It is furthermore possible to define polynomial functions of the field �k#���, the Wick polynomials : �k#���: (see 

chapter I for a definition of the Wick dots : :). Explicitly, as a bilinear form on K; ik7/�< × K; ik7/�<, 
                            : �k#7��� ≔ ∑ J7pL �¤�_a, … , _7�7pZ[ w∗�_a� ∙∙∙ w∗;_p<w;−_p(a < ∙∙∙ w�−_7 �,        (1.13)                                              



where                                                                                                         

                                   �¤�_a, … , _7� = ∏ m;o_po, n<¥q;_p<¦xa/�7pZa ���-exp;−�〈∑ _p7pZa , �〉<. 

Thus for real @��� ∈ {#; ℝ5 ∗ 4#W<, the bilinear form  

                                                     ∶ �k#7�@� ≔ ���- � ∶ �k#7���@���: �#b� ℝ5 ∗ �#W   

has a kernel proportional to ∏ m;o_po, n<¥q;_p<¦xa/�7pZa @�;∑ _p7pZa <. Thus from (1.9) we conclude that 

: �k#7�@�:  defines a symmetric operator on the domain K; ik7/�<. It was shown in chapter I sect. 15 that : �k#7�@�:   is essentially self-#-adjoint on this domain. 

 2. The periodic hyperfinite approximation in configuration space. The cut-off Hamiltonian ¨©�ª�. 
The cut-off Hamiltonian jk��� acts on ℱ«# and can be written in terms of the field operator �k#���, � =��a, ��, �b� as 

                               jk��� =  j[,k + ���- � �k#
��� ℝ5 ∗ �#W �#b� = j[,k +  j¬,k,­                                       (2.1)                                  

where  j[,k =  jk�0� is the free hamiltonian, and 0 ≤ �. Let  

                                                                  C . ∗ ;j[,k< = ⋂ K;j[,k7 <. ∗7Z[  

be the set of C . ∗  vectors for j[,k. It was shown in [16]-[17] that  jk��� and  j¬,k,­ are essentially self-#-adjoint 

on C . ∗ ;j[,k<, that 

                                                      K; jk���< = K; j[,k< ∩ K; j¬,k,­<                                                      (2.2)                            

and that there are finite or hyperfinite w, � =  ���� such that 

                                              o j[,kco# + o j¬,k,­co# ≤ ‖� jk��� + ��c‖#                                          (2.3) 

            for all c ∈ K; jk���<. 
Note that it is convenient to introduce a periodic hyperfinite approximation in configuration space. Under this 

approximation, the momentum space variable _ = �`a, `�, `b� ∈ ℝ5 ∗ 4#W is replaced by a discrete variable _ ∈ Γ«b 

                                          Γ«b = ?_ = �`a, `�, `b�|`> = �²7³« , 8> ∈ ℤ; � = 1,2,3 ∗ O 

with · ∈ ℝ5 ∗ 4(# \ ℝ5 ∗ +,-(# . Thus we define ℱ«#, the Fock space for volume ·b as  

                                          ℱ«# = ℭ J¸�#�Γ«b�L = ℂ ∗ #⨁¸�#�¹«b�⨁º¸�#�¹«b�⨂]¸�#�Γ«b�» ∙∙∙ 
We identify ℱ«# with the subspace of ℱ # consisting of piecewise constant functions which are constant on each 

cube of volume �2�/·�bp cantered about a lattice point 

                                                         º_a, … _p» ∈ Γ«b × Γ«b × ∙∙∙ × Γ«b = Γ«bp. 
The periodic annihila�on and crea�on operators w�_� and w∗�_� can be extended from ℱ«# to ℱ # by 

the formulas 



              w«�_� = J «
�²Lb/� H���- � �#¸a²/«x²/« ���- � �#¸�²/«x²/« ���- � �#¸b²/«x²/« w�_ + ¼�N,                     (2.4)          

              w «∗ �_� = J «
�²Lb/� H���- � �#¸a²/«x²/« ���- � �#¸�²/«x²/« ���- � �#¸b²/«x²/« w∗�_ + ¼�N.                  (2.5)                   

Therefore the periodic field �k,«# ��� and the periodic Hamiltonian  jk,«��� can be extended to act on ℱ # by the 

formulas 

                 �k,«# ��� = �2·�xb/����- ∑ ���-exp�−�〈_, �〉��w∗�_� + w�−_��;q�_�<xa/�_∈½¾¿ ,|_|�k ,  (2.6) 

                                                       jk,« =  j[,k,« +  j¬,k,« ,                                                                           (2.7)    

                          j¬,k,« = ���- � ���- � ���- � �k,«#
 (�)«/�x«/�«/�x«/�«/�x«/� �#b�,                                               (2.8)    

                                         j[,k,« = ���- � w∗(_) |_|�k w(_)q(_«)�#b`                                                       (2.9)    

with _À, a lattice point infinite close to _, 
                                                          _À ∈ Γ«b, ‖_ − _À‖ ≤ ²

« ≈ 0.                                                              (2.10)   

Remark 2.1 Note the absence of a · in the w(_) and w∗(_) in (2.1.9). On ℱ«#, this definition of  j[,k,« agrees 

with the standard definition  

                                                                  ���- ∑ w «∗ (_)w«(_)q(_ )._∈Á¾,|_|ÂÃ¿  

The operators  j¬,k,« and  jk,« are essentially self adjoint on C . ∗ ;j[,k,«<, and  

                                                     K; jk,«  < = K;j[,k,«< ∩ K;j¬,k,«<.                                                      (2.11)   

For all c ∈ K; jk,« <, 
                                               oj[,k,«co# + oj¬,k,«co# ≤ wo; jk,« + �<co#,                                      (2.12) 

where � depend on ·. On ℱ«#, the operator j¬,k,« has a #-compact resolvent. We want to approximate j¬,k(�) 

by operators with #-compact resolvents on ℱ«#, so we define 

                                jk(�, ·) = j[,k,« + ���- � ∶ �k,«#
 (�)�(�)�#b� ℝ ∗ �#¿ =                                          (2.13) 

                                                                  = j[,k,« + j¬,k(�, ·). 
As in chapter I sect. we can show that jk(�, ·), and j¬,k(�, ·) are essentially self-#-adjoint on C . ∗ ;j[,k,«<, 
and that 

                                               K(jk(�, ·) ) = K;j[,k,«< ∩ K Jj¬,k(�, ·)L.                                            (2.14)   

Furthermore, for all c ∈ K(jk(�, ·) ), 
                                    oj[,k,«co# + oj¬,k(�, ·)co# ≤ w‖(jk(�, ·) + �)c‖#.                                  (2.15) 



In this case both � and · serve as volume cutoffs, and the constant � = �(�, ·) can be chosen independently of · for fixed �. On the space ℱ«#, the operator jk(�, ·) has a #-compact resolvent. Our hamiltonians are semi-
bounded and for each Ä >  0, there is a constant � such that 

                                                              0 ≤ Äj[,k + j¬,k(�) + �,                                                               (2.16) 

                                                              0 ≤ Äj[,k,« + j¬,k,« + �,                                                                (2.17) 

                                                               0 ≤ Äj[,k,« + j¬,k(�, ·) + �,                                                       (2.18) 

see chapter I sect.18. In (2.18), the � can be chosen to be independent of ·. Taking Ä = 1/2, we have 

                                                                 
a
� j[,k ≤ j¬,k(�) + �,  

which implies that for all c ∈ K Å;jk(�)<~� Æ, 
                                                 Çj[,ka/�cÇ# ≤ √2 Ç;jk(�) + �(n)<a/�cÇ#.                                            (2.19) 

Here we must choose �(n) at least|�k(2�)|, where �k(2�) is the vacuum energy for the cut-off 2�. 

3. The existence of a vacuum vector È©,ª for ¨©(ª)                                                                                             

In this section we prove the existence of a vacuum vector Ωk,­ for jk(�). Since the Hamiltonian jk(�) is 

bounded from below, we can define the vacuum energy �k,­ ≜ �(n, �) to be the infimum of the spectrum of jk(�) and we also refer to �k,­ as the lower bound of jk(�). We show that �k,­ is an isolated point in the 

spectrum. In a relativistic theory, the gap between the ground state and the first excited state is the mass of the 
interacting particle. For this reason we say that jk(�) has a mass gap. A vacuum vector Ωk,­ is defined as a 

normalized eigenvector of jk(�) corresponding to the eigenvalue �k,­.  

                                            jk(�)Ωk,­ = �k,­Ωk,­, oΩk,­o# = 1.                                                              (3.1)                                         

Theorem 3.1 There is exists a vacuum vector Ωk,­ for Hamiltonian jk(�). For any Ä >  0,Ä ≈ 0 the 

operator jk(�), restricted to the spectral interval  ¥�k,­, �k,­ + v[ − Ä¦ is #-compact.                                                                            

Theorem 3.2 The approximate Hamiltonian jk,«(�), has a vacuum vector È©,ª,À. Any hyperinfinite sequence of 

volumes ÀÊ tending to hyperinfinity ∞ ∗  has a hyperinfinite subsequence ·Ë , ¸ ∈ ℕ ∗  such that #-limit 

 .                                                         Ωk,­ = #-limË→ . ∗ Ωk,­,«Î                                                                      (3.2) 

exists and satisfies (3.1).                                                                                                                                                

Remark 3.1 Let �k,­,« be the lower bound of  jk,«(�) on ℱ«#. Since  jk,«(�) has a #-compact resolvent on ℱ«#, 

there is a vacuum vector Ωk,­,« for jk,«(�) ↾ ℱ«#. We now see that �k,­,« is the lower bound for  jk,«(�) on ℱ«#, 

so that  Ωk,­,« is a vacuum vector for jk,«(�).                                                                                                                                                

Remark 3.2 Let  ℱ«#Ð be the orthogonal complement of ℱ«#. Since  jk,«(�) leaves  ℱ«# invariant and is self-#-adjoint,  jk,«(�) also leaves  ℱ«#Ð  invariant.                                                                                                                                                               

Theorem 3.3 The lower bound of  jk,«(�) on ℱ«# is �k,­,« + v[, where v[, is the rest mass of the Fock space 

bosons.                                                                                                                                                                                     
Remark 3.3 Theorem 3.3 shows that Ωk,­,« is a vacuum for  jk,«(�).                                                                             

Proof We have an orthogonal decomposition in the single particle space  

                                                             ℱa# = '�#; ℝ ∗ 4#b< =  ℱa«# ⨁ ℱa«#Ð.                                                        (3.3) 



Here  ℱa«# =  ℱa# ∩  ℱ«# consists of functions piecewise constant on intervals cantered at lattice points. Thus we 
may write 

                                               ℱ # = ���-⨁pZ[. ∗  ℱ #(p),  ℱ«#Ð = ���-⨁pZa. ∗  ℱ #(p),                                                 (3.4) 

where  ℱ #(p) consists of vectors with exactly Ñ particles from  ℱa«#Ð and  

                                                   ℱ #(p) = (���- ℱa«#Ð⨂] ∙∙∙ ⨂] ℱa«#Ð)⨂] ℱ«#                                                       (3.5) 

In this tensor product decomposition there are Ñ factors ℱa«#Ð. The Hamiltonian   jk,«(�) leaves each subspace 

 ℱ #(p) invariant, and on  ℱ #(p) we have  jk,«(�) = �⨂S + P ⊗ �, where S =  jk,«(�) ↾  ℱ«# and P is a sum of Ñ copies of j[,k,« each acting on a single factor  ℱa«#Ð. Since  

                                                                         Ñv[ ≤ P,                                                                                    (3.6) 

the Theorem follows from this decomposition.                                                                                                                 
Theorem 3.4 For · ≤ ∞ ∗ , and for � sufficiently large we have 

                                     K;j[,k < ⊂ K ¡j[,k
~� ¢ ∩ K(ik ) ⊂ K; jk,«(�) + �<,                                            (3.7) 

                                                 K;j[,k < ⊂ K J¥(ik + �)xa; jk,«(�) + �<¦#xL.                                               (3.8)  

Here we denote by S#x #-closure of the operator S.                                                                                                      
Proof We take � large enough so that  jk,«(�) + � is positive, see (2.1.18).  By (1.9) and (2.14) we get 

                K;j[,k < ∩ K(ik�) ⊂ K;j[,k < ∩ K J j¬,k,«(�)L = K J jk,«(�)L ⊂ K Å; jk,«(�) + �<~�Æ.  
Thus for all c ∈ K;j[,k < ∩ K(ik�), 
                               Ô; jk,«(�) + �<~�cÔ#

� = 〈c, ; jk,«(�) + �<c〉# ≤ 〈c, ; jk,« + �<c〉# +    

                                                     +o(ik + �)xa j¬,k,«(ik + �)xao#‖(ik + �)c‖#� .  
Since ; jk,«(�) + �<~� is a #-closed operator, we can extend this inequality by #- continuity. As ik  and  j[,k,« 

commute, the inequality extends by #-continuity to all c ∈ K Jj[,ka/�
 
 L ∩ K(ik ) ⊃ K;j[,k <. The proof of (3.8) is 

similar.                                                                                                                                                                          
Theorem 3.5 Let ! be non-real or real and sufficiently negative. Then as · tends to hyper infinity ∞ ∗ , 

                                    Ç; jk,«(�) − !�<xa − ( jk(�) − !�)xaÇ# = Ö(·xa).                                                 (3.9)  

Proof Let us fix � and ! and suppress � when possible. In chapter I sect 16 we have shown that  jk(�) is 

essentially self-#-adjoint on � . ∗ ; j[,k<. Thus vectors of the form × = ( jk − !�)c, c ∈  � . ∗ ; j[,k<, are #-dense in ℱ #. On these vectors 

                 ?; jk,« − !�<xa − ( jk − !�)xaO × = ; jk,« − !�<xaº( jk − !�)c − ; jk,« − !�<c» = 

                 = ; jk,« − !�<xa; jk −  jk,«<( jk − !�)xa× =  



                 = ; jk,« − !�<xa(ik + �)(ik + �)xa; jk −  jk,«<(ik + �)xa(ik + �)( jk − !�)xa ×. 
For m ∈  ℱ #, 
                                       I〈m, ?; jk,« − !�<xa − ( jk − !�)xaO ×〉#I ≤                                                     (3.10) 

                ≤ Ç(ik + �); jk,« − !̅�<xaÇ# ∙ ‖m‖# ∙ o(ik + �)xa; jk −  jk,«<(ik + �)xao# ×  

                × ‖(ik + �)( jk − !�)xa‖#‖×‖# ∙  
Using (2.15), we find that Ç(ik + �); jk,« − !̅�<xaÇ# is bounded uniformly in ·, since 

                                   Ç(ik + �); jk,« − !�̅<xacÇ# ≤ const ∙ Ç;j[,k,« + �<; jk,« − !�̅<xacÇ# ≤ 

                                       ≤ const ∙ Ç jk,«; jk,« − !�̅<xacÇ# + const ∙ Ç; jk,« − !̅�<xacÇ#, 

where the constants can be chosen independently of ·. By a similar consideration, the orthogonal decomposition 

(3.3) shows that (ik + �); jk,« − !�<xa
 is a bounded operator. Thus from (3.10), and the fact that the × are #-dense, we infer 

               Ç; jk,« − !�<xa − ( jk − !�)xaÇ# ≤ const ∙ o(ik + �)xa; jk −  jk,«<(ik + �)xao#  (3.11) 

with a constant independent of  ·. The difference  jk −  jk,« = ; j[,k −  j[,k,«< + J j¬,k(�) −  j¬,k,«(�)L                        

and for infinite large ·, 

                             o(ik + �)xa/�; j[,k −  j[,k,«<(ik + �)xao# = Ö(·xa).                                                   (3.12) 

This is a simple direct computation, using |q(_«) − q(_ )| = Ö(·xa). For the interaction terms, we use (1.10) 
to estimate 

                     Ç(ik + �)xa/� J j¬,k(�) −  j¬,k,«(�)L (ik + �)xaÇ# = Ö(·xa).                                  (3.13) 

The kernel � (_a, … , _
) corresponding to a monomial in  j¬,k(�) is  

    � (_a, … , _
) = J
pL ∏ m;o_po, n<¥q;_p<¦xa/�� 
pZa J`a(a) + `�(a) + ` b(a) + `
(a)
 , … , `a(b) + `�(b) + ` b(b) +

`
(b) L,  
0 ≤ Ñ ≤ 4.  The kernel �«(_a, … , _
) ) for the corresponding monomial in j¬,k,«(�) is obtained by replacing the 

factor ∏ m;o_po, n<¥q;_p<¦xa/�
pZa  by the factor ∏ m;o_p«o, n<¥q;_p«<¦xa/�
pZa . Inspection of the difference 

� (_a, … , _
) −  �«(_a, … , _
) shows that ‖� (_a, … , _
) −  �«(_a, … , _
)‖Ù�#  = Ö(·xa).as · → ∞ ∗ , from 

which we conclude that (3.13) is Ö(·xa). The #-convergence of the resolvents follows from (3.11)-(3.13). The #-limit 

                                                                          �k,­,« →# �k,­ 

follows from the #-convergence of the resolvents, since for large positive �,   
                                                     ;�k,­,« + �<xa = Ç; jk,«(�) + �<xaÇ#.  



Proof of the theorems 3.1 and 3.2 Let @(�) be a #-smooth positive function with support in the interval   �−Ä, v[ − Ä�. Then @; jk,«(�) − �k,­,«< ↾  ℱ«#   is #-compact, since the resolvent of  jk,«(�) ↾  ℱ«#is 

#-compact on ℱ«#. By Theorem 3.3, @; jk,«(�) − �k,­,«< ↾ ℱ«#Ð = 0 and therefore    #-compact on the full Fock 

space ℱ«#. By Theorem 3.5, the resolvent ; jk,«(�) − �k,­,« − !<xa
 #-converge in #-norm as · → ∞ ∗ , and 

therefore 

                                                o@; jk,«(�) − �k,­,«< − @; jk(�) − �k,­<o# →# 0,    
 since @; jk(�) − �k,­< is a bounded function of ; jk(�) − �k,­ − !<xa

 which vanishes at hyper infinity. Since 

the uniform #-limit of #-compact operators is #-compact,  jk(�) restricted to the spectral interval �−Ä, v[ − Ä� 
is #-compact. This means furthermore that only a finite or hyperfinite number of eigenvalues of  jk,«(�) #-converge to �k,­.  Theorem 3.6 shows that the projection onto the corresponding set of eigenvectors of 

 jk,«(�) #-converge as · → ∞ ∗ . Since Ωk,­,« is an eigenvector of @; jk,«(�) − �k,­,«< a hyperinfinite 

subsequence of the Ωk,­,« #-converge to a #-limit as · → ∞ ∗ . For this #-limit  

                                           ;�k,­ + �<xaΩk,­ = #- limË→ . ∗ ;�k,­,«Î + �<xa Ωk,­,«Î = 

                                        = #- limË→ . ∗ ; jk,«Î(�) + �<xa Ωk,­,«Î = ( jk(�) + �)xaΩk,­ 

by Theorem 3.5. Hence Ωk,­ ∈ K; jk(�)<,  jk(�)Ωk,­ = �k,­Ωk,­ and Ωk,­ is a vacuum vector for jk(�).  In 

the following section we will see that Ωk,­ and Ωk,­,«  are unique except for an arbitrary phase 

multiple ���-exp(�m), and that there is a natural choice for this arbitrary phase. With this choice, we then will 
prove that the Ωk,­,«  #-converge to Ωk,­ as · → ∞ ∗ .   

4. Uniqueness of the vacuum.                                                                                                                                          
In this subsection we prove the uniqueness of a vacuum vector Ωk,­ for jk(�).                                                

Theorem 4. 1 The vacuum vector Ωk,­,« for  jk(�) is unique.                                                                                     

Remark 4.1 In other words �k,­, the lower bound of  jk(�) is a simple eigenvalue.                                          

Definition 4.1 Let ℋ# = '�#(Û, �#q) be a non-Archimedean Hilbert space. We say that a bounded operator S: ℋ# → ℋ# has a strictly positive kernel provided that 

                                                                         〈c, S×〉# > 0                                                                              (4.1) 

whenever c and × are non-negative '�# functions with non-zero #-norms. Such an operator transforms a 
function × ≥ 0, ‖×‖# ≠ 0 into a function S× which is strictly positive #-almost everywhere.                                                 

Definition 4.2 Let ℋ# = '�#(Û, �#q) be a non-Archimedean Hilbert space. We say that a bounded operator S: ℋ# → ℋ# has a positive, ergodic kernel if for each c, × as above 〈c. S×〉 ≥ 0 and 

                                                                           〈c, Sp×〉# > 0                                                                          (4.2) 

 for some Ñ, depending on c and ×. Clearly every S with a strictly positive kernel has a positive, ergodic kernel.                                                                                                                                    

Theorem 4.2 Let S have a positive ergodic kernel, and suppose that ‖S‖# is an eigenvalue of S. Then ‖S‖#  is a simple eigenvalue and the corresponding eigenvector can be chosen to be a strictly positive function.                                     
Proof Since S maps positive functions into positive functions it also maps real functions into real functions. If   c ∈ ℋ# satisfies Sc = ‖S‖# ∙ c, then so do Rec and Imc. Therefore without loss of generality we may 

assume that c is real. Since oSpo# = ‖S‖#p , and Spc = ‖S‖#p ∙ c, we infer that 

                                               oSpo# ∙ ‖c‖#� = 〈c. Spc〉# ≤ 〈|c|, Sp|c|〉# ≤ ‖à‖#Ê ∙ ‖c‖#� , 
                                                                        〈c. Spc〉# = 〈|c|, Sp|c|〉#. 



    Writing now c = c( −  cx, where c( and  cx are the positive and negative parts of c, 

                                   〈c(, Spc(〉# − 〈c(, Spcx〉# − 〈cx, Spc(〉#+〈cx, Spcx〉#= 

                                     = 〈c(, Spc(〉# + 〈c(, Spcx〉# +〈cx, Spc(〉#+〈cx, Spcx〉#     

or 

                                                        〈c(, Spcx〉# + 〈cx, Spc(〉# = 0.                                                              (4.3) 

Unless c( = 0 or cx = 0, each term of (4.3) could be made strictly positive by choosing an appropriate Ñ. Thus 
either c( or  cx must vanish, and we may choose the eigenvector c to be non-negative. If × ≥ 0, ‖×‖# ≠ 0, 

then for some integer  Ñ , 0 < 〈×, Spc〉# = ‖S‖#p ∙ 〈×, c〉#. This proves that ×c is not zero almost everywhere, 

and that c is strictly positive #-almost everywhere. Finally, if c and × were linearly independent eigenvectors 
of S with the eigenvalue ‖S‖#, then we could repeat the above argument with the component of × orthogonal to c. This would yield two positive, orthogonal eigenvectors, which would be impossible, and the proof is 
complete.                                                                                                                                                               
Remark 4.2 Let �k#(ℎ) = ���- � �k#(�)ℎ(�) ℝ ∗ �#â �#b�  denote the smeared, time zero free field operators. The 

spectral projections of the �k#(ℎ), or the functions ���-exp (��k#(ℎ)) generate a maximal abelian algebra ℳ# of 
bounded operators on ℱ #. Let Û be the spectrum of the algebra ℳ#. The no particle vector Ω[ ∈  ℱ # is a cyclic 

vector for 'DR, namely  ℱ # = #-(ℳ#Ω[)äääääääääää. Therefore we may introduce a #-measure �#q on Û so that ℱ # is 

unitarily equivalent to '�#(Û, �#q) and so that the equivalence carries ℳ# into ' . ∗#  and takes Ω[ into the 

function 1.                                                                                                                                                                             

Theorem 4.3 With ℱ # represented as '�#(Û, �#q), ���-exp;− j[,k< has a positive, ergodic kernel.                                      

Proof Let c and × be non-negative. Write c = ca + c�, where ca is the component of  c along Ω[. Thus the 'a# #-norm of  c is given by ‖c‖#a = 〈c, Ω[〉# = 〈ca, Ω[〉#. Note ‖c‖#a ≠ 0 whenever c is non-zero, and o���-exp;− �j[,k<c�o#a ≤ ;���-exp(−�v[)<‖c�‖#a, where v[ is the boson mass. Thus 

                    〈c, ���-exp;−�j[,k<×〉# ≥ ‖c ‖#a ∙ ‖× ‖#a − ‖c�‖#a ∙ ‖×�‖#a;���-exp(−�v[)<.                   (4.4) 

By choosing t sufficiently large, (4.4) is positive, which proves (4.2).  If the following inequality holds 

                                  ���-exp(−�v[) < a
�

‖å ‖#~∙ ‖æ ‖#~‖å�‖#~∙ ‖æ�‖#~ = a
�

‖å ‖#~∙ ‖æ ‖#~
;‖å‖#�x‖å‖#~� <~/�;‖æ‖#�x‖æ‖#~� <~/�                             (4.5)                                       

then 

                                                   〈c, ���-exp;−�j[,k<×〉# ≥ a
� ‖c ‖#a ∙ ‖× ‖#a.                                                (4.6) 

We need to show that 〈c, ���-exp;−�j[,k<×〉# > 0 for all finite �. In fact, it is sufficient to prove this for a #-dense set of non-negative c and ×. Let us consider an approximate free energy operator 

                                                    j[,k,« = ���- � w  ∗(_)w (_)q(_«)�#b` |_|�k .                                                  (4.7) 

For vectors c ∈  � . ∗ ; j[,k<, as · → ∞ ∗ . o j[,k,«c −  j[,kco# →# 0. Since  j[,k is essentially self-#-adjoint 

on  � . ∗ ; j[,k<,  the resolvents of  j[,k,« converge strongly [18, p. 429]. Thus the generalized semigroup #-convergence  theorem [18, p. 502] ensures that for all c ∈ ℱ #  

                                                 o���-exp;−�j[,k,«<c − ���-exp;−�j[,k<co# →# 0           

as · → ∞ ∗ , and the #-convergence is uniform on #-compact sets of �. Therefore we need only show that for a #-dense set of non-negative c and ×  〈c, ���-exp;−�j[,k,«<×〉# ≥ 0. Let ç(�a, … , �7) be a non- negative, 

hyper infinitely #-differentiable function with #-compact support, and let 



                                                             c = ç;�k#(@a), … , �k#(@7)<Ω[,                                                              (4.8)  

where @a, … , @7 are real. The set of all such vectors are #-dense in  ℱ #(, the non-negative vectors in ℱ #. 
Furthermore, we define 

                                                      ck,« = ç J�k,«# (@a), … , �k,«# (@7)L Ω[,                                                          (4.9) 

where �k,«# (@a) is defined by restricting the sum in (2.6) to those 

                                                                    _ ∈ Γk,«b = Γ«b ∩ �_||_| ≤ n .  
Then ck,« ∈ ℱk,«#( ⊂ ℱ #(  where ℱk,«#( is the Fock space corresponding to the modes _ ∈ Γk,«b . For any vector 

× ∈  � . ∗ ; j[,k< 

                                                              o�k,«# �@ �× −  �k#�@�×o# →# 0, as · → ∞ ∗ , 

and as � . ∗ ; j[,k< is a #-core for  �k#�@�, the resolvents of �k,«# �@ � #-converge strongly to the resolvent of  �k#�@�. [18, p. 429]. Thus the generalized semigroup #-convergence theorem [19] ensures that for each × ∈  ℱ #, è real 

                                           Ç���-exp J�è�k,«# �@ �L c − ���-exp��è �k#�@��cÇ# →# 0, as · → ∞ ∗ ,         

and the #-convergence is uniform for #-compact sets of è. By (4.9) 

                                           ck,« = ���- � çé�èa, … , è7� H� ∑ ���-exp Å�è�k,«# J@p LÆ7pZa N �#èa ∙∙∙ �#è7 , 
and çé�èa, … , è7� vanishes rapidly at hyper infinity, so we conclude that 

                                                                ock,« − co# →# 0, as · → ∞ ∗ .        

Thus for such vectors c, ×,   
                                      〈c, ���-exp;−�j[,k<×〉# = #- lim«→ . ∗ 〈ck,« , ���-exp;−�j[,k,«<×k,«〉# 

and we need only show that 

                                                             〈ck,« , ���-exp;−�j[,k,«<×k,«〉# ≥ 0.                                                  (4.10) 

However on ℱk,«#  

                                     j[,k,« = ���- ∑ w «∗ �_�w«�_�q�_ � = ���- ∑  j[,k,« ,_∈ÁÃ,¾¿_∈½ê,ë¿  

so ���-exp;−�j[,k,«< = ���- ∏ exp;−�j[,k,«<._∈ÁÃ,¾¿  It easily verify by explicit computation that each operator 

exp;−�j[,k,«< have a strictly positive kernel, so (4.10) holds and the proof is complete.                                                                                        

Theorem 4.4 With ℱ # represented as '�#�Û, �#q�, the operator ���-exp;−jk���< has a positive, ergodic 

kernel.                                                                                                                                                                                        

Remark 4.3 We expect that ���-exp;−j[,k< and ���-exp;−jk���< have strictly positive kernels.                           

Proof As in Theorem 4.3, formula (4.7), we consider jk,«��� = j[,k + j¬,k,«���. The approximate interaction 

j¬,k,«��� is constructed with �k,«#  in place of �k#. Since � . ∗ ; j[,k< is a #-core for jk���, we can argue as in the 

previous theorem that for all c ∈ ℱ # 



                                       ���-exp J−�jk,«(�)L c →# ���-exp;−�jk(�)<c, as · → ∞ ∗ .         

Thus we need only prove that for c, × as in Theorem 4.3  

                                                 0 < Ä < 〈ck,« , ���-exp J−�jk,«(�)L ×k,«〉#.                                                 (4.11) 

and that for sufficiently large �, the constant Ä = Ä(c, ×, n, · ) can be chosen independently of n and ·. On ℱk,«#  

we have an explicit representation of ���-exp J−�jk,«(�)L given by generalized Feynman-Kac integral 

formula 

                                                       〈ck,« , ���-exp J−�jk,«(�)L ×k,«〉# =                                                      (4.12) 

                         ���- � ���-exp J− H���- � j¬,­,k,«;ì(è)<í[ �#�NL ck,«;ì(0)< îÃ,¾ ×k,«;ì(�)<K#ì(∙). 
Here ì(è) denotes a points in the spectrum of the modes 

                                                   ì«(_) = w« (_) + w« (_) + w «∗  (_) + w «∗  (−_) 

                                                   ì«� (_) = w« (_) − w« (−_) + w «∗  (_) − w «∗  (−_) 

for _ ∈ Γk,«b = �_|_ ∈ ¹«b ∧ |_| ≤ n , and Ck,« is the path space for these modes. Since ���-exp;−�j[,k< has a 

strictly positive kernel, (4.12) exhibits ���-exp J−�jk,«���L explicitly as an operator with a strictly positive 

kernel. Thus (4.11) is valid, and taking the #-limit as · → ∞ ∗  shows that  

                                                         〈c , ���-exp;−�jk���<× 〉# ≥ 0.                                                            (4.13)  

We now establish a uniform lower bound on Ä in (4.11) to prove that for � sufficiently large (4.13) is strictly 

positive. Given any positive ð we can split the integral (4.13) into two parts. Let Ck,«�a�
  be those paths such that 

the exponent in the Feynman-Kac formula satisfies − H���- � j¬,­,k,«;ì�è�<í[ �#�N ≥ −ð, and let Ck,«���
  be the 

complementary set of paths. Thus 

                〈ck,« , ���-exp J−�jk,«���L ×k,«〉# ≥ ;���-exp�−ð�<���- � ck,«;ì�0�< 
îÃ,¾�~� ×k,«;ì���<K#ì�∙� = 

  = ;���-exp�−ð�< ñ〈ck,« , ���-exp;−�j[,k,«<×k,«〉# − ���- � ck,«;ì�0�< 
îÃ,¾��� ×k,«;ì���<K#ì�∙�ò.            (4.14)                                                                                   

First we choose � by (4.5) so that (4.6) holds. Then for sufficiently infinitely large · (depending on �), 

               〈ck,« , ���-exp;−�j[,k,«<×k,«〉# ≥ a
� 〈c , ���-exp;−�j[,k<× 〉# ≥ a


 ‖c ‖#a ∙ ‖× ‖#a.     
Thus (4.14) becomes 

                                                     〈ck,« , ���-exp;−�j[,k,«<×k,«〉# ≥ 

≥ ���-exp�−ð� ó14 ‖c ‖#a ∙  ‖× ‖#a − ���- ô ck,«;ì�0�< 
îÃ,¾��� ×k,«;ì���<K#ì�∙�õ. 

Let ö÷�∙  denote the #-measure on path space, so that by the generalized Holder inequality                                                       

                       ø���- � ck,«;ì�0�< 
îÃ,¾��� ×k,«;ì���<K#ì�∙�ø ≤ Jö÷?�k,«���O L�ù}~�ù ock,«;ì�0�<×k,«;ì���<o#ú , 



where 1 < û < 2. By the smoothing property of ���-exp;−�j[,k,«< for sufficiently large � 

                                                 ock,«;ì(0)<×k,«;ì(�)<o#ú ≤ ock,«o#� × o×k,«o#� 

and for · sufficiently infinitely large, this is dominated by 2‖c ‖#� ∙ ‖× ‖#�. Thus with the choices so far made 
for ·, �, ð, 
〈ck,« , ���-exp J−�jk,«(�)L ×k,«〉# ≥ ���-exp(−ð) ó14 ‖c ‖#a ∙  ‖× ‖#a − 2‖c ‖#� ∙  ‖× ‖#� Jö÷?�k,«(�)O L(úxa)ú õ

≥ 

                                               ≥ a
ü ;���-exp(−ð)<‖c ‖#a ∙  ‖× ‖#a > Ä(c , × , �) 

provided in addition that 

                                                         ö÷?Ck,«(�) O ≤ J ‖å ‖#~∙ ‖æ ‖#~aý‖å ‖#�∙ ‖æ ‖#�L ù(ù}~).                                                            (4.15) 

We now show that for ð sufficiently large, (4.15) is satisfied and therefore theorem is proved.                          
Note that 

                ö÷?Ck,«(�) O = ö÷ ?ð ≤ ���- � j¬,k,­,«í[ ì(è)�#èO = ö÷ ?1 ≤ ðxa J���- � j¬,k,­,«í[ ì(è)�#èLO ≤ 

                                      ≤ ðx� þ���- � I���- � j¬,k,­,«í[ ì(è)�#èI� �#ì(∙) îÃ,¾ �.  
Replacing the integral over è by a #-limit of hyperfinite Riemann sums, we obtain a bound in terms of 
generalized Wiener integrals depending on a hyperfinite number of times. 

                           ö÷?Ck,«(�) O ≤ #- lim7→ . ∗  J í
7�L� H���- ∑ ���-7>,pZa � j¬,k,­,«ì Jí>

7L j¬,k,­,«ì Jíp
7 L �#ì(∙) îÃ,¾ N. 

By the definition of the generalized Wiener integral, this expression can be evaluated in terms of no-particle 
expectation values, and it equals 

                             #- lim7→ . ∗  J í
7�L� ���- ∑ 〈Ω[, º���-exp;−|� − Ñ|�j[,k/8<» ∙ j¬,k,­,«Ω[〉#.7>,pZa  

By the generalized Schwarz inequality 

                                                           ö÷?Ck,«(�) O ≤ J í
�L� oj¬,k,­,«Ω[o#

� ≤ Jí�Ã� L�
 

for some constant Kk independent of  ·. Thus we choose 

                                                                    ð ≥ K� Jaý‖å ‖#~∙ ‖æ ‖#~aý‖å ‖#�∙ ‖æ ‖#�L ù(ù}~). 
Combining Theorem 4.4 with Theorem 4.2 yields a proof of Theorem 4.1. Clearly the same proof applies to jk,«(�), to show that its vacuum is unique. 

Corollary 4.5. Let Ωk,­,« be the vacuum for jk,­,«, with its phase determined by the requirement  

                                                                          〈Ω[, Ωk,­,«〉# > 0.                                                                    (4.16)  

Then #- lim«→ . ∗  Ωk,­,« = Ωk,­ exists, Ωk,­ is the vacuum for jk,­, and  



                                                                            〈Ω[, Ωk,­〉# > 0.                                                                    (4.17)    

Proof A hyper infinite sequence Ωk,­,«� with ·p → ∞ ∗   has a #-convergent hyper infinite subsequence by 

Theorem 4.2, #-converging to a vacuum for  jk,­. The phase (4.16) fixes the phase (4.17) so every #-convergent hyper infinite subsequence has the same #-limit  Ωk,­. Thus the Ωk,­,« #-converge to Ωk,­, as 

required.                                                                                                                                                               
Corollary 4.6 The vacuum Ωk,­ is a cyclic vector for ℳ.                                                                                           

Proof The function Ωk,­ is positive for #-almost all ì ∈ Û#, and ℳ =  ' . ∗# (Û#) in the '�#(Û#, �#@) 

representation of  ℱ #.  

5. The Heisenberg picture field operators                                                                                                                                           
In the Heisenberg picture operators have the time dependence 

                                  S(�) = ���-exp;�� jk(�)<S(0)���-exp;−� �jk(�)<                                                   (5.1)                                         

This definition of the dynamics contains the cut-off function �(�) explicitly. For an important class of operators S(0), however, S(�) is independent of �(�)  provided that �(�) = �, the coupling constant, on a suitably large 
set. For example, we take S(0) to be an observable representing a measurement performed in some 3-
dimensional region P ⊂ ℝ ∗ 4#b of space (at time � =  0). Then S(�) represents the same measurement performed 

at time �. A Hamiltonian with a hyperfinite ultraviolet cut-off  n ∈ ℝ ∗ 4(# \ ℝ ∗ +,-(# , such as  jk(�), propagates 
information with at most the speed of light. Therefore if �(�) = � on a region containing P, and � is sufficiently 
small, the fact that �(�) does not equal � everywhere will never be recorded by a measurement S(�). For each 
localized observable S(0) and each  �, we make an appropriate choice for �(�). Therefore (5.1) provides the 
correct dynamics for the (�
)
 quantum field theory with the cut quantum field theory with the cut-off removed. 
In this section we consider the quantum field operators �k#(�, �) or  ℝ ∗ 4#
 

                                                      �k#(@) = ���- � �k#(�, �) ℝ ∗ �#â �#b��#�.                                                         (5.2)                                         

We see that integration helps in (4.2) because �k#(@) is an operator while �k#(�, �)  is a bilinear form. Actually 
the time integration is not required and for real @, 
                                                          S(�) = ���- � �k#(�, �) ℝ ∗ �#¿ �#b�                                                              (5.3)                                         

is also a self-#-adjoint operator depending #-continuously on �. We expect that this is a special feature of the 
two dimensional model we are considering and that sharp time fields will not be operators in four dimensions. 
For this reason, basic physical concepts have been formulated in terms of the time averaged fields (5.2) rather 
than the sharp time fields (5.3). For example, Wightman's axioms for a quantum field theory are expressed in 
terms of the opera tors (5.2), and we will show that many of his axioms are satisfied for our model. The time 
integration in (5.2) presents some new difficulties (for example in the proof of self-#-adjointness or of locality) 
which would not occur if we considered only the sharp time operators (5.3). An advantage of the time averaged 
field is that products �(@a) ∙∙∙ �(@7) can be defined on vectors with finite energy (Corollary 6.5). In fact we will 
construct a dense domain which the localized field operator �(@) leaves invariant, and on which p(f ) is essen-
tially self-#-adjoint for real @. 
6. An invariant domain for localized quantum fields.                                                                                                                              
In this section we study the Heisenberg picture field localized in a 4-dimensional region of space time ℬ. We 
find that �k#(�, �) is a bilinear form and that for real @, �k#(@) is a #-densely defined symmetric operator. We 
start with the region B, a bounded open subset of space time. We require that  jk(�) be a Hamiltonian for ℬ. 
This means that the spatial cut-off �(�) equals the coupling constant � on a sufficiently large interval to contain 
the domain of dependence of  ℬ. In other words, assuming that the velocity of light is one, for every point  (�, �) ∈ ℬ, 
                                                          �(�) = �, if  ‖� −  �‖ < �.                                                                     (6.1)                                         



It is convenient to deal with the field  

                                            �k,­# (�, �) = ���-exp;�� jk(�)<�k#(�)���-exp;−� �jk(�)<       

and its time #-derivative  

                               �k,­# (�, �) = ���-exp;�� jk(�)<�k#(�)���-exp;−� �jk(�)< = �#�k,­# (�, �) �#�⁄ .                         
The time zero fields �k#(�) and its conjugate momentum �k#(�) were defined in chapter I. We shall see that for (�, �) ∈ ℬ, �k,­# (�, �) is independent of �, and equals the field �k#(�, �). Thus all the cut-offs have been removed 

in the definition of �k#(�, �). For each � . ∗ -function @(�, �) with support in ℬ, we show that  

                                                    �k#(@) = ���- � �k#(�, �)@(�, �) ℝ ∗ �#â �#b��#�                                                (6.2)                                         

is an operator whose domain contains 

                                                        Kk,­# = � . ∗ ; jk(�)< = ⋂ K;jk7(�)<,. ∗7Z[                                                   (6.3) 

In fact Kk,­#  is an invariant domain, i.e. 

                                                                          �k#(@)Kk,­# ⊂ Kk,­# ,                                                                    (6.4) 

so that Kk,­# ⊂ � . ∗ ;�k#(@)<. We note that this invariant domain may depend on the region ℬ in which the field 

�k#(@) is localized. For c ∈ Kk,­#  the expectation values 

                                                                〈c, �k#(�a, �a) ∙∙∙ �k#(�7 , �7)c〉#                                                         (6.5)   

is ℂ ∗ 4#
- valued Schwartz distribution in 	#�(ℬ ×∙∙∙× ℬ). If @(�, �) is a function in {#( ℝ ∗ 4#
), then �k,­# (@) still 

is defined on Kk,­# and leaves it invariant. The expectation values (6.5) of  �k,­# (�, �) are tempered distributions in 

{#�( ℝ ∗ 4#
). However, the fields �k,­# (@) may depend on �.                                                                                                      

Lemma 6.1. The field �k,­# (�, �) is a bilinear form on K;( jk(�) + �)a/�< × K;( jk(�) + �)a/�<  

#-continuous in � and �. Namely for c ∈ K J( jk(�) + �)~�L , 〈c, �k#(� , � )c〉# is a #-continuous function. 

Furthermore 

          I���- � 〈c, �k#, �(� , � )c〉# 
#
#¤³ @(�) ℝ ∗ �#¿ I ≤ const ∙ ‖@‖#�〈c, ( jk(�) + �)c〉#, � = 1,2,3.                   (6.6)    

Proof The free field �k#(� , 0 ) is the sum of two expressions of the form (1.8). The kernels m(_, n)�(_) are in '�# . Furthermore we have m(_, n)�(_)�q(_)�xa/� ∈ '�#. The estimate (1. 9) has been generalized to cover such 
kernels, giving us  

               Ç; j[,k + �<xa/��k,­# (� , 0 ); j[,k + �<xa/�Ç# ≤ const ∙ om(_, n)�(_)�q(_)�xa/�o# < ∞ ∗  .          (6.7)       

Thus for c ∈ K J( jk(�) + �)~�L,  ���-exp;−�� jk(�)<c ∈ K J( jk(�) + �)~�L ⊂ K;j[,ka/�<, by (2.19) and 

therefore 〈c, �k,­# (� , � )c〉# = 〈���-exp;−�� jk(�)<c, �k,­# (� , 0 )���-exp;−�� jk(�)<c〉# is defined and  

                   �〈c, �k,­# (� , � )c〉#� ≤ const ∙ om(_, n)�(_)�q(_)�xa/�o# ∙ 〈c, ( jk(�) + �)c〉# 

Since  om(_, n)�(_)�q(_)�xa/�|_|�@�(_)o# ≤ om(_, n)�(_)�q(_)�xa/�|_|�o . ∗ ∙ ‖@‖#� ≤ const ∙ ‖@‖#� the 

inequality (4.2.6) holds. Let us write �¤³ , � = 1,2,3 for � to denote the dependence of � on �>. Then  



 o;�¤³ − ��³<m(_, n)�q(_)�xa/�o#� is a function of (�> − 
>) only and it #-tends to zero as |� − �|  →# 0.                                            
Since         

I〈c, J�k,­# (� , � ) − �k,­# (�, � )L c〉#I ≤ const ∙ Ç;� + j[,k <a/�cÇ#
� ∙ Ç;�¤³ − ��³<m(_, n)�q(_)�x~�Ç#� ≤                                                

                              ≤ const ∙ o( jk(�) + �)a/�co#
� ∙ Ç;�¤³ − ��³<m(_, n)�q(_)�x~�Ç#�                                   (6.8)                            

we have continuity with respect to �. Also 

                               Ç( jk(�) + �)~� J���-exp;−�� jk(�)< − ���-exp;−�è jk(�)<LÇ# →# 0  

as |� − è|  →# 0. Thus 

                                                            I〈c, J�k,­# (� , � )–�k,­# (�, è )L c〉#I ≤        

   ≤ const ∙ Ç;� + j[,k <a/� J���-exp;−�� jk(�)< − ���-exp;−�è jk(�)<L cÇ# ∙ Ç;�¤³<m(_, n)�q(_)�x~�Ç#� ×   

                    × ?Ç;� + j[,k <a/� J���-exp;−�� jk(�)<L cÇ# + Ç;� + j[,k <a/� J���-exp;−�è jk(�)<L cÇ#O ≤  

≤
const ∙ Ç( jk(�) + �)a/� J���-exp;−�� jk(�)< − ���-exp;−�è jk(�)<L cÇ# ∙ Ç;�¤³<m(_, n)�q(_)�x~�Ç#� ×   

          × o( jk(�) + �)a/�co# →# 0                                                                                                                 (6.9)        

 as |� − è|  →# 0.   
From (6.8)-(6.9) we see that �k,­# (� , � ) is jointly #-continuous in � and �. Probably �k,­# (� , � ) is a bilinear form 

on K;( jk(�) + �)b/�< × K;( jk(�) + �)b/�<  #-continuous in � and �, but our estimates are not strong 

enough to prove this. The functions @(�, �) in {+,-#     
 ( ℝ ∗ #
) determine bounded 

#-measures �#� =  @(�, �)�#b��#�, so �k,­# (@) = ���- � �k,­# (� , � ) @(�, �)�#b��#� is a bilinear form. If 

�#�7 →# �#�  in the weak topology for #-measures, then ���- � �k,­# (� , � ) �#�7 →# ���- � �k,­# (� , � ) �#�  in 

the weak sense that for c ∈ K;( jk(�) + �)a/�<   

                                   〈c, ���- � �k,­# (� , � ) �#�7 c〉# →# 〈c, ���- � �k,­# (� , � ) �#� c〉#.                            (6.10)        

We define also the sharp time field 

                                                   Sk,­# (�) = ���- � �k,­# (� , � ) @(�, �)�#b�                                                      (6.11) 

and 

                                                 Pk,­# (�) = ���- � �k,­# (� , � ) @(�, �)�#b�.                                                       (6.12) 

Lemma 6.2 Let function @(�, �) in {+,-#    ( ℝ ∗ #
) be real. Then Sk,­# (�) and Pk,­# (�) define self- #-adjoint 

operators, and their domains include K;( jk(�) + �)a/�<. With a constant E independent of �, 

                 oSk,­# (�)co# + oPk,­# (�)co# ≤ E�‖@(∙, �)‖#� + ‖K¤#@(∙, �)‖#� Ç( jk(�) + �)~�cÇ#,                 (6.13) 

for all c ∈ K;( jk(�) + �)a/�<.                                                                                                                                   

Proof It is sufficient to consider �k#(@í) = ���- � �k#(� ) @(�, �)�#b� in place of Sk,­# (�) and �k#(@í) =



���- � �k#(� ) @(�, �)�#b�  in place of Pk,­# (�), as they are unitarily equivalent by the unitary 

operator ���-exp;−�� jk(�)<, and this unitary leaves K;( jk(�) + �)a/�< invariant. The same is true for �k#(@í) By (2. 19) we have  

                              o(� + ik )a/�co#
� ≤ v[xa Ç;� + j[,k <a/�cÇ#

� ≤ 2v[xao( jk(�) + �)a/�co#
�
 

so we need only prove that  

                        ‖�k#(@í)c‖# + ‖�k#(@í)c‖# ≤ E�‖@(∙, �)‖#� + ‖K¤#@(∙, �)‖#� Ç(� + ik )~�cÇ#
 .                   (6.14) 

The lemma now follows from (1. 9). For example, �k#(@í) is the sum of two operators of the form (1. 8) with 

kernels �(_) = m(_, n)�(_)�q(_)�~�;���- �;���-exp(−�〈_, �〉)< @(�, �)�#b�<, satisfying the inequality 

                               ‖�‖#� = o(−K¤#� + v[�)a/
@(∙, �)o#� ≤ const ∙ (‖@(∙, �)‖#� + ‖K¤#@(∙, �)‖#�).  
The kernel for �k#(@í) can be bounded by the ‖@(∙, �)‖#� #-norm alone. The estimate (6.13) now follows from 

(6.14). The self-#-adjointness of  Sk,­# (�) and Pk,­# (�) can be proven by showing that �k#(@í) and �k#(@í) are self-#-adjoint. But (4.14) ensures  that every vector in ℱ# with a finite or hyperfinite number of particles is #-analytic for �k#(@í) and for �k#(@í), so these operators are essentially self-#-adjoint on the domain of vectors 
with a finite or hyperfinite number of particles. Hence they are uniquely determined by their definition on that 
domain.                                                                                                                                                                         
We now explain the sense in which the integral (6.12) #-converges, since we did not show that �k,­# (@í) was a 

bilinear form. If c ∈ K;( jk(�) + �)a/�<, then c ∈ K;( ik + �)a/�< and  

                                〈c, ���-� k#(_)c〉# = m(_, n)�q(_)�~��〈w(_)c, c〉# + 〈c, w(−_)c〉#                             (6.15)  

is a slowly increasing, locally summable function, and hence a tempered distribution in{+,-#�    ; ℝ5 ∗ #
<.  Thus 

〈c, �k#(� )c〉# is by definition the distribution Fourier transform of (6.15), and hence a tempered distribution 

in {+,-#�    ; ℝ5 ∗ #
<.  Finally (6.12) is the weak integral 

         〈c, Pk,­# (�)c〉# = ���- � �#b�@(�, �) 〈J���-exp;−�� jk(�)<L c, �k#(� ) J���-exp;−�� jk(�)<L c〉# .  
Theorem 6.3 Let c ∈ K;( jk(�) + �)a/�<, and let @(�, �) be a real function in{+,-#    ; ℝ5 ∗ #
<. Then the vectors 

 Sk,­# (�)c and  Pk,­# (�)c are strongly #-continuous and are rapidly decreasing functions of �. The integrals 

���- �  Sk,­# (�)c�#� = �k,­# (@ )c and ���- �  Pk,­# (�)c�#� = �k,­# (@ )c  exist and define �k,­# (@ ) and �k,­# (@ ) as 

#-closed symmetric operators with domains containing K;( jk(�) + �)a/�<. We have the estimate 

         o�k,­# (@ )co# + o�k,­# (@ )co# ≤ E(���- ��‖@(∙, �)‖#� + ‖K¤#@(∙, �)‖#� �#�)( jk(�) + �)a/�c          (6.16) 

with a constant E independent of @ and �.                                                                                                                        
Proof We write 

                                                |@(∙, �)|a = E‖@(∙, �)‖#� + E‖K¤#@(∙, �)‖#�                                                       (6.17) 

and 

                                Sk,­# (è)c −Sk,­# (�)c = J� − ���-exp;−�(� − è) jk(�)<L  Sk,­# (è)c + 

           +¥���-exp;�� jk(�)<¦º���- � �k#(� ) ; @(�, è) −  @(�, �)<�#b�»¥���-exp;−�è jk(�)<¦c + 



          Sk,­# (è)¥���-exp;−�(� − è) jk(�)<¦c 

Thus by (6.13),  

                                o Sk,­# (è)c −  Sk,­# (�)co# ≤ ÇJ� − ���-exp;−�(� − è) jk(�)<L  Sk,­# (è)cÇ# + 

                                                      +|@(∙, è) − @(∙, �)|a Ç( jk(�) + �)~�c  Ç# + 

+|@(∙, �)|ao;���-exp;−�(� − è) jk(�)< − �<( jk(�) + �)a/�co# →# 0 

as � →# è. This proves the #-continuity. The rapid decrease is ensured by (6.13) and the fact that@ ∈{+,-#    ; ℝ5 ∗ #
<. A similar argument works for  Pk,­# (�)c. The integrals defining �k,­# (@ ) and �k,­# (@ ) now exist; 

(6.16) follows from integrating (6.13). Since  Sk,­# (�) and  Pk,­# (�) are self -#-adjoint, for c ∈ K;( jk(�) +
�)a/�< ⊂ 

           〈c, �k,­# (@ )c〉# = ���- �〈c,  Sk,­# (�)c〉#�#� = ���- �〈 Sk,­# (�)c, c〉#�#�   

is a real, and similarly for �k,­# (@ ). Symmetric operators are #-closable and we now define �k,­# (@ ) 

and �k,­# (@ ) as the #-closure of the above operators on the domain 

                                               K;( jk(�) + �)a/�<.                                                                         (6.18) 

Remark 6.1 (a) The integrals defining �k,­# (@ )c and �k,­# (@ )c are strong Riemann integrals, �k,­# (@ ) is a 

strong #-limit of operators of the form 

                                                           ���- ∑  Sk,­# (�>), 8 ∈ ℕ ∗ .7>Za .                                                                (6.19) 

Conversely using the #-continuity of Sk,­# (�)c, we see that an operator of the form (6.19) is a strong  #-limit of 

a hyper infinite sequence �k,­# J@p L, Ñ ∈ ℕ ∗ . and the @p can be chosen with the #-norm 

                                 |@|a = E J���- � ?‖@(∙, �)‖#� + ∑ o�¤³# @(∙, �)o#�b>Za O �#� ℝ ∗ �#W L                                        (6.20) 

uniformly bounded. For both #-limits the #-convergence occurs on the domain (6.18) and similar considerations 
apply to �k,­# (@ ). Furthermore �k,­# (@ ) and �k,­# (@ ) can be defined whenever |@|#a < ∞ ∗ .                                                                                              

(b) Using (2.19) in order to estimate   j[,k , we have from (6.16), 

                                  o�k,­# (@ )Ωk,­o# + o�k,­# (@ )Ωk,­o# ≤ |@|a;��k,�­ − �k,­� + 1<~�,                                (6.21) 

but the bound on the right grows in the diameter of the support of �.                                                                         

Theorem 6.4 [18] Let |@|#a be the #-norm |@|#a = E J���- � ?‖@(∙, �)‖#� + ∑ o�¤³# @(∙, �)o#�b>Za O �#� ℝ ∗ �#W L.                

Let  |@|#a is finite. Then on the domain  K Å;jk,­ + �<¿�Æ, ), the field �k#(@) satisfies the following equation 

                           ;�í#�k#<(@) = −�k#;�í#@< = �k#(@) = ¥�jk,­, �k#(@)¦.                                               (6.22) 

Proof Note that the first equality in (6.22) is the definition of a distribution #-derivative. The out the difference 

quotient ∆�@(�, �) to #-derivative  �í#@ reads ∆�@(�, �) = ��(¤(�,í)x�(¤,í)�� , Ä ≈ 0,  note that 



#-lim�→#[ ∆�@(�, �) = �í#@(�, �). Note that for any vector c such that c ∈ K Å;jk,­ + �<~�Æ by canonical 

consideration we get   

                                                      #-lim�→#[ o�k#(�í#@)c − �k#;∆�@(�, �)<co# = 0. 
We have for c ∈ K Å;jk,­ + �<¿�Æ that   

                    �k#;∆�@(�, �)<c = Äxa(� − ���-exp��Äj�) ?���- � �k#(�, � − Ä)@(�, �)�#b�c�#� ℝ ∗ �#W O+  

                                     +Äxa ?���- � Sk(@, �);���-exp¥�Äjk,­¦ − �<c�#� ℝ ∗ �#W O.                                            (6.23) 

Here the last term #-converges as Ä →# 0 and it #-limit is: � J���- � Sk(@, �)jk,­c�#� ℝ ∗ �#W L.  
Since �k#;∆�@(�, �)<c  #-converges as Ä →# 0, the remaining term in expression for �k#;∆�@(�, �)<c  

#-converges also to a #-limit ca. For × ∈ K;jk,­< we obtain that 

   〈×, ca〉 = #-lim�→#[ 〈×, Äxa;� − ���-exp¥�Äjk,­¦< ?���- � �k#(�, � − Ä)@(�, �)�#b�c�#� ℝ ∗ �#W O〉 = 

〈�jk,­×, �k#(@)c〉. 
Since jk,­ = jk,­∗ , it follows that �k,­# (@)c ∈ K;jk,­< and ca = �jk,­�k,­# (@)c and therefore:                                 

                                                                −�k#(�í#@)c = ¥�jk,­, �k#(@)¦c.  
From the above equation we obtain 

                            �〈c, �k#(�í#@)c〉 = ���- � 〈jkc(�), ���- � �k#(�, 0)@(�, �)�#b�c(�)  ℝ ∗ �#W 〉 ℝ ∗ �# �#� − 

                                 ���- � 〈���- � �k#(�, 0)@(�, �)�#b�c(�), jk,­c(�) ℝ ∗ �#W 〉 ℝ ∗ �# �#�.                                    (6.24) 

Here c(�) = ���-exp¥��jk,­¦c. Note that c(�) ∈ K;j[,k< ∩ K;j¬,k,­<, and 

                                          oj¬,k,­;c(�) − c(è)<o# ≤ wo;jk,­ + �<;c(�) − c(è)<o# →# 0,  
as |� − è| →# 0. Therefore we may substitute j[k + j¬,k for jk,­ and consider each term separately. Note that 

the operators j¬,k and ���- � �k#(�, 0)@(�, �)�#b�   ℝ ∗ �#W  commute and therefore j¬,k contribute zero to equality 

above. The following identity by canonical computation holds for any  c ∈ K(j[k), in particular for c(�) =���-exp���j�c ∈ K(j[k) 

             〈j[kc, ���- � �k#(�, 0)@(�, �)�#b�c  ℝ ∗ �#W 〉 − 〈H���- � �k#(�, 0)@(�, �)�#b�   ℝ ∗ �#W N c, j[kc〉 =  

                                            〈c, −� H���- � �k#(�, 0)@(�, �)�#b�   ℝ ∗ �#W N c〉. 
Therefore finally we get 

                 �〈c, �k#(�í#@)c〉 = ���- � 〈c(�), −����- � �k#(�, 0)@(�, �)�#b�c  ℝ ∗ �#W 〉 ℝ ∗ �# �#� = 〈c, −��k#(@)c〉. 

This equality finalized the proof.                                                                                                                             
Remark 6.2 (a) in exactly the same fashion one proves that  

                                   �íí#��k,­# (@) = �í#�k,­# (@) = −�k,­# ;�í#@< = ¥�jk,­, �k,­# (@)¦  



if ��íí#�@�a is also finite or hyperfinite. The commutator is a bilinear form on Kk,­# × Kk,­# ,  Kk,­# = � . ∗ ;jk,­<, 
namely  

      �íí#��k,­# (@) = ∑ �¤�¤³#� �k,­# (@)>Zb>Za − v[��k,­# (@) − 4���- �  ⋮ �k,­#b (�, �) ⋮ @(�, �)�(�)�#b� ℝ ∗ �#â �#�.        (6.25) 

Here we define the ⋮ �k,­#b (�, �) ⋮ product by   

                           ⋮ �k,­#b (�, �) ⋮= ;���-exp¥��jk,­¦<: �k,­#b (�): ;���-exp¥−��jk,­¦<,                                      (6.26) 

which we now prove is an operator valued non - Archimedean distribution. First we note that  

                                                            ���- �  ⋮ �k,­#b (�, �) ⋮ @(�, �)�#b� ℝ ∗ �#¿  

is a sum of monomials in creation and annihilation operators with kernels in '�#, and their '�# #-norms are #-continuous in �. Thus by (2.9)  

                                                          ���- �  ⋮ �k#b(�, �) ⋮ @(�, �)�(�)�#b� ℝ ∗ �#¿  

is a bilinear form on  Kk,­# × Kk,­# . By (2. 3),  

                                        (j + �)xa ?���- �  ⋮ �k#b(�, �) ⋮ @(�, �)�(�)�#b� ℝ ∗ �#¿ O (j + �)xa 

is a bounded operator, #-norm #-continuous in �. Thus on K;jk,­< × K;jk,­<,  

                                       ⋮ �k,­#b (@) ⋮= ���- �  ⋮ �k,­#b (�, �) ⋮ @(�, �)�(�)�#b� ℝ ∗ �#â �#� 

is defined as a bilinear form. Hence (6.25) holds as an equation for bilinear forms on K;jk,­< × K;jk,­<. But 

each term except the last is an operator defined on K J(j + �)~�L. Thus ⋮ �k,­#b (@) ⋮ is actually an operator on 

K J(j + �)~�L, and in fact for real f(x, t) it is essentially self #-adjoint. Furthermore, on K J(j + �)~�L ×
K J(j + �)~�L each term in (6.25) except the last is a bilinear form which is a distribution of order two. Thus the 

same is true for 〈c, ⋮ �k#b(�, �) ⋮ c〉#. We have used (6.26) to define the cube of the interacting field. It would be 
interesting to determine whether this definition agrees with conventional notions involving the separation of 
points. We shall see in this section and the following one that the �(�) in equation (6.25) can be removed if @(�, �) has #-compact support and �(�) =  � on a sufficiently large set. Then (6.25) becomes 

                                             Å
 #�
�#� + ∑ 
 #�
�³#�>Zb>Za + v[�Æ �k#b(@) = −4� ⋮ �k#b(@) ⋮, 
which is a non-linear equation for a self-#-adjoint operator valued distribution.                                                              

(b) The identity �k#(@) = ¥�jk,­, �k#(@)¦ implies  

                                                               Pk,­# (� ) = ¥�jk,­,  Sk,­# (� )¦                                                               (6.27)    

provided that the right and left sides of (6.27) make sense and are #-continuous in �. They are certainly defined 

and are #-continuous as bilinear forms on K;jk,­< × K;jk,­<. To see that (6.27) makes sense as operators 

on K Å;jk,­ + �<¿�Æ  we need only show that  Sk,­# (� ) maps K Å;jk,­ + �<¿�Æ into K;jk,­<. We choose a hyper 

infinite sequence @p(�, �) = @(�, �[)�p(� − �[), Ñ ∈ ℕ ∗  where �p(� − �[) is a hyper infinite sequence of #-smooth 

functions #-converging to �#(� − �[)  in the �∗ #-topology on #-measures and with the #-norms �@p�#a, 

uniformly bounded.  Then the bilinear forms #-converge, which means that the inner products  



                                        〈m, �j k,­�  �k,­# (@)c〉# = 〈m, ��k,­# (@)j k,­
� c〉#+〈m, �k,­# (@)c〉# 

#-converge for m ∈ K;jk,­<. However the #-norms  

                       Çj k,­�  �k,­# (@)cÇ# ≤ Ç��k,­# (@)j k,­
� cÇ# + o�k,­# (@)co# + |@|a Ô;jk,­ + �<¿�cÔ# 

are uniformly bounded, and so the inner products #-converge for all m ∈ ℱ#. Thus the #-limit  Sk# (� ) = weak    

#-lim �k#;@p<c is in K;jk,­∗ < = K;jk,­<  which proves (6.27) on the domain K Å;jk,­ + �<¿�Æ.   

Corollary 6.5 Let @ ∈ {+,-#    ; ℝ5 ∗ #
<. Then Kk,­# = � . ∗ ;jk,­< ⊂ � . ∗ J�k,­# (@)L, and �k,­# (@) Kk,­# ⊂  Kk,­# .       

Proof Using Theorem 6.4, we prove by hyper infinite induction on v ∈ ℕ ∗  that �k,­# (@) Kk,­# ⊂ K Jj k,­� L and 

that for c ∈  Kk,­# , 
                               j k,­�  �k,­# (@)c =  �k,­# (@)j k,­

� c + ���- ∑ J�p L �p�pZa �k,­# ;�í#p@<j k,­�xpc. 
This formula is a special case of the identity  S�P = ���- ∑ J�Ê L �(adS)ÊP��ÊZ� S�xp , v ∈ ℕ ∗  Thus we obtain 

                           Çj k,­�  �k,­# (@)cÇ# ≤ ���- ∑ J�p L ��í#p@�#a Ô;jk,­ + �<�xp(~�cÔ#
�pZa .                              (6.28)    

Theorem 6.5. Let @ ∈ �[. ∗ (ℬ
#), that is @ is �[. ∗  with support in the #-open region of space time ℬ
#. Let jk,­ 

be a Hamiltonian for ℬ
#, so that �(�) =  � on a large set. Then 

                                      �k,­# (@) = �k#(@)  and �k,­# (@) = �k#(@) are independent of �/�.                                                         

Proof The spectral projections �#í(�, n) of the sharp time field 

                                     S[,k(�) = ���- � �k,­# (�, �)@(�, �[) ℝ ∗ �#W �#b� = ���- � ��# ℝ ∗ �# �#í(�, n) 

 are given by the formula 

                                             �#í(�, n) = ;���-exp¥��jk,­¦<�#[(�, n);���-exp¥−��jk,­¦<  

and are independent of �. Thus S[,k(�)  is independent of � and so is Sk(�). By (3.1.7), for all �, 

                                            K[,k = KJj [,ka/�L ∩ K(ik ) ⊂ K Å;jk,­ + �<~�Æ ⊂ K J�k,­# (@)L  

so that �k,­# (@) ↾  K[,k is independent of �. Thus to complete the proof, we only need to show that the domain of 

�k,­# (@) = #- ¡�k,­# (@) ↾  K Å;jk,­ + �<~�Æ¢äääääääääääääääääääääääääääääääääääää
 is independent of �. Since jk,­ is essentially self-#-adjoint on the 

domain � . ∗ ;j[,k< ⊂ K[,k, so is ;jk,­ + �<~� Thus by (6.16) �k,­# (@) ↾  K Å;jk,­ + �<~�Æ ⊂ #-;�k#(@) ↾  K[,k<äääääääääääääääääää. 

Therefore #-;�k#(@) ↾  K[,k<äääääääääääääääääää = �k,­# (@), so �k,­# (@) = �k#(@) is independent of �. Similarly �k,­# (@) = �k#(@) is 

independent of �.                                                                                                                                                                                          

Theorem 6.7 Let c ∈  Kk,­# , with jk,­ a Hamiltonian for ℬ
#. Then  

                                                              〈c, �k#(�a, �a) ∙∙∙ �k#(�7, �7)c〉#   

is a distribution in K #�(ℬ ×∙∙∙× ℬ)                                                                                                                                            
Proof This follows directly from our previous estimates (6.16) and (6.28). 



7. Essential self-#-adjointness.                                                                                                                                 
The main result of this section is the proof that for real test functions @ = @(�, �) with #-compact support, the 

field �k#(@) is self-#-adjoint, and essentially self-#-adjoint on K[,k = K;j[,ka/�< ∩ K(ik ), or on any Kk,­ where 

 jk(�) is a Hamiltonian for the support of @. We see furthermore that if @ is real and  |@|#a  defined by (6.20) is 

finite or hyperfinite, then, �k,­# (@) is self-#-adjoint and essentially self-#-adjoint on Kk,­. The proof has three 

main steps. First, we assume that @ is a regular function of �; in that case we use an analytic vector argument to 
show that �k,­# (@) is essentially self-#-adjoint on Kk,­. As a second step, we take #-limits in the resolvents 

(�k,­# (@) − !)xa as @ tends to a more general function. In this way, we obtain a self-#-adjoint operator �k,­# (@). 

As a third step, we show that �k,­# (@) is essentially self-adjoint onK; jk(�)<. The regularity we impose on @ is 

the requirement that its Fourier transform be a #-smooth function with #-compact support, or more generally 
that for the #-norm |@|#a, of (6.20) there exist constants B = B(@) and C = C(@) 

                                                              |Kíú@| ≤ BCú , û ∈ ℕ ∗ .                                                                            (7.1)       

For a vector c, we consider the conditions 

                                                ‖( jk(�) + �)úc‖# ≤ w�ú , û ∈ ℕ. ∗                                                                   (7.2)  

Lemma 7.1 Assume (7.1) and (7.2). Then 

                                          o( jk(�) + �)ú�k,­# (@)co# ≤ Bw�E(� + C)ú                                                        (7.3) 

for some constant E independent of û, c, @.                                                                                                                          
Proof . By (6.28) and (7.1)-(7.2) 

                          o( jk(�) + �)ú�k,­# (@)co# ≤ ���- ∑ JúpLúpZ[ EBCpo( jk(�) + �)úxp(a�k,­# (@)co#
 ≤ 

                                                  ≤ ���- ∑ JúpL EBCpw�úxp(aúpZ[ ≤ Bw�E(� + C)ú . 
Lemma 7.2 Assume (7.1) and (7.2). Then c is an #-analytic vector for �k,­# (@). In particular for real @(�, �), 
�k,­# (@) is essentially self-#-adjoint on Kk,­.                                                                                                                      

Proof We applying the preceding lemma successively. We see that multiplication by �k,­# (@) changes the 

constants w and � of (7.2) as follows: →  Bw�E → � + C. Thus 

                            Ç( jk(�) + �)ú¥�k,­# (@)¦�cÇ# ≤ w(BE)�¥���- ∏ (� + ÑC)�xapZ[ ¦(� + `C)ú , 
and 

                                                                   Ç¥�k,­# (@)¦�cÇ# ≤ wP�`!#       

for some constant P, which proves that c is #-analytic for �k,­# (@). The essential self-#-adjointness of �k,­# (@) 

follows from generalized Nelson's analytic vector theorem, see ref.[17]-[18]. We can draw more information 
from (7.3). If we write  jk(�) +  � = ���- � ��# ℝ ∗ �# �# (�, n), then (7.2) is equivalent to   c ∈ Range��# (�, n)  
and (7.3) gives that 

                                              �k,­# (@)Range��# (�, n) ⊂ Range��# (� + �, n) .                                              (7.4) 

Because �k,­# (@) is self-#-adjoint we have 

                                    �k,­# (@)Rangeº;� − �# (�, n)<» ⊂ Rangeº;� − �# (� − �, n)<».                          (7.5)  



These two inclusions have simple physical interpretations. We imagine that �k,­# (@) is written as a sum of two 

operators, one creating physical wave packets associated with jk(�), and the other annihilating them. Because 
of (7.1) the wave packets have energy at most C, and so �k,­# (@) can increase or decrease the total 

energy jk(�), by at most C.                                                                                                                                                                                            
We note that �k,­# (@) is essentially self-#-adjoint on the domain ⋃ Range��# (¸, n) Ë , by the proof of Lemma 7.2 

and the remarks above. Our next step is to take #-limits with respect to @ in the resolvents ! =  !(@, !)  = (�k,­# (@)  −  !)xa. As preparation, we now prove that ! preserves #-regularity, which means    

                                       o( jk(�) + �)a/�!(@, !)co# ≤ ð Ç( jk(�) + �)~�cÇ#.                                           (7.6)   

 Lemma 7.3. Let @ be real and satisfy (7.1). Then the estimate (7.6) holds for Im ! ≠ 0. The constants ð and � 
depend only on !, �, and |@|a.                                                                                                                                                    
Proof To prove this lemma, we obtain uniform estimates on approximating operators !7. If (7.6) holds for !7, 
with ð independent of 8 ∈ ℕ ∗ , and  

                                                                  ! = strong-#-lim !7,                                                                        (7.7) 

then (7.6) also holds for !. In fact Ç( jk(�) + �)~�cÇ# defines a #-norm on the domain K J( jk(�) + �)~�L =
ℋa, which makes it into a non-Archimedean Hilbert space. The inequality (7.6) in equivalent to !7, being a 
bounded operator on ℋa, and the #-norm ‖!7‖#a,a, of !7, as an operator from ℋa to itself is defined by 

                                     ‖!7‖#a,a = Ç( jk(�) + �)~�!7( jk(�) + �)x~�Ç# ≤ ð.                                              (7.8)  

From the strong #-convergence (7.7) on ℱ#, we conclude that on a #-dense set of vectors in ℋa, !7 #-converges weakly to !. Since the operators !7, 8 ∈ ℕ ∗  are uniformly bounded on ℋa, !7  →# ! in weak 
operator #-convergence on ℋa. Thus the #-norm ‖!7‖#a,a is bounded by the #-lim sup of the ‖!7‖#a,a and 

(7.6) holds for !. Let 

                                                                 jk(�) + � = ���- � ��# ℝ ∗ �# �# (�, n).                                                    (7.9) 

We approximate �k,­# (@) by the bounded self-#-adjoint operator �7  = �# (8, n)�k,­# (@)�# (8, n), 8 ∈ ℕ ∗ . From 

(7.4) it is clear that �7 →# �k,­# (@) on vectors with #-compact support in the energy. Since �k,­# (@) is essentially 

self-#-adjoint on this domain, the resolvents also #-converge strongly [18] 

                                                #- lim7→ . ∗ !7(!) = #- lim7→ . ∗ (�7 − !)xa = !(!),    
proving (7.7). We now show that (7.8) holds and it is sufficient to prove  

                                           Ç( jk(�) + �)~�!7( jk(�) + �)x~�cÇ# ≤ ð‖c‖#                                              (7.10) 

for c in the #-dense set Kk,­. Since ( jk(�) + �)x~� and !7 both map Kk,­ onto Kk,­ we need only prove that on 

the domain Kk,­ × Kk,­, 

                                         jk(�) + � ≤ ð�(�7 − !̅)( jk(�) + �)(�7 − !) =                                               (7.11) 

                     = ð�(�7 − �)( jk(�) + �)(�7 − �) + (ð
)�( jk(�) + �) + �ð�
� jk(�), �7�, 
where ! = � +  �
. As the first term is positive, it is sufficient to show that 

                                                     0 ≤ �(ð
)� − 1�( jk(�) + �) + ð�
� �jk(�), �7�.                                 (7.12) 



But 

                               � �jk(�), �7� = �# (8, n)¥ �jk(�), �k,­# (@)¦�# (8, n) = �# (8, n)�k,­# (@)�# (8, n).                      
By Theorem 6.3,  

                    |〈c, � �jk(�), �7�c〉#| = �〈�# (8, n)c, �k,­# (@)�# (8, n)c〉#� ≤ ‖c‖# ∙ o�k,­# (@)�# (8, n)co# ≤   

      ≤ ‖c‖# ∙  |@|#a ∙ Ç( jk(�) + �)~��# (8, n)cÇ# ≤ a
�  |@|#a ∙ ?Ä 〈c, ( jk(�) + �)~�c〉# + Äxa〈c, c〉#O 

for any Ä >  0. Furthermore, the #-norm  |@|#a of (6.20) can be chosen independent of � for large �, since for �a  ≤  �� we have that  jk(�) + �a ≤  jk(�) + ��. Therefore (7.12) is valid as long as  

                                             0 ≤ ?(ð
)� − 1 − a
� ð�
Ä |@|#aO ( jk(�) + �) − ���

��  |@|#a. 

For each  |@|#a, 
 ≠ 0, we can pic ð large so that (ð
)� > 3, Ä small enough so that 
a
� ð�
Ä |@|#a < 1, and � 

large enough so that the inequality is valid. This completes the proof.                                                                                                            
We now show that the resolvents of approximate field operators #-converge. We use the spectral projections �# (8, n), 8 ∈ ℕ ∗  defined by (7.9) to cut-off the field. If �k,­# (@) is a #-closed symmetric field operator, then 

�# (8, n)�k,­# (@)�# (8, n) is a bounded, self-#-adjoint approximation to �k,­# (@).                                                                                                 

Lemma 7.4. Let @7, 8 ∈ ℕ ∗  be a hyper infinite sequence of real functions satisfying (7.1) with C depending on 

8. If the graphs G J�k,­# (@7)L #-converge to the graph of a #-densely defined operator, if  

                                   Ç( jk(�) + �)x~�º�k,­# (@7) − �k,­# (@�)»( jk(�) + �)x~�Ç# →# 0                               (7.13) 

and if the #-norms |@7|#a, are uniformly bounded, then the resolvents  

                                                                  !7(!) = (�7 − !)xa                                                                       (7.14) 

of 

                                                         �7 = �# (8, n)�k,­# (@7)�# (8, n).                                                              (7.15)  

#-converge strongly to the resolvent of a self-#-adjoint operator �.                                                                                
Proof This result is a special case of [ref.[19], Th. 5 and Cor. 6]. See that paper for notation. Recall that #-measure �# (8, n)is defined by (4.3.9). Note that 

                                        Ç( jk(�) + �)x~� J�7 − �k,­# (@7)L ( jk(�) + �)x~�Ç# ≤                                        (7.16) 

        Ç(�# (8, n) − �)( jk(�) + �)x~�Ç# ∙ ?Ç�k,­# (@7)( jk(�) + �)x~�Ç# + Ç( jk(�) + �)x~��k,­# (@7)Ç#O ≤  

                             ≤ 8xa/� ?Ç�k,­# (@7)( jk(�) + �)x~�Ç# + Ç( jk(�) + �)x~��k,­# (@7)Ç#O.                                                 
By Theorem 6.3 the operator �k,­# (@7)( jk(�) + �)x~� and its #-adjoint are bounded with 

                                                        Ç�k,­# (@7)( jk(�) + �)x~�Ç# ≤ E |@7|#a,  
which is bounded uniformly in 8, ∈ ℕ ∗ . Then  



                                    Ç( jk(�) + �)x~� J�7 − �k,­# (@7)L ( jk(�) + �)x~�Ç# = Ö;8xa/�<                            (7.17)        

and so by (7.13),  

                                            Ç( jk(�) + �)x~�(�7 − ��)( jk(�) + �)x~�Ç# →# 0 

as 8, v → ∞ ∗ The required uniform boundedness of the resolvents ‖(�7 − !)xa‖#a,a  < const follows from 

Lemma 7.3.                                                                                                                                                                                       
We now discuss when the hypotheses of Lemma 7.4 are satisfied. If the  �k,­# (@7) #-converge strongly on a 

#-dense domain, then the graphs #-converge. The �k,­# (@7) will #-converge on Kk,­ if @7 →#  @ as 8 → ∞ ∗  in 

the  #-norm |∙|#a; they will also #-converge for some hyper infinite sequence @7, 8 ∈ ℕ ∗  

                                                             @7 →# ���- ∑ @(∙, �>)�#>Z7>Za (� − �>)                                                      (7.18)        

with @(∙, �>) ∈ {+,-#    ( ℝ ∗ #
). We can choose @(�, �) to have the form 

                                                             @(�, �) = ���- ∑ @(∙, �>)�7 >Z7>Za (� − �>), 
where �7(�) ≥ 0 has support in |�| <  8xa, and ���- � �7(�) �#�. For such a sequence  |@7|#a is uniformly 
bounded in n, 8 ∈ ℕ ∗ . From (6.9) we see that �∗ #-convergence of the �7(�) as bounded #-measures implies 
(7.13). Thus the hypotheses are satisfied for the sequence (7.18). They are also satisfied if the @7 #-converge in 
the #-norm  |∙|#a, and every @7 with finite  |@7|#a is the #-limit of such a hyper infinite sequence.  

Theorem 7.5. Let @ be real and |@|#a finite. Then the operator �k,­# (@ ) is self-#-adjoint and essentially self-

#-adjoint on Kk,­. A real linear combination of sharp time fields with real test functions in{+,-#    ; ℝ5 ∗ #b<, 

���- ∑ Sk,­(�>)>Zú>Za , is also essentially self-#-adjoint on Kk,­.                                                                                           

Proof The two cases are similar and we only consider �k,­# (@ ). We first prove that the operator � of Lemma 7.4 

extends �k,­# (@ ) 

                                                                             �k,­# (@ ) ⊂ �.                                                                       (7.19)   

As in the proof of Theorem 6.6, we have  

                                        �k,­# (@ ) = ; �k,­# (@ ) ↾ Kk<#x = ; �k,­# (@ ) ↾ K[<#x
                                      (7.20) 

where (S)#x is #-closure of the operator S and K[ = K;jka/�< ∩ K(ik). Let !7(!) be defined by (7.14), where @7 approximates @ and satisfies the hypotheses of  Lemma 7.4. Thus !(!)  =  # − lim7→ . ∗ !7(!)  exists and is the 

resolvent of a self-#-adjoint operator �. For c ∈ Kk,­, �7c =  �(8) �k,­# (@ )�(8)c →#  �k,­# (@ )c, and             

#-convergence can be shown on K;(j(�) +  �)b/�<. For × = ; �k,­# (@ ) − !<c,  

                                !(!)× =  # − lim7→ . ∗ !7(!) × =  # − lim7→ . ∗ !7(!) (�7 − !)c = c.      
Thus we obtain that  (� − !)xa; �k,­# (@ ) ↾ K­< = � ↾ K­ . And therefore by (7.20), (7.19) is valid.  

We now show that  �k,­# (@ ) is equal to �, which completes the proof. We need only show that if  c ∈ K(�) , 

then   c ∈ K J �k,­# (@ )L. We first notice that 

                                             !(!)K J( jk(�) + �)~�L ⊂ K J( jk(�) + �)~�L                                                  (7.21) 



and that (7.8) is valid for !(!). The argument for this is the same as the proof of Lemma 7.3, but the 
approximate operator �7 = �# (8, n)�k,­# (@7)�# (8, n) replaces the �7. of the former proof. The remaining 

calculation is the same since the |@7|#a, 8 ∈ ℕ ∗ , are assumed uniformly bounded. We now introduce the 
smoothing operator 

                                                              	p = J1 + a
p ( jk(�) + �)�Lxa

                                                           (7.22)  

with the properties o	po# ≤ 1 

                                                                      strong #-lim7→ . ∗ 	p = �,                                                           (7.23) 

and for û <  2, 
                                                   o	p( jk(�) + �)úo# = o( jk(�) + �)ú	po# ≤ Ñù�.                                       (7.24) 

Let c ∈ K(�) and c =  !(!)×. Then 	pc = cp →# c, as Ñ → ∞ ∗  and cp ∈ K; jk(�)< ⊂ K J�k,­# (@ )L. If 
�k,­# (@ )cp #-converges and then c is in the domain of the #-closed operator �k,­# (@ ), so we prove this 

                         ;�k,­# (@ ) − !<cp = ;�k,­# (@ ) − !< 	pc = ;�k,­# (@ ) − !< 	p!(!)× =                                    (7.25) 

                                          = ;�k,­# (@ ) − !<!(!) 	p× + ;�k,­# (@ ) − !<¥ 	p ,!(!)¦×.  
The last equality is valid since   	p× ∈ K( jk(�)�) ⊂ K;( jk(�) + �)a/�< and by (7.21)                                             

                                                  !(!) 	p× ∈ K J( jk(�) + �)~�L ⊂ K J�k,­# (@ )L.  
Since � extends �k,­# (@ ), ;�k,­# (@ ) − !<cp =  	p× + ;�k,­# (@ ) − !<¥ 	p ,!(!)¦×.  As 	p× →# × = (� − !)c  to 

conclude that c ∈ K J�k,­# (@ )L, we need to show that 

                                                        Λp = ;�k,­# (@ ) − !<¥ 	p ,!(!)¦× →# 0.                                                     (7.26) 

We now claim that 

                                                         Λp = #-lim7→ . ∗ (�7 − !)¥ 	p ,!7(!)¦×,                                                   (7.27) 

where �7 and !7 are defined in (7.14-(7.15). Since (�7 − !)!7(!) = (� − !)! (!) = �, we need only prove the 
existence of the limit (7.27) with the commutator removed. As observed in the first part of the proof, for 

c ∈ K J( jk(�) + �)¿�L, ‖�7c − � c‖# = o�7c − �k,­# (@ ) co# →# 0. Since 	p!(!)× ∈ K( jk(�)�) ⊂
K;( jk(�) + �)b/�<, as 8 → ∞ ∗ , (�7 − !) 	p! (!)× →# ;�k,­# (@ ) − !<	p! (!)×. Also !7(!)× →# ! (!)×, and 

by Theorem 6.3 and (7.24), o(�7 − !) 	po# ≤ const ∙  |@7|#a ∙ Ñ~â, which is bounded uniformly in 8 ∈ ℕ ∗ . 

Therefore 

                                                    (�7 − !) 	p!7 (!)× →# ;�k,­# (@ ) − !<	p! (!)×,   
and (7.27) is established. Thus Λp = #-lim Λp,77→ . ∗

, where  

                        Λp,7 = (�7 − !)¥ 	p ,!7(!)¦× = (�7 − !)!7(!) 	p¥	pxa, (�7 − !)¦ 	p! (!)× =   

                                                       = Ñxa 	p�( jk(�) + �)�, (�7 − !)�	p! (!)× =   



                            = Ñxa 	p�( jk(�) + �)� jk(�), �7� + � jk(�), �7�( jk(�) + �)  	p! (!)× =  

         = −�Ñxa 	pº( jk(�) + �)�# (8, n)�k,­# ;@7 <�# (8, n) + �# (8, n)�k,­# ;@7 <�# (8, n)( jk(�) +
�)»	p! (!)×. 
Now by (7.24) we obtain 

                                         o	p( jk(�) + �)o# = o( jk(�) + �)	po# ≤  Ñxa/� 

and 

                 o�# (8, n)�k,­# ;@7 <�# (8, n) 	po# + o 	p�# (8, n)�k,­# ;@7 <�# (8, n)o# ≤ const ∙  |@7|#a ∙  Ña/
    

≤ const ∙  Ña/
 

as the  |@7|#a are assumed uniformly bounded. The constant is independent of Ñ and 8. Therefore                                 o Λp,7o# ≤ const ∙  Ñxa/
, and 

                                                     #-limp→ . ∗ o &po# ≤ #-limp→ . ∗ Å#-lim7→ . ∗ o Λp,7o#Æ = 0. 
Thus (4.3.26) is established and the proof is complete.   

8. The field as a tempered distribution in {+,-#�    ; ℝ5 ∗ #
<.                                                                                         

In the previous sections we studied the quantum field  �k,­# (@ ) corresponding to the Hamiltonian jk(�). We 

found that if  �k,­# (@ )  is localized, namely if @ has finitely bounded #-compact support in P and  jk(�) is a 

Hamiltonian for P, then  �k,­# (@ ) =  �k#(@ ) is independent of the spatial cut-off �. In this section we show that 

there is a cut-off independent field  �k#(@ ) defined for all  @ ∈ {+,-#�    ; ℝ5 ∗ #
<, and  �k#(@ ) agrees with the previous 

one when @ has #-compact support. The domain of  �k#(@ ) includes K[,k = K;j[,ka/�< ∩ K;i[,k <, and on this 

domain  �k#(@ ) is a tempered distribution in{+,-#�    ; ℝ5 ∗ #
<.                                                                                                                                                        

Lemma 8.1. Let K[,k = K;j[,ka/�< ∩ K;i[,k <. For c ∈ K[,k , 〈c,  �k#(�, � )c〉#  is a #-continuous, polynomially 

bounded function and 

         I���- � 〈c,  �k#(�, � )c〉#K�#�@(�, � )�#b� ℝ ∗ #¿ I ≤ Ö(�)‖@(∙, � )‖#�〈c, ;j[,k + i[,k� + �<c〉#.                   (8.1)        

Proof We divide space time into a number of similar regions with a partition of unity. Let '(�, � ), � =(�a, ��, �b),  be a � . ∗  function satisfying 

                                                                     0 ≤ '(�, � ) ≤ 1,                                                                            (8.2) 

                                                        supp(') ⊂ �(�, � )||�| ≤ 1, |�| ≤ ,                                                             (8.3) 

and such that 

                                ���- ∑ '>p>p (�, � ) = ���- ∑ '(�a − �, �� − �, �b − �, � − Ñ)>p = 1.                                    (8.4) 

Thus if @(�, � ) ∈ {+,-# 
    ; ℝ5 ∗ #
<, 

                                              @ = ���- ∑ @>p>p (�, � ) = ���- ∑ @(�, � )'>p>p (�, � )                                             (8.5)                                   

with @>p(�, � ) a � . ∗  function with support in the cube 

                            P>p = �(�, � )||�a − �| ≤ 1, |�� − �| ≤ 1, |�b − �| ≤ 1, |� − Ñ| ≤ 1 .                                     (8.6) 



We also pick a � . ∗  function �[(�) such that 

                                                                    �[(�) = �, if  |�| ≤ 2,                                                                    (8.7) 

and 

                                                                    �[(�) = 0, if  |�| ≥ 3.                                                                    (8.8) 

Thus  jk;�>p< is a Hamiltonian for P>p when  

                                                            �>p(�) = �[ J¤~x>
a(|p| , ¤�x>

a(|p| , ¤¿x>
a(|p|L.                                                              (8.9)  

Furthermore 

                                                    Ç;� + i[,k <xa j¬,k,­³�;� + i[,k <xaÇ# = Ö(Ñ)                                             (8.10) 

as the kernels of operators contributing to  j¬,k,­³� have '�#  #-norms with are Ö(Ñ). For (�, � ) ∈ P>p  and c ∈
K[,k, we have by Lemma 6.1, that 〈c,  �k#(�, � )c〉# is #-continuous and  

                                        |〈c,  �k#(�, � )c〉#| ≤ const ∙ 〈c, J jk;�>p< + �6(n)L c〉#                                        (8.11) 

where the constant is independent of �, �, �, and Ñ. Here �6(n) is hyperfinite constant proportional to the lower 

bound �(n) of  jk;�>p<, see (2.19). Note that that the lower bound of jk;�>p<, is proportional to the diameter of 

the support of �>p, namely Ö(Ñ)). Thus (8.11) gives the bound for (�, � ) ∈ P>p , c ∈ K[,k 

                                                                  |〈c,  �k#(�, � )c〉#| ≤                                                                       (8.12) 

                const ∙ ?oj[,ka/�co#
� + o;� + i[,k <o#

� ∙ Ç;� + i[,k <xa j¬,k,­³�;� + i[,k <xaÇ# + �6(n) ‖c‖#�O  ≤ 

                                           ≤ const ∙ ‖@(∙, � )‖#�〈c, ;j[,k + i[,k� + �<c〉# ∙ �(n)  ∙ Ö(Ñ), 
by (8.10) and the above discussion of �6(n). Since Ö(Ñ) = Ö(|�|), we have proved polynomial boundedness. 
Thus, as in Lemma 6.1, 

            I���- � 〈c,  �k#(�, � )c〉#K�#@(�, � )�#b� ℝ ∗ #¿ I ≤ Ö(�)‖@(∙, � )‖#�〈c, ;j[,k + i[,k� + �<c〉#, 
which yields (8.1). We now define the sharp time fields 

                                               Sk(@, �) = ���- �  �k#(�, � )@(�, � )�#b� ℝ5 ∗ #¿                                                      (8.13) 

and 

                                               Pk(@, �) = ���- �  �k#(�, � )@(�, � )�#b�. ℝ5 ∗ #¿                                                      (8.14) 

Lemma 8.2 Let @(�, � ) ∈ {+,-# 
   ; ℝ5 ∗ #
< be real. Then Sk(@, �) and Pk(@, �) define self-#-adjoint operators, and 

their domain includes K[,k. For c ∈ K[,k, ‖Sk(@, �)c‖# + ‖Pk(@, �)c‖# ≤ |@(∙, � )|#� ∙ ‖çkc‖#, where 

                                                                          çk = ;j[,k + i[,k� + �<a/�
,  

and    |@(∙, � )|#� = E(1 + |�|) ?‖@(∙, � )‖#� + oK�#(@(∙, � )o#�O.                                                                                                                                                                                                

Proof The proof is similar to that of Lemmas 6.2 and 8.1.                                                                                                                                                                                                                
Theorem 8.3 Let @(�, � ) ∈ {+,-# 

    ; ℝ5 ∗ #
< be a real function in {+,-# 
. The vectors Sk(�)c and Pk(�)c, where 



c ∈ K[,k, are #-continuous and rapidly decreasing in �. Their integrals over � exist and define #-closed 

symmetric operators  �k#(@ ) and  �k#(@ ) with domains containing K[,k. The fields  �k#(@ ), �k#(@ ), Sk(@, �) and Pk(@, �) are all independent of �(�). For any vector c ∈ K[,k we have 

                                                        ‖ �k#(@ )c‖# + ‖ �k#(@ )c‖# ≤ |@|#� ∙ ‖çkc‖#, 
where |@|#� = ���- �|@(∙, � )|#��#� and çk = ;j[,k + i[,k� + �<a/�

.                                                                                                                                                                                       

Proof This proof is based on the proofs of Lemma 8.1, Theorem 6.3, and Theorem 6.6. The fields  �k#(@ ) and  �k#(@ ) are defined as their #-closures on K[,k . 
9. Locality                                                                                                                                                                                        
In this section we derive locality of the field operators. Locality means that two field operators  �k#(@ )  and  �k#(ℎ )  commute provided the supports of @ and ℎ are spacelike separated. In other words, whenever 

                                                         (�, �) ∈ supp(@) and (�, è) ∈ supp(ℎ), 

we have that  

                                                                            |� − �| > |� − è|. 
Under this hypothesis a signal originating in supp(@) (caused, for example, by the process of performing the 
measurement of  �k#(@ ) cannot be recorded by the measurement of �k#(ℎ ). Thus one expects that the 
measurement of  �k#(@ ) does not interfere with the measurement of �k#(ℎ ), and that the joint measurement of  �k#(@ ) and �k#(ℎ ) can be performed in either order. The rigorous mathematical statement that the measurements 
can be performed in either order is that  �k#(@ ) and �k#(ℎ ) commutes. For any #-closed operator S, a #-core K#(S) of S is defined to be a #-dense domain contained in K(S) such that S = #-(S ↾ K)ääääääääää .                                                                              
Self-#-adjoint operators S and P commute if and only if for any spectral projection � of P, and #-core K of S, �K ⊂ K(S) and for c ∈ K, �S c =  S �c.                                                                                                                              

Definition 9.1 (i) Let c ∈ K#(S), we say that vector c is a near standard vector if ‖c‖# ∈ ℝ5 ∗ +,-# .                                                                    

(ii) A near standard #-core K+,-#  (S) of S is defined to be a subdomain K+,-#  (S) ⊂ K#(S) which contains all near 
standard vectors c such that: (a) c ∈ K#(S) and (b) vector Sc is a near standard vector.                                                                                                   
(iii) A near standard domain K+,- (S) of S  is defined to be a subdomain K+,-  (S) ⊂ K (S) which contains all near 
standard vectors c such that: (a) c ∈ K (S) and (b) vector Sc is a near standard vector.                                                                             

Definition 9.2 Self-#-adjoint operators S and P ≈ -commute on domain K+,-#  (S) ∩ K+,-#  (P) if for any near 

standard vector  c ∈ K+,-#  (S) ∩ K+,-#  (P) the following condition holds SPc ≈ PSc.                                                
Lemma 9.1 Self-#-adjoint operators S and P ≈ -commute on domain K+,-#  (S) ∩ K+,-#  (P) if and only if for any 

spectral projection �) of P, and near standard #-core K+,-#  (S) of S, �)K+,-#  (S) ⊂ K+,-  (S) and for all  c ∈K+,-#  (S), �)Sc ≈ S�)c.                                                                                                                                                                                                                                                          
Theorem 9.1 If supp( @) and supp( ℎ) are spacelike separated,  �k#(@ ) and  �k#(ℎ ) ≈ -commute.                                    
Proof Let  

                                                   Sk,­(@, è) = ���- �  �k#(�, � )@(�, � )�#b� ℝ5 ∗ #¿   

and  

                                                    Pk,­(ℎ, �) = ���- �  �k#(�, � )@(�, � )�#b� ℝ5 ∗ #¿   

be the sharp time fields obtained from the test functions @ and ℎ correspondingly. First we prove that Sk,­(@, �) 

and Pk,­(ℎ, �) commute. For any #-open set ℑ in space, we define the algebra ℭ#(ℑ) as the weak #-closure of 

the finitely bounded functions of the � = 0 fields  

                                   ���- �  �k#(�, 0 )@[(� )�#b� ℝ5 ∗ #¿   and  ���- �  �k#(�, 0 )@[(� )�#b� ℝ5 ∗ #¿  



as @[ runs over the � . ∗ - functions with support in ℑ. If ℑa and ℑ� are disjoint #-open sets, then elements of ℭ#(ℑa) and ℭ#(ℑ�) commute, and it was shown in [17] that  

                                ¥���-exp;−�+ jk(�)<¦ℭ#(ℑ)¥���-exp;−�+ jk(�)<¦ ⊂ ℭ#(ℑ�),                                   (9.1) 

where ℑ� is the set of all points in space with distance less than |+| from ℑ. The proof in [17] is valid whether 
or not �(�) = const on the set ℑ. If ℑa is a small neighbourhood of supp (@) ∩  �time =  è  and ℑ� is 
similarly defined with respect to ℎ at time �, then ℑa and (ℑ�)íx] are disjoint. Since the finitely bounded 

functions of Sk,­(@, è) belong to   ¥���-exp;−�è jk(�)<¦ℭ#(ℑa)¥���-exp;−�è jk(�)<¦ 
and the bounded functions of Pk,­(ℎ, �) belong to 

                                            ¥���-exp;−�� jk(�)<¦ℭ#(ℑ�)¥���-exp;−�� jk(�)<¦ ⊂ 

                                       ⊂ ¥���-exp;−�� jk(�)<¦ℭ#((ℑ�)]xí)¥���-exp;−�� jk(�)<¦, 
 Sk,­(@, è) and Pk,­(ℎ, �) ≈ -commute. Let � be a spectral projection of Sk,­(@, è) and let c ∈ Kk,­,+,- a near 

standard #-core for �k,­# (ℎ ). Then �c ∈ K+,- JPk,­(ℎ, �)L for all � and   

      〈 �k,­# (ℎ )m, �c〉# ≈ ���- �〈m, Pk,­(ℎ, �)�c〉#�#� ≈ 〈m, �¥���- � Pk,­(ℎ, �)c�#�¦〉# ≈ 〈m, ��k,­# (ℎ )〉#  (9.2) 

for all m ∈ Kk,­,+,-. Thus   

                                                      �c ∈ K+,- ;�k,­# (ℎ )∗< = K+,- ;�k,­# (ℎ ) <, 
                                                                  �k,­# (ℎ )�c ≈ ��k,­# (ℎ )c,  
and Sk,­(@, è) ≈ -commutes with �k,­# (ℎ ). Now let ç be a spectral projection for �k,­# (ℎ ).  

Then çc ∈ K+,- JSk,­(@, è)L for all è and 

                 〈 �k,­# (@ )m, �c〉# ≈ ���- �〈m, Sk,­(@, �)�c〉#�#� ≈ 〈m, ç¥���- � Sk,­(ℎ, �)c�#�¦〉#                     (9.3) 

as before in (4.5.2), so that �c ∈ K+,- ;�k,­# (@)∗< = K+,- ;�k,­# (@ ) < and �k,­# (@ )�c ≈ ��k,­# (@ )c.                    

Therefore,  �k#(@ ) and  �k#(ℎ ) ≈ -commute.                                      

10. Space time covariance                                                                                                                                      
Space time covariance means that the field transforms in the expected fashion under the space time 
translation �� = (�a� , ��� , �b� ), ��,  
                                                          �k#(�, �) →  �k#(� + ��, � + ��)                                                               (10.1)        

By its canonical definition the field transforms correctly under time translation. Let ,(��) be the unitary 
operator on ℱ# which implements the free field space translation � →  � +  ��. By definition, ,(��)  acts on 

each vector mp;_a, … , _p< in the Ñ particle subspace ℱp#  by  

                                   ,(��)m;_a, … , _p< = ;���-exp¥�〈��, ∑ _>Ê�Z� 〉¦<m;_a, … , _p<.                                      (10.2)         

We use the convention that ,(��) is the Schrödinger picture operator. On a suitable domain, 

                                          ,(−��)w∗(_),(��) = (���-exp��〈_, ��〉�)w∗(_),                                                 (10.3)                      

                                             ,(−��)w (_),(��) = (���-exp��〈_, ��〉�)w (_),                                                (10.4)         



and from the definition (2.10) we have  

                                                       ,(−��)�k#(�),(��)  =  �k#(� +  ��).                                                        (10.5)         

Now ,(��) does not commute with jk(�), but in fact  

                                                                ,(−��) jk(�),(��)  =   jk(��),   
where ��(�) = �(� − ��). But �k#(�, �) is independent of the space cutoff function  � (�) provided that  � (�) = �  for |� − �| > |�|. Thus if  � (�) = �  for |� + �� − �| > |�|, 
                     ,(−��)�k#(�, �),(��) = ,(−��)¥���-exp;�� jk(�)<¦�k#(�)¥���-exp;−�� jk(�)<¦,(��) = 

              = ¥���-exp;�� jk( ��)<¦�k#(� + ��)¥���-exp;−�� jk( ��)<¦ = �k#(� +  ��, �)                             (10.6) 

on a suitable domain, for example on K[,k × K[,k. Thus ,(��) implements the space translation for fields �k#(@ ). 

 11.The algebra of local observables                                                                                                                      
To each #-open region P ⊂ ℝ5 ∗ 4#
 of space time, we associate a non-Archimedean �#∗ algebra ℭ#(P) in such a 
way that the self-#-adjoint elements of ℭ#(P) are exactly the operators corresponding to experiments which 
may be performed in P.                                                                                                                                                        

Definition 11.1 Let S ∈ ℭ#(P), we say that operator is near-standard if  ‖S‖# ∈ ℝ5 4,+,-# ∗  and st(‖S‖#) ≠ 0. The 

sub algebra of the all near-standard operators in ℭ#(P) will be denoted by ℭ≈# (P).                                                                                                                                                               

Definition 11.2 The � ∗ algebra of standard local observables  st(ℭ≈# (P )) is defined by                                                    

st(ℭ≈# (P )) = �st(S)|S ∈ ℭ≈# (P ) . 
Remind that the requirements for a local quantum theory are: to each bounded open region P of space time, 

there is an associated non-Archimedean �#∗  algebra ℭ#(P)  containing the identity.  

(a) Isotony: if Pa ⊃ P�, then ℭ#(Pa) ⊃ ℭ#(P�).  

(b) Locality: Pa and P� are space like separated, then st(ℭ≈# (Pa)) commutes with st(ℭ≈# (P�)).  

(c) The algebra of local observables ℭ# is defined as the #-norm #-closure of the union of the ℭ#(P).  

(d) The algebra is primitive; in other words, it has a faithful, irreducible representation. 

(e) Lorentz covariance: Let �w, Λ  be an element of the inhomogeneous Lorentz group '(↑ . Then there is a 

representation +�-,.  of  '(↑  by a group of  ∗ - automorphisms of ℭ#, such that for a bounded region P  

                                                              +�-,. ℭ≈# (P) ≈ ℭ≈# (�w,Λ P).                                                               (11.1) 

In this section we consider several possible definitions for the non-Archimedean algebra ℭ#(P). The different 
definitions undoubtedly lead to different �#∗  algebras. In order to arrive at a natural and aesthetic definition, we 
prove that all reasonable candidates for ℭ#(P)  have the same weak #-closure; we take this weakly #-closed 

algebra as the definition of  ℭ#(P).   
Definition 11.3 ℭ#(P) is the weakly #-closed operator algebra generated by the operators  

                                                       ºç��k#(@)�|ç ∈ ' . ∗# , supp(@) ⊂ P, |@|#a ∈ ℝ5 ∗ 4,+,-# ». 
The definition is unchanged if we replace ' . ∗# , by some non- Archimedean ∗ - algebra which is #-dense in the 

weak operator topology. It is also unchanged if we replace the class of test functions by another (for 

example K+,-# (P)) having the same #-closure in the |∙|#a #-norm. In fact, if |@7 − @|#a →# 0, then (�k#(@7) −



!)xa →# (�k#(@) − !)xa in the strong operator topology by Lemma 7.4 and by the generalized semigroup 

convergence theorem ���-exp;��k#(@7)< →# ���-exp;��k#(@ )<  Thus ���-exp;��k#(@ )< and ç;�k#(@ )< belong 

to the weak #-closure if each @7, 8 ∈ ℕ ∗  is admitted as a test function in definition of non-Archimedean �#∗  
algebra  ℭ#(P). The same algebra ℭ#(P) is generated by the finitely bounded functions of sharp time fields Sk(�) = = ���- � �k#(�, �)@(�, �)�#b� ℝ5 ∗ �#¿ , @ ∈ K+,-# (P). In fact, using a hyper infinite sequence @7, 8 ∈ ℕ ∗  such 

as (4.3.18), we have the resolvents #-converging (�k#(@7) − !)xa →# (Sk(�) − !)xa, and so ç;Sk(�)< ∈
ℭ#(P).Thus the sharp time fields generate a smaller algebra. However, if @ ∈ K+,-# (P), we can approximate ��k#(@7) by the following hyperfinite sum ���- ∑  Sk(�>)∆�>>Z7>Za , with strong #-convergence on  K­#. By Lemma 

4.3.4 the resolvents #-converge, so ç;�k#(@ )< belongs to the weakly #-closed algebra generated by the finitely 

bounded functions of hyperfinite linear combinations of the sharp time fields. We now see that all such ç;�k#(@ )< belong to the algebra generated by the finitely bounded functions of the sharp time fields themselves. 

Let ç be a finitely bounded operator commuting with Sk(�a), Sk(��), . . ., and Sk(�7), 8 ∈ ℕ ∗ . Then by the 

generalized spectral theorem, ç commutes with ���- ∑  Sk(�>)∆�>>Z7>Za  on the domain Kk,­# , which by Theorem 

4.3.5 is a #-core for ���- ∑  Sk(�>)∆�>>Z7>Za . Thus ç commutes with ���- ∑  Sk(�>)∆�>>Z7>Za . Thus the commutant of ���- ∑  Sk(�>)∆�>>Z7>Za  is larger than that of ���- ∑  Sk(�>)∆�> ,>Z7>Za  and the double commutant smaller. Therefore, 
the sharp time fields generate ℭ#(P) as asserted.                                                                                                                                                            

Theorem 11.1 With mentioned above definition of ℭ#(P), the axioms (a)-(f) are satisfied 

12. Estimates on the interaction Hamiltonian                                                                                                         
Let ℱ # be the Pock space for a massive, neutral scalar Geld in two-dimensional space-time. The elements of ℱ # 
are sequences of functions on momentum space. Let the annihilation and creation operators be normalized by 
the relation 

                                                              �w(_), w∗(_�)� = �#(_ − _�).                                                             (12.1) 

Thus the free-field Hamiltonian is 

                                                 j[,k = ���- � w∗(_ )w(_)/(_)�#b` |_|�k .                                                       (12.2)   

The � = 0 field with hyperfinite ultraviolet cut-oft n is  

                                 �k#(�) = ���- � ���-exp(−�〈_, �〉)�w∗(_ ) + w(_)� |_|�k �#b`                                       (12.3) 

The spatially cut-off interaction Hamiltonian reads  

                                         j¬,k(�) = ���- � : �k#
(�): �(�) ℝ5 ∗ �#W �#b� =                                                           (12.4) 

                   ∑ J
pL ?���- � �#b`a ∙∙∙ ���- � �#b`� |_�|�k |_�|�k w∗(_ �) ∙∙∙ w∗;_ Ê<w;−_Ê(�<
pZ[ ∙∙∙                                                                                           

                    × w(−_�)�  J∑ `�(a), ∑ `>(�),  ��Z�  ∑ `>(b) 
 ��Z�
>Za L ∏ �/(_ �)�xa/��#b
>Za `  a … �#b`  
O,  

 where we let _ � = ;`>(a), `>(�), `>(b)<, � = 1,2,3.       
The total Hamiltonian reads 

                                                      jk(�) =  j[,k +  j¬,k(�)                                                                           (12.5) 

We let  

                                                ik = ���- � w∗(_ )w(_)�#b` |_|�k ,                                                                   (12.6) 

and 



                                                              K[,k# = ⋂ K;j[,k7 <. ∗7Z[ .                                                                         (12.7)   

Theorem 12.1 For any Ä ∈ ℝ5 ∗ +,-(#  and for fixed �(�) ∈ {+,-# ; ℝ5 ∗ 4#W<  there is a constant � such that as bilinear 

forms on K[,k# × K[,k#  

                                                    − 0j[,k
~� , 1j[,k

~� ,  j¬,k(�)23 ≤ Äj[,k� + �,                                                        (12.8)   

                                                   − Hik , ¥ik ,  j¬,k(�)¦N ≤ Äik� + �.                                                                 (12.9)   

Theorem 12.2 Let 4: ℱ # → ℱ # be an operator of the form 

              4 = ���- � �#b`a ∙∙∙ ���- � �#b`� |_�|�k �(_a, … , _�) |_�|�k w∗(_ �) ∙∙∙ w(−_�),                         (12.10)     

where �(_a, … , _�) ∈ '�# J; ℝ5 ∗ 4#W�<L. Then  

                           o(ik + �)xp/�4(ik + �)x(�xp)/�o# ≤ const‖�(_a, … , _�)‖Ù�# ,                                     (12.11)    

                                   5; j[,k + �<xa 0j[,k
~� , 1j[,k

~� ,423 ; j[,k + �<xa(ik + �)x(6}â)� 5
#

≤                                   

                           ≤ const Ç/~� J∑ `�(a), ∑ `>(�),  ��Z�  ∑ `>(b) 
 ��Z�
>Za L�(_a, … , _�)ÇÙ�#

,                                  (12.12) 

              50j[,k
~� , 1j[,k

~� ,423 (ik + �)x�/�5
#

≤ const × n
‖∑ /(_>)�(_a, … , _�)�>Za ‖Ù�# .                          (12.13)     

Theorem 12.3 Let the operator 4 be as above. Then 

                                50j[,k
~� , 1j[,k

~� ,423 (ik + �)x�/�5
#

≤ const‖�(_a, … , _�)‖Ù�# .                                   (12.14)     

Proof of Theorem 12.1.Introduce the � = 0 field �7#(�) with an hyperfinite ultraviolet cut-oft q < n: 
�7#(�) = ���- ô ���-exp(−�〈_, �〉)�w∗(_ ) + w(_)� 

|_|�7 �#b` 

The spatially cut-off interaction Hamiltonian  j¬,7(�) corresponding to the � = 0 field �7#(�) reads 

                                                j¬,k(�) = ���- � : �k#
(�): �(�) ℝ5 ∗ �#W �#b�.                                                      (12.15)     

Note that  

                                                 j¬,k(�) = strong #- lim7→#k  j¬,7(�).                                                          (12.16)       

If we write  j¬,k(�) as a sum of five operators of the form 4 in (12.10), then by Theorem 12.2 taken for the 

case v = 4 we get 

                                          5; j[,k + �<xa 0j[,k
~� , 1j[,k

~� ,423 ; j[,k + �<xa5
#

≤                                   



                            ≤ const Ç/~� J∑ `�(a), ∑ `>(�),  ��Z�  ∑ `>(b) 
 ��Z�
>Za L�(_a, … , _
)ÇÙ�#

.                                  (12.17) 

Since the kernel �(_a, … , _
) has an over-all factor �  J∑ `�(a), ∑ `>(�),  ��Z�  ∑ `>(b) 
 ��Z�
>Za L, where � (_) is the  

Fourier transform of the spatial cut-off �(�), the fast decrease of � (_)) ensures that  

                            /~� J∑ `�(a), ∑ `>(�),  ��Z�  ∑ `>(b) 
 ��Z�
>Za L�(_a, … , _
) ∈ '�#     

Thus the kernel for the corresponding cut-off interaction term �7 approximates �k in the sense that   

                 Ç/~� J∑ `�(a), ∑ `>(�),  ��Z�  ∑ `>(b) 
 ��Z�
>Za L J�k(_a, … , _
) − �7(_a, … , _
)LÇÙ�#

→# 0                 (12.18) 

as q →# n. This is holds for each 4 making up  j¬,k(�), so we infer that there exists a  q[ such that for any  q 

such that: q[ < q < n  

                     5; j[,k + �<xa 0j[,k
~� , 1j[,k

~� , J j¬,k(�) −  j¬,7(�)L23 ; j[,k + �<xa5
#

≤ a
� Ä.                            (12.19)               

13. Self #-adjointness of the interaction Hamiltonian                                                                                                               
For a real spatial cut-off �(�) in the Schwartz space {+,-# ( ℝ ∗ 4#W), the interaction part of the Hamiltonian  j¬,k(�) 

is self #-adjoint.                                                                                                                                                                 

Theorem 13.1 If � ∈ {+,-# ; ℝ5 ∗ 4#W< is real, then  

                                                 j¬,k(�) = ���- � : �k#
(�): �(�) ℝ5 ∗ �#W �#b�                                                       (13.1)     

is essentially self #-adjoint on K[,k# = ⋂ K;j[,k7 <. ∗7Z[ .                                                                          

Let us introduce a domain Ka,k#  obtained by applying any polynomial of the � = 0 fields �k#(@>), for real 

@> ∈ {+,-# ; ℝ5 ∗ 4#W< the no particle state Ω[. Clearly Ka,k# ⊂ K[,k# , and any vector Ω  in Ka,k#  is an entire vector for �k#(@ ), which means that the hyperinfinite power series 

                                                           ���- ∑ o8Ã#9(� ):o#7!. ∗7Z[ !7                                                                         (13.2)     

defines an entire function of s. Since Ka,k#  is #-dense in Fock space, Generalized Nelson's analytic vector 

theorem (see [19] Chapt.vi, sect.5) shows that for real @, �k#(@ ) is essentially self #-adjoint on Ka,k# . A similar 

argument can be made for the canonically conjugate � = 0 fields �k#(@ ). Let ℳk# denote the von Neumann 

algebra of operators generated by the spectral projections of all the � = 0 field  �k#(@ ), @ ∈ {+,-# ; ℝ5 ∗ 4#W<. The 

algebra ;k#  is maximal Abelian. In other words, a bounded operator which commutes with all operators in ℳk# 

is itself in ℳk#. Let us consider  �k#(@ ) for supp(@) ⊂ < ⊂ ℝ5 ∗ �#W, where < is an #-open region of space. (The 
support of a function is the smallest #-closed set outside of which the function vanishes identically.) Define =©#(<) as the von Neumann algebra of operators generated by the spectral projections of all the fields  �k#(@ ) 

and �k#(@ ) with supp(@) ⊂ <.  Since  

                               �k#(�, �) = ���-exp;��j[,k< �k#(�)���-exp;−��j[,k< =                                                (13.3) 

                            = ���- � �#b� ?∆#(� − �, �; v) �k#(�) − H 
#
#í ∆#(� − �, �; v)N  �k#(�)O ℝ ∗ �#W , 
where ∆#(�, �; v) is the solution of the generalized Klein-Gordon equation with Cauchy data ∆#(�, 0; v) = 0,   
#
#í ∆#(�, 0; v) = �#(�). (see [15],Eq.111 ) and ∆#(�, �; v) vanishes outside the light cone, we infer that  



                                     ���-exp;��j[,k<=©#(<)���-exp;−��j[,k< ⊂ =©#(<í),                                               (13.4) 

where <í is the region < expanded by �.                                                                                                            

Theorem 13.2 If �(�) ∈ {+,-# ; ℝ5 ∗ 4#W< is real and has its support in an #-open rectangular parallelepiped < ⊂
ℝ ∗ 4#b, then for the j¬,k(�) of (13.1) 

                                                       ���-exp J��j¬,k(�)L ∈ =©# ∩;k# .                                                                             
Theorem 13.3 Let > be any operator with domain  Ka,k#  such that   

                                                              > Ka,k# ⊂ K; �k#7(@ )<,                                                                         (13.5) 

                                                          > Ka,k# ⊂ K;;> ↾  Ka,k# <∗<,                                                                       (13.6) 

                                                                       �>,  �k#7(@ )� Ka,k# = 0.                                                                (13.7) 

Then  

                                                                    ;k#Ka,k# ⊂ K;> ↾  Ka,k#  <,                                                              (13.8) 

                                                                     �#->ä,;k#� Ka,k# = 0.                                                                    (13.9) 

Proof For Ω ∈ Ka,k# , from (13.5) and (13.7) we get 

                                                                         > �k#7(@ )Ω =  �k#7(@ )>Ω. 
But by (13.6), for real @ 

                        ‖> �k#7(@ )Ω‖#� = 〈>Ω,  �k#�7(@ )>Ω〉# = 〈>∗>Ω,  �k#�7(@ )Ω〉# ≤ ‖>∗>Ω‖# ‖ �k#�7(@ )Ω‖# . 
Thus the #-convergent power series (3.2) shows that for Ω ∈ Ka,k# ,              

                                                   #->ä J���-exp; ��k#(@ )<L Ω = ���-exp; ��k#(@ )<>Ω.                                 (13.10) 

It is clear that (13.10) is still valid with ���-exp; ��k#(@ )< replaced by strong #-limits of sums of such 

exponentials, and hence (13.8) and (13.9).                                                                                                                                                    
Theorem 13.4 Let ℳ is a maximal Abelian algebra of bounded operators on a non-Archimedean Hilbert space ℋ with a cyclic vector Ω[. Let > be a symmetric operator with domain ℳΩ[, and let > commute 
with ℳ.Then > is essentially self #-adjoint.                                                                                                                                                         

Proof Without loss of generality, ℳ = ' . ∗# (?) and ℋ = '�#(?) for some #-measure space (?, Σ, q), and Ω[ is 

the function 1. Let @ ∈ '�#(?). Then � ∈ '�#(?) and > is multiplication by �, with domain ' . ∗# (?). Let @ ∈ '�#(?) 

and suppose �@ ∈ '�#(?) also and let @7(�) = @(�) if |@(�)| ≤ 8, 8 ∈ ℕ ∗  and @7(�) ≡ 0 otherwise. Then @7 ∈ ' . ∗# = K(>) and @7 →# @, �@7 →# �@ in '�#  norm by the bounded #-convergence theorem. Thus �@, �@  is in 

the graph of the #-closure of >. Thus the #-closure of > is self #-adjoint, and > is essentially self #-adjoint.                                      
Remark 13.1 Let >7 , 8 ∈ ℕ ∗  be a hyperinfinite sequence of operators with the property of > in the Theorem 
13.4. Then  >7 →# > strongly on the domain ℳΩ[ if and only if >7Ω[ →# >Ω[.                                                                                              
Proof of the Theorems 13.1 and 13.2. We apply now the Theorems 13.3 and 13.4 with the case > = j¬,k(�), ℳ 

in Theorem 13.4 as in Theorem 13.3, the non-Archimedean Hilbert space Fock space ℱ #, and Ω[ the Fock no-
particle state. The hypotheses (13.5) and (13.6) can be verified by a direct computation. Thus j¬,k(�) is 

essentially self #-adjoint on Ka,k# ⊂ K[,k# , and hence j¬,k(�) is essentially self #-adjoint on K[,k# .                                                                  

If we assume that sup(�) ⊂ <, then as < is an #-open region, sup(�) ⊂ <a where <a is < contracted by some 

small amount Ä > 0, Ä ≈ 0. Since j¬,k(�) commutes with ℳ, and ℳ is maximal Abelian, -exp J��j¬,k(�)L  



∈ ℳ. Furthermore the argument in the proof of Theorem 13.3, can be repeated to show that j¬,k(�) commutes 

with =©#;< a� <, where < a�  is the complement of the #-closure of <a. Since =©#; ℝ5 ∗ 4#b< is irreducible and j¬,k(�)  
commutes with =©#;< a� <, ���-exp J��j¬,k(�)L ∈ =©#(<� ) where <�  is <a  expanded by any amount Ä� > 0. 
Taking Ä� < Ä, we have ���-exp J��j¬,k(�)L ∈ =©#(<  ), which completes the proof.                   

 14. #-Self adjointness of the total Hamiltonian                                                                                              
Theorem 14.1 (a) For real �(�) ∈ {+,-# ; ℝ5 ∗ 4#W<, the total Hamiltonian jk(�) = j[,k(�) + j¬,k(�) is self 

#-adjoint with the domain K;jk(�)< = K Jj[,k(�)L ∩ K Jj¬,k(�)L.                                                                                                     

(b) The total Hamiltonian jk(�) is essentially self #-adjoint on the domain 

                                                                    K[,k# = ⋂ K;j[,k7 <. ∗7Z[ .                                                                          

Remark 14.1 In order to prove the self #-adjointness of jk, we combine the estimates of section 14, the         #-self adjointness of j¬,k(�)  proved in section 15, and a singular perturbation theory developed in [19], see 

also section 21 in this paper. We need the following result which is a special case of Theorem 21.6 from section 
21 in this paper.                                                                                                                                                                                             
Theorem 14.2 Under the hypotheses (i)-(iii) below, the operator jk = j[,k + j¬,kz is self #-adjoint.                               

(i) Both j[,k   and j¬,k are self #-adjoint. The domain K[,k#  is contained in the domain of j¬,k, and j¬,k is 

essentially self #-adjoint on K[,k# .                                                                                                                                                              

(ii) Let ik  be a positive self #-adjoint operator, commuting with j[,k, and such that ik ≤ const j[,k. Suppose 

that the operators (ik + �)xaj¬,k(ik + �)xa  and (ik + �)xaj¬,k(ik + �)xb are bounded.                                                                                               

(iii) Suppose that for any Ä > 0, there exists a number � ∈ ℝ ∗ 4#  such that as bilinear forms on K[,k# × K[,k#  , 

                                                               −j¬,k ≤ Äik + ��,                                                                             (14.1)                                            

                                                             − 0j[,k
~� 1j[,k

~� j¬,k23 ≤ Äj[,k� + ��,                                                       (14.2)  

                                                               − Hik , ¥ik , j¬,k¦N ≤ Äikb + ��.                                                          (14.3) 

Proof of Theorem 14.1 In order to prove that jk(�) is self #-adjoint, we apply Theorem 16.2 in the case that j[,k is   the free Hamiltonian, ik  is the number operator, and j¬,k is the interaction Hamiltonian j¬,k(�). Thus 

we need to verify (i)-(iii). Condition (i) was dealt with in Theorem 13.1, while condition (ii) is a consequence of 

(14.11).In refs.[15] and [17] it is shown that for any Ä > 0, there is a number � ∈ ℝ5 ∗ 4# such that                                                 

                                                                      −j¬,k(�) ≤ Äj[,k + ��.      
By following that proof, but using the smoothing operator ���-exp(−�ik ), in place of ���-exp;−�j[,k<, one 

arrives at the estimate (16.1) required in (iii). The remaining estimates (14.2) and (14.3) were established in 

Theorem 14.1.Thus we conclude from Theorem 14.2 that jk(�) is self #-adjoint on the domain K;j[,k< ∩
K Jj¬,k(�)L . We now show that jk(�) is essentially self #-adjoint on K;j[,k<. We first show that jk(�) is 

essentially self #-adjoint on K� = K;j[,k< ∩ K(ik�). By (14.11) it is clear that the domain of jk(�) 

contains K�.    For c ∈ K;jk(�)< = K;j[,k< ∩ K Jj¬,k(�)L, consider hyperinfinite sequence c7 ∈ K�, 8 ∈ ℕ ∗  

defined by 

                                                                  c7 = 8(8� + ik )xac.                                                                    (14.4)   

Thus ‖c7 − c‖# + oj[,kc7 − j[,kco# →# 0 as 8 → ∞ ∗ .                                                                                                                      



We need to study the following differences 

                   j¬,kc7 − j¬,kc = −ik (8� + ik )xa j¬,kc + 8¥j¬,k , (8� + ik )xa¦c, 8 ∈ ℕ ∗ .                           (14.5)   

Since ik (8� + ik )xa, 8 ∈ ℕ ∗  is a uniformly bounded hyperinfinite sequence #-converging to zero on the #-dense set K(ik ), it #-converges to zero and oik (8� + ik )xa j¬,kco# as 8 → ∞ ∗ .  But for the second term in 

(14.5) we get                                                                                                                     

                8¥j¬,k, (8� + ik )xa¦c = ¥j¬,k, (8� + ik )xa¦(8� + ik )8(8� + ik )xac =                                   (14.6)   

                       = (8� + ik )xa¥ik , j¬,k¦8(8� + ik )xac =               

                       = (8� + ik )xa(� + ik )(� + ik )xa¥ik , j¬,k¦ × 

                       × (� + ik )xa8(8� + ik )xa(� + ik )c.  
Note that as 8 → ∞ ∗ , hyperinfinite sequence �7 = 8(8� + ik )xa(� + ik )c, 8 ∈ ℕ ∗  #-converges strongly to (� + ik )c, that by (14.11), (� + ik )xa¥ik , j¬,k¦(� + ik )xa  is bounded, and hyperinfinite sequence A7 =
= (8� + ik )xa(� + ik )c, 8 ∈ ℕ ∗   #-converges strongly to zero. Thus we get o¥j¬,k, (8� + ik )xac¦o# →# 0 as 

8 → ∞ ∗ , and so oj¬,kc7 − j¬,kco# →# 0 as 8 → ∞ ∗ . Thus we can to conclude that jk(�) is the #-closure of 

jk(�) restricted to K� , so jk(�) is essentially self #-adjoint on K�. Let K� be a Hilbert space endowed with the #-norm  ‖∙‖#�  such that 

                                               (‖c‖#� )� = ‖c‖#� + oj[,kco#
� + ‖ik c‖#� .                                                       (14.7)   

From (14.11) we infer that  

                                                                             ‖jk(�) c‖# ≤ const‖c‖#� , 
so that jk(�) is essentially self #-adjoint on any subset of  K� which is #-dense in the Hilbert space  K�. For 

any c ∈  K�, cB = ���-exp;−�j[,k<c ∈ K[,k# = ⋂ K;j[,k7 <,. ∗7Z[  and ‖c − cB‖�~,Ã# →# 0 as  � →# 0. Thus 

jk(�) is essentially self #-adjoint on K[. 

15. Removing the spatial cut-off and locality                                                                                                         
For the reader's convenience, we sketch a proof of generalized Segal's theorem that the self #-adjointness of jk(�) allows the removal of the spatial cut-off. In fact, if S is a bounded function of the free fields localized in 
a bounded region of space at � = 0, then 

                                                +í(S) = ���-exp;��jk(�)<S���-exp;−��jk(�)< 

is independent of �(�) provided that �(�) = �, the desired coupling constant, on a sufficiently large region, 
depending on �. Furthermore, if S is localized in the region of space Ö, then +í(S) is localized in the region Öí, 
where Öí is the region Ö expanded by �. (We have taken the velocity of light to be one.) In other words, the time 
translation +í gives rise to a local theory. If one chooses for the operator S a spectral projection of the � = 0 
field  �k#(@ ),  one can piece together the time translation operator for the fields themselves. In section 16, we 
showed that jk = j[,k + j¬,k, which is sum of two self #-adjoint operators, is itself self #-adjoint. As a 

consequence of this fact, the generalized Trotter product formula  (see [19] Chapt.6, section 5.10) says that for 
all c ∈ ℱ #   

                         ���-exp;��jk(�)<c = #- lim7→ . ∗ JH���-exp J>í�C,Ã(­)
7 LN H���-exp J>í�D,Ã(­)

7 LNL c. 
And therefore we obtain 



 +í(S)c =
#- lim7→ . ∗ JH���-exp J>í�C,Ã(­)

7 LN H���-exp J>í�D,Ã(­)
7 LNL7 S JH���-exp Jx>í�C,Ã(­)

7 LN H���-exp Jx>í�D,Ã(­)
7 LNL7 c.  

I.et < be the region of space defined by |�| < ð, � =  0, and let S ∈ =©#(<  ), where =©#(<  ) is defined above in 
section 13. Given an arbitrary, positive Ä, split �(�) into two infinitely #-differentiable parts �a(�), ��(�)  such 
that 

                                                                    �(�) = �a(�) + ��(�),   
where supp;�a(�)< ⊂ <� and supp;��(�)< ∩ <E� = ∅ is empty. Write now 

                                                              j¬,k(�) = j¬,k(�a) + j¬,k(��), 
so that as a consequence of theorems 15.1 and 15.2,  j¬,k(�a) and j¬,k(��) commute, and 

                                         ���-exp J>í�D,Ã(­)
7 L = H���-exp J>í�D,Ã(­~)

7 LN H���-exp J>í�D,Ã(­�)
7 LN. 

Furthermore, 

                                                                  ���-exp J>í�D,Ã(­~)
7 L ∈ =©#(<�   ), 

and ���-exp J>í�D,Ã(­�)
7 L commutes with =©#;<�/
   <. Therefore, 

       Sa(�) = H���-exp J>í�C,Ã(­~)
7 LN H���-exp J>í�D,Ã(­�)

7 LN S H���-exp J− >í�D,Ã(­~)
7 LN H���-exp J− >í�C,Ã(­�)

7 LN 
depends on �(�) only in the region <�,  and by the free propagation property (15.4), 

                                                               Sa ∈  =©#;<(í/7)(�< 

We continue step by step, and after 8 ∈ ℕ\ℕ ∗  steps by using hyperinfinite induction principle, see ref. [10], we 
conclude that 

                                         S7(�) = JH���-exp J>í�C,Ã(­~)
7 LN H���-exp J>í�D,Ã(­�)

7 LNL7 S × 

× ¡1���-exp ¡− ��j¬,k(�a)8 ¢2 1���-exp ¡− ��j[,k(��)8 ¢2¢7
 

depends on �(�) only in the region <í(7�  and 

                                                                      Sa(�) ∈  =k#(<í(7�) 

Since Ä can be chosen arbitrarily, S7(�) depends on �(�)  only in the region #- <Gí, the #- closure of <í, and 

                                                                      S7(�) ∈ ⋂ =k#(<í(�)�H[ . 

Thus S7(�) commutes with any local observable P localized in #-open region of space <� such that <� and  <í 
are disjoint. As this is true for each 8 ∈ ℕ\ℕ ∗ , it is true for  

                                                                 +í(S) = strong #- lim7→ . ∗ S7(�). 
Hence +í(S) is local and it depends on �(�) only in the region #- <Gí, where we choose �(�) = �. Thus we 
conclude that the spatial cut-off has been removed and the resulting theory is local. 



16. Semi-boundedness of the total Hamiltonian                                                                                                             
16. Reduction to a Problem with Discrete Momentum We use the non-Archimedean Fock space 

representation for our field �k#(�), � ∈ ℝ5 ∗ 4#b. The Fock non-Archimedean Hubert space ℱ # is a direct sum 

                                                                       ℱ # = ���-⨁7Z[. ∗ ℱ7#,                                                                                                          
where ℱ7# is the space of 8 non-interacting particles, i.e. ℱ7# is the space of symmetric square #-integrable 

functions, i.e.'�#; ℝ5 ∗ 4#b< functions of 8 variables. Let _ = (`a, `�, `�) ∈ ℝ5 ∗ 4#b  

                                                q(_ ) = (_� + q[�)a/� = (`a� + `�� + `b� + v[�)a/�,             
                         �k#x(�) = ���- � ���-exp(�〈_, �〉) ℝ5 ∗ �#¿ w(_)m(|_|, n)�q(_ )�xa/��#b`,                                 (16.1) 

                         �k#((�) = ���- � ���-exp(�〈_, �〉) ℝ5 ∗ �#¿ w∗(−_)m(|_|, n)�q(_ )�xa/��#b`,                            (16.2) 

                                                 m(|_|, n) = 1 if |_| ≤ n and (|_|, n) = 0 if |_| > n, 
and  �k#(�) = �k#x(�) +  �k#((�), where w(_)  and w∗(_) are the annihilation and creation operators, 

                                                          �w(_), I∗(_�)� = �#(_ − _�).                                                                 (16.3) 

By definition,  

                                                 ∶ �k#J(�) ≔ ∑ JJpLp  �k#((�)p �k#x(�)Jxp .                                                       (16.4) 

Remark 16.1 Remind that Wick product differs from the ordinary product in that all the annihilators are placed 

to the right and the creators are placed to the left. ∶ �k#J(�):  is not an operator, but it is a densely defined 
bilinear form. We take Fourier transforms to compute  

       ���- � ∶ �k#J(�): ℝ5 ∗ �#¿ ℎ(�)�#b� = ∑ JJpL ���- � w∗(−_a) ∙∙∙ w∗;−_p<w;_p< ℝ5 ∗ �#¿Kp ∙∙∙ w;_J< ×                 (16.5)    

                                          × ���-ℎé;_a +∙∙∙ +_J< ∏ m(‖_>‖, n)¥q;_� <¦xa/�J>Za �#b`> ,  
where ���-ℎé is the Fourier transform of ℎ. We assume ℎ is in '�# and so ���-ℎé is in '�#  also. Since q (_) ~ |_| 
for large |_|, one can show that  

                                         ���-ℎé;_a +∙∙∙ +_J< ∏ m(‖_>‖, n)¥q;_� <¦xa/� ∈J>Za '�# .                                         (16.6)   

It is well known that (16.6) implies that each integral on the right side of (16.5) is an operator defined on the 

domain  K;iJ/�< of iJ/�. This domain is the set of  c = c[, ca, … , cp ∈ ℱp#   with 

                                           ���- ∑ 8J/�7 ‖���- ∏ m(‖_>‖, n)7>Za c7‖#�� < ∞ ∗ .                                               (16.7)   

Thus (16.5) is an operator defined on K;iJ/�<. Similarly j[.k + ���- � 	;∶ �k#(�)<: ℝ5 ∗ �#¿ �#b� is an operator 

defined on the #-dense domain, K(j[.k) ∩ K;iM/�<, where � is the degree of the polynomial 	. We 

approximate now (16.5) by a hyperfinite sum. Choose numbers � ≈ 0 and n ∈ ℝ5 ∗ 4#\ ℝ5 ∗ 4,+,-# . We define now an 

hyperfinite approximation in configuration space. Under this approximation, the momentum space variable _ = (`a, `�, `b) ∈ ℝ5 ∗ 4#b is replaced by a discrete variable _ ∈ ΓNb  

                                     ΓNb = �_ = (`a, `�, `b)|`> = �8> , 8> ∈ ℤ; � = 1,2,3 ∗                                                   (16.8)    

Thus we define ℱ«#, the Fock space for hyperfinite volume ·b = �xb as   



                                     ℱ«# = ℭ J¸�#(Γ«b)L = ℂ ∗ #⨁¸�#(¹«b)⨁�¸�#(¹«b)⨂]¸�#(Γ«b) ∙∙∙                                          (16.9)    

We choose now one to one correspondence  ℤ ↔ ∗ ℤ� × ∗ ℤ� × ℤ� = ∗ ∗ ΓNb given by vector-function ℘(v) 

                                          ℘(v) = �`a(v), `�(v), `b(v) = _(v)                                                           (16.10)    

and such that 

                                                                 ℘(−v) = −℘(v).                                                                        (16.11)    

And we define now 

                                                                Γk,Nb = �_ ∈ ΓQb||_| ≤ n .                                                                (16.12)  

We set now 

                         wN;_�v�< = ���xb/� H���- � �#¸aN[ ���- � �#¸�N[ ���- � �#¸bN[ w�_�v� + ¼�N,                    (16.13)    

                             w N∗ ;_�v�< = ���xb/� H���- � �#¸aN[ ���- � �#¸�N[ ���- � �#¸bN[ w∗�_�v� + ¼�N.              (16.14)    

Then one obtains 

                                                 ¥w N∗ ;_�va�<, wN;_�v��<¦ = R�~�� = ñ1 if va = v�0 if va ≠ v�                                (16.15)      

Let 

                                                          j[,k,N = ���- ∑ q�_ �_∈½Ã,T¿ w N∗ �_�wN�_�.                                            (16.16) 

One can check that each c in K�j[.k� is in K;j[,k,N< also and that  

                                                                   #-limN→#[ j[,k,Nc = j[.k c.                                                       (16.17) 

Next we approximate (16.5) by 

                         ∶ �k,N#J ���: = �bJ/� ∑ JJpL ���- ∑ w N∗ �−_a� ∙∙∙ w N∗ ;−_p<wN;_p<_∈ÁÃ,T¿p ∙∙∙ wN;_J< ×              (16.18)    

                                                    × ���-ℎé;�_a� +∙∙∙ +¥_J¦< ∏ �q��_�� ��xa/�> ,   
where 

                                         ℎéN�_� = ���- � � � ;���-exp��〈_, �〉�<ℎ���²#/Nx²#/N²#/Nx²#/N²#/Nx²#/N �#b� 

and �_� = ��`a�, �`��, �`b��, where  

                        �`a� = sup�¸a|�¸a, ¸�, ¸b� ∈ ΓNb, ¸a ≤ `a , �`�� = sup�¸�|�¸a, ¸�, ¸b� ∈ ΓNb, ¸� ≤ `� ,  
                        �`b� = sup�¸b|�¸a, ¸�, ¸b� ∈ ΓNb, ¸b ≤ `b  
is the integral part of _ relative to the lattice ΓNb. Since ℎ ∈ 'a# ,  ℎéN is #-continuous and   

                ���-ℎé;�_a� +∙∙∙ +¥_J¦< ∏ �q��_�� ��xa/�> →# ���-ℎé;_a +∙∙∙ +_J< ∏ m�‖_>‖, n�¥q;_� <¦xa/�J>Za  

uniformly. Let K[# 
 be the set of states c = �c[, ca, …     with c7�_a, … , _7� = 0 for 8 < ∞ ∗  or ���- ∑ |`>|> <∞ ∗  large. If U, c ∈ K[#  then  



                                    #- limN→#[〈U, ∶ �k,N#J (�): c〉# = 〈U, ���- � ∶ �k#J(�): ℝ5 ∗ �#¿ �#b�c〉.                             (16.18)    

Thus the bilinear form of  

                                                             jk,N = j[,k,N + ∑ �J ∶ �k,N#J (ℎ):J                                                        (16.19) 

#-converges to jk on K[# × K[# where �[, … , �ú   are the coefficients of 
[, 
a , … , 
ú in the polynomial 	(
). 
Hence if the jk,N are semibounded with a lower bound independent of � then jk is semibounded also. Let ℱN# 

be the subspace of ℱ # consisting of functions which are piece wise constant between lattice points. In other 
words, 

                                                                c = �c[, ca, … , c7 , …  ∈ ℱN# if  

                                                          c7(_a, … , _7) = c7(�_a�, … , �_7�). 
Let ℱk,N#  be the subspace of ℱN# defined by the restriction 

                                                             c7(_a, … , _7) = 0 if �_>� ∉ Γk,Nb  

for some �, 1 ≤ � ≤ 8.                                                                                                                                                        

The operators w N∗ (_) and w N (_), _ ∈ ΓW,Qb , leave ℱk,N#  invariant and act irreducibly on ℱk,N# . We set now � = 2xX,  
n = 2X and observe that ℱ�Y,�}Y#  increases monotonically with � and that 

                                                             K[#� = K[# ∩⋃ ℱ�Y,�}Y#Z  

is #-dense in ℱ # and jk ⊂ #-(jk ↾ K[#�)ääääääääääääää. Thus it is sufficient to prove the semiboundedness of  

                                                    jk,N ↾ ;K;j[,k< ∩ K;ikM/�< ∩ ℱk,N#  < 

with a lower bound independent of �.                                                                                                                          

17. Diagonalizing the potential. In this subsection we give a new representation of ℱk,N#   in which the 

interaction term of  ∶ �k#J(ℎ): is a multiplication operator. Let 

ì ;_(|v|)< = ;2x�q(_(v) )<a/� HwN  ;_(v)< + w N∗  ;_(v)< + w N  ;−_(v)< + w N∗  ;−_(v)<N, 
           ì ;_(−|v|)< = �;2x�q(_(v) )<a/� H−wN  ;_(|v|)< + w N∗  ;_(|v|)< + w N  ;−_(|v|)< − w N∗  ;−_(|v|)<N, 

[ ;_(|v|)< = �;2x�q(_(v) )<a/� HwN  ;_(v)< − w N∗  ;_(v)< + w N  ;−_(v)< − w N∗  ;−_(v)<N, 
              [ ;_(−|v|)< = ;2x�q(_(v) )<�/\ HwN  ;_(|v|)< + w N∗  ;_(|v|)< − w N  ;−_(|v|)< − w N∗  ;−_(|v|)<N, 
              [� = [ ;_(v)<,  ì� = ì ;_(v)<, 
              ì ;_(v)< = ] ì ;_(|v|)< if v > 0,

ì ;−_(|v|)< if v < 0, 
for 0 ≠ _ ∈ ΓNb and let  

                                                                ì[ = (q[/2)a/� HwN  (^) + I R∗  (^)N,      
                                                                [[ = �(q[/2)a/� HwN  (^) − I R∗  (^)N.  



Using the equations mentioned above one can compute that 

                                j[,k,N = ���- ∑ 2xa�∈ ℤ,|_(�)�©| ∗ �[�� + q�(_(v) )ì�� − q(_(v) )�.                              (17.1) 

 We replace now [� and ì� by unitarily equivalent operators. Let  

                                                                  ℋk,N# = ���-⨂_∈½ê,_¿ ℋ_#, 
where  ℋ_# is '�#; ℝ5 ∗ 4#< with respect to the Gaussian #-measure 

                                        U_�(ì)�#ì = (q(_ )/�#)a/�;���-exp(−q(_ )ì�)<�#ì.                                        (17.2)  

There is a unitary equivalence between ℋk,N#  and ℱk,N#  which sends ì� into multiplication by ì in the factor 

ℋ_(�)#  and [� into the operator 

                                                                    U_xa(ì)� J M#M#`LU_ (ì) 

again acting in the factor ℋ_#. The proof of this statement is essentially generalized von Neumann's uniqueness 

theorem for irreducible representations of the commutation relations. We identify ℋk,N#  and ℱk,N#  and we 

identify ì�, etc. with its image, multiplication by ì, etc. Let  

                                        j7(_ ) =  2xaU_xa(ì) þ− J M#M#`L� + q(_ )ì�� U_ (ì) =                                              (17.3)  

                                                           = −2xa J M#M#`L� + q(_ )ì J M#M#`L 

acting on ℋ_#. Now −j7(_ ) is the #-infinitesimal generator of a known Markoff process and furthermore the 

operator ���-exp;−j7(_ )< is an integral operator and the kernel can be computed explicitly. In particular 

                                 ;���-exp;−j7(_ )<c <(ì) = ���- � [í ℝ ∗ �# (ì, ì�)c (ì�)U_�(ì�)�#ì�                              (17.4) 

for c ∈ ℋ_#, where  

                            [í(ì, ì�) = �1 − ���-exp(−q�)� ñ���-exp þ− 7;`(x;a¤í-bcd(x7í)<`<�
axa¤í-bcd(x�7í) �+ qì��ò.                   (17.5)        

Let ì now denote a variable in a Euclidean space �k and let ì have coordinates ì� = ì ;_(v)<. Then  

                                                Uk�(ì)�#Wì = ���- ∏ Uk�;ì(_)<�#_∈½Ã,T¿ ì(_)                                                (17.6)        

is the product of the #-measures (17.2) and 

                                                                     ℋk,N = '�#(Uk�(ì)�#ì). 

In addition to the function space '�#, we will have to consider 'ú#(Uk�(ì)�#ì). Since ���- �Uk�(ì)�#ì = 1, we 

have 'ú�# ⊂ 'ú~#  if ûa ≤ û�. .                                                                                                                                                         

Lemma 17.1. ���-exp;−j[,k,N< is a contraction operator on 'ú#, 1 ≤  û ≤ ∞ ∗ . If  > ≤ �, 1 < [ and û < ∞ ∗  it is 

a contraction from 'J#  to 'ú#, for some > not depending on �. If [ is bounded away from one and û is bounded 

then > does not depend on [ or û.                                                                                                                                

Now we show that the interaction term ∶ �k,N#J (�): is a polynomial in the ì' s. Let 

    �k,N# (�) = �b/����- ∑ ���-exp(�〈_(v), �〉)�q(�_(v) � )�xa/� ÅIR ;_(v)< + w N∗  ;−_(v)<Æ_(�)∈½Ã,_¿     (17.7) 



Since 

                  �q(�_(v) � )�xa/� ÅIR ;_(v)< + w N∗  ;−_(v)<Æ = eì ;_(|v|)< + �ì ;−_(|v|)< if v > 0 
√2ì[ if v = 0ì ;_(|v|)< − �ì ;−_(|v|)< if v < 0

 

 �k,N# (�) and �k,N#J (�) are polynomials in the ì's. We use the canonical formula 

                                                 �k,N#J (�) = ∑ J!;�}�<
(Jx�p)!p! Ekp�J/��pZ[  : �k,N#Jx�p(�):                                                        (17.8) 

to conclude by induction on [ that ∶ �k,N#J (�):  is also a polynomial in the ì's. In (18.2.8) the coefficient 

                                                                                   
J!;�}�<

(Jx�p)!p! 
is just the number of ways of selecting Ñ unordered pairs from [ objects and Ek is defined by the formula 

                                                                      Ek = �b ∑ �q(�_ � )�xa/�_∈½Ã,T¿     

we have the bound 

                                                                             Ek ≤ fan�                                                                            (17.9) 

where fa is independent of n and �. Thus 

                                           ∶ �k,N#J (ℎ) :  = ���- � � � ∶ �k,N#J (�): ℎ(�)²#/Nx²#/N²#/Nx²#/N²#/Nx²#/N �#b� 

is a polynomial in the ì' s, as desired.                                                                                                                                         
Let  

                                                                     	(
) = �[ + �a
 +⋯+ �M
M 

be the polynomial in 
 and let 

                                                                     ·k,N = ∑ �J[�J�M ∶ �k,N#J (ℎ):                                                       (17.10) 

denote our approximate interaction term, as in (18.1.19).                                                                                                       
Lemma 17.2. For some constant f� , independent of � and n, we have 

                                                                        − f�nM ≤ ·k,N .                                                                       (17.11) 

Proof We use (17.8) to remove the Wick ordering in (17.10) and obtain 

                                          ·k,N = ∑ wJ(Ek) ?���- � � � ∶ �k,N#J (�): ℎ(�)²#/Nx²#/N²#/Nx²#/N²#/Nx²#/N �#b�OJ   

where wJ(Ek) is a polynomial in Ek of degree at most �(� − [)/2�. The coefficients of wJ depend only on the 

coefficients of 	, and so we have an estimate 

                                                                        �wJ(Ek)� ≤ f� × Ek(M xJ)/��. 
Since wM = �M > 0 and since � is even by hypothesis, it follows that  

                                                             0 < ∑ wJ(Ek)J 
J for f��(1 + Ek) < |
|� 



and 

                                                                 −Ek(M/��f��� ≤ ∑ wJ(Ek)J 
J  

for all 
. We bound Ek by (17.9) and the proof is complete.                                                                                                        
Lemma 17.3 Function ·k,N ∈ for all û < ∞ ∗  and if  � ≤ n, then  

                                            o·k,N − ·B,No#�p
�p ≤ (�Ñ)! × fbp × (n�M − ��M)p,                                                (17.12)  

where  fb is a constant which is independent of �, � and n.                                                                                                          

Proof We use the particle representation, ℱk,N# , in place of the representation ℋkN = '�#(Uk�(ì)�#ì). Now 

1 ∈ ℋkN corresponds to the vacuum state Ω[ = �1,0,0, …  ∈ ℱ # 

so  

                                               o·k,N − ·B,No#�p
�p = ���- �;·k,N − ·B,N<�pUk�(ì)�#ì =                                  (17.13) 

                                           = 〈;·k,N − ·B,N<ph[, ;·k,N − ·B,N<pΩ[〉# =  Ç;·k,N − ·B,N<pΩ[Ç#
� .  

We set � =  0 above and get  

                                                                      o·k,No#�p
�p =  o·k,N�p Ω[o#

�
                             

and so ·k,N ∈ 'ú# for all û < ∞ ∗ . We return to (17.13) and note that ·k,N − ·B,N is a sum of �2M terms of the form 

                            S = �J�bJ/����- ∑ H���-ℎé;∑ _>J�Za <w#(±_>) ∏ ¥q;_� <¦xa/�J>Za NB�|_³|�k                          (17.14) 

where in the summation over _> we have _> ∈ Γk,Nb  for 1 ≤ [ ≤ �, [ ≤ �, and _> ∉ ΓB,Nb  for at least one �. 
Summing again over the same range of _> we get                                           

                              �bJ���- ∑ H���-ℎé;∑ _>J�Za < ∏ ¥q;_� <¦xa/�J>Za NB�|_³|�k ≤ f
 × (n�M − ��M)                  (17.15) 

and f
 is independent of �, n and �.                                                                                                                                    
Let c be a state with at most ¸ particles. It follows from (17.15) and the form of S that 

                                                ‖SΩ[‖#� ≤ ;(¸ + [)!/¸!< ×
× (n�M − ��M) ‖c‖#� 

and furthermore Sc is a state with at most ¸ +  [ particles. Thus if we have operators Sa, . . . , Sp of the form 

(17.14), 

                                                                 oSa ∙∙∙  SpΩ[o#
� ≤ (�Ñ)! f
p��Mp . 

Hence  

                                                Ç;·k,N − ·B,N<pΩ[Ç#
� ≤ (�Ñ)! × fbp × (n�M − ��M)p,                                      

and the proof is complete.  

18. Path space and corresponding #-measure                                                                                                         
Let ì now denote a variable in a Euclidean space �kb = ℝ5 ∗ 4#W   amd let �# be the space of #-continuous paths  



ì = ì(è) ∈ �kb, 0 ≤ è < ∞ ∗ . There is a #-measure on �# intrinsically associated with the 

semigroup ���-exp;−�j[,k,N<. To define this #-measure we set ì_ = ì(_) and  

                                     [_í (ì_, ì_� ) = U_�(ì_� )�#ì_� = ö÷�ì_(�) = ì_� |ì_�0� = ì_                                         (18.1)  

the probability that ì_��� = ì_�  if it is known that ì_�0� = ì_ ∙ [_í  is defined by (17.5) we have added a subscript 
k to indicate the dependence on q = q�_�. Let 

                                                           [©í �ì , ì �� = ���- ∏ [_í �ì_, ì_� �_∈½ê,_¿ .                                                     (18.2) 

The +#- field [19] of #-measurable subsets of �# is generated by the sets  

                                                               ì�è>� ∈ P> , 1 ≤ � ≤ Ñ,                                                                         (18.3) 

where P> is a #-Borel subset of  �kb. The #-measure of (18.3) is   

                      ���- � ���- ∏ [©]³x]³}~�ì�è>� , ì�è>xa�  �p>Z�  )�×∙∙∙× )� Uk�;ì�è>�<�#ì�è>�Uk�;ì�0�<�#ì�0�         (18.4)  

if  èa = 0 < è� < ⋯ < èp . The definition (18.4) is forced by the definition (18.1) together with the Markov 

character of the process, the stipulation that each coordinate ì_ of ì defines an independent process and the 

specification of U_��ì��#ì as the probability distribution of the initial point ì�0� of the path ì.                                           
If ·a, … , ·p ∈ 'p#;� kb ,U_��ì��#Û<  then we compute 

                                      ���- � ���- ∏ ·>;ì�è>�<> �#Û = ���- � ·a;ì�0�<Uk�;ì�0�<�#ì�0� ×                     (18.5) 

×¥���-exp;−�èa − è[�j[.k,N<·����-exp;−�è� − èa�j[.k,N<;… ;·pxa���-exp;−�è> − è>xa�j[.k,N<·p< … <¦;ì�0�<  

and  

                                                      ����- � ���- ∏ ·>;ì�è>�<> �#Û� ≤ ���- ∏ ‖·>‖#p>                                       (18.6)     

using (18.4) and the fact that ���-exp;−j[,k,N<) is a contraction on 'ú# . Furthermore (18.5) and (18.6) remain 

valid when some of the times è> coincide.                                                                                                                        

Lemma 18.1 Let · be a polynomial function on �kb . Then  ���- � · ;ì�è �<�#èí[ ∈ 'J# ��#, �#Û�  for all [ < ∞ ∗ .  and 

                                                           Ç���- � · ;ì�è �<�#èí[ Ç#Ê ≤ �‖·>‖#p 

for Ñ ∈ ℕ ∗  an even positive integer.                                                                                                                               
Lemma 18.2 Let û ∈ �1,2�. There is a finite > independent of � such that if � ≥ > and if U and c in 

'�# J'�#�Uk��ì��#ì�L then U�ì�0��c�ì���� ∈ 'ú#��#, �#Û� and 

                                                        ‖U�ì�0��c�ì����‖#ú ≤ ‖U‖#� × ‖c‖#�. 
The > can be chosen independently of û provided û is bounded away from 2. 
19. The generalized Feynman Kac formula. The generalized Feynman Kac formula states that 

       〈U, ���-exp;−�jk,N<c〉# = ���- �U;ì�0�< ?���-exp J− H���- � ·k,N;ì�è�<í[ �#èNLO c;ì�è�<�#Û.   (19.1)        

The RHS of (19.1) is bounded by 



                            oU;ì(0)<c;ì(è)<o#J( × Ç���-exp J− H���- � ·k,N;ì(è)<í[ �#èNLÇ#J ≤   

                               ≤ ‖U‖#� × ‖c‖#� × Ç���-exp J− H���- � ·k,N;ì(è)<í[ �#èNLÇ#J    

for [ >  2 and for � large, by Lemma 18..2. Thus 

                                   o���-exp;−�jk,N<o# ≤ Ç���-exp J− H���- � ·k,N;ì(è)<í[ �#èNLÇ#J 

and therefore 

                                    �xa ñ���-ln þÇ���-exp J− H���- � ·k,N;ì(è)<í[ �#èNLÇ#J�ò ≤ jk,N .                           (19.2) 

Let 

                                                               � B = ���- � ·k,N;ì(è)<í[ �#è. 
Then by Lemma 17.2 we have 

                                                                              −�f��M ≤ � B.                                                                          

Let fj , . . . denote positive constants depending only on � and the polynomial 	 and let ö÷�ì| ∙  denote the #-measure defined by �#Û.                                                                                                                                                           
Then by Lemma 18.1 we get 

       ö÷�ì|� k ≤ −�f��M − 1 ≤ ö÷�ì|⌈� k − � B⌉ ≥ 1 ≤ ���- �⌈� k − � B⌉�p �#Û ≤ ��po� k,N − � B,No#�p
�p .     (19.3)   

From (19.3) by Lemma 17.3,see (17.12)  we get  

                                ö÷�ì|� k ≤ −�f��M − 1 ≤ ���Ñ�!� × ��p × fbp × �n�M − ��M�p .                                    (19.3) 

Lemma 19.1 Let @ be ℝ ∗ 4#- valued function on a probability #-measure space �ð, Σ#, q#�, see ref.[19], and let        v���� = q#�ì|@�ì� ≥ � . Let ç: ℝ ∗ 4# → ℝ ∗ 4#  be a bounded positive, monotone non-decreasing �#a function. 

Then 

          ���- � ç;@�ì�<�#q# � = ���- � ç����#. ∗x . ∗ v���� = −ç�− ∞ ∗ � + ���- � v����ç#(���. ∗x . ∗ �#�.      (19.4) 

In particular, by the generalized monotone convergence theorem: 

                                ���- � ¥���-exp;@�ì�<¦�#q# � = ���- � ����-exp����v�����#�.. ∗x . ∗                              (19.5) 

From (18.4.3) we get 

                                    ö÷�ì|−� k ≥ f��M + 1 ≤ ���Ñ�!� × ��p × fbp × �n�M − ��M�p.                                  (19.6) 

From (19.6) and (19.5) finally we get 

   ���- � ¥���-exp;−[� k�ì�<¦�#Û  ≤ ���Ñ�!� × ��p × fbp���- � ����-exp�����n�M − ��M�p�#� < ∞ ∗  .k[     (19.7) 

Thus ���- � ¥���-exp;−[� k�ì�<¦�#Û   is bounded independently of � and combining this with (7.2) we have 

jk,N bounded below by a constant which is independent of �; according to section 18.1this proves Theorem 

19.1.                                                                                                                                                                       



Theorem 19.1 Let ℎ be a nonnegative function in 'a# ∩ '�#. Suppose that the polynomial 	 in ((18.2.10)) has 
even degree and that the leading coefficient is positive. Then Hamiltonian jk is bounded from below. 

20. Alternate derivation without the use of functional integration                                                                                                                             
We will give an alternate derivation of the results mentioned in sections above without the use of functional 
integration, central in section 19. We consider a Hamiltonian of the form  

                                                                       jk = j[.k + ·k ,                                                                         (20.1) 

where j[.k is the free Hamiltonian of a particle of mass q[  expressed in terms of the neutral scalar field �k#(�) 

and its momentum conjugate �k#(�): 

                 j[.k = ���- � �#�a J���- � �#�� J���- � �#�ba[ : �m�k#�(�) + q[��k#�(�) + �k#�(�)�: La[ La[           (20.2)  

As is evident from (17.2) we are working in a periodic box P = �0,1�b. ·k is a polynomial function of the �k#(�). We denote by j[.k n  and ·k n , i ∈ ℕ\ℕ ∗  the parts of j[.k and ·k depending only on the creation and 
annihilation operators of the i lowest-energy modes of the free Hamiltonian and such that |_| ≤ n . We always 
imagine we are working with j[.k n  and ·k n , but derive inequalities independent of i. 

Theorem 20.1 Assume for each finite B > 0 that there is an ðF such that 

                                                           〈0|���-exp;−B( ·k n )<|0〉 ≤ ðF ,  
where |0⟩ denotes the vacuum of the free field. Then there is a P such that  

                                                                    j[.k + ·k n ≥ P n , for all i.                                                                                                                            

Actually as will be seen it is not necessary to satisfy the condition above for all B, but only for some sufficiently 
large B that one can calculate. We refer to section 18.3 for the result that the conditions of the theorem are 
satisfied for a large class of self-interactions.                                                                                                                                   
We apply the notation 

                                               �k,N# (�) = ���- ∑ ���-exp(�〈_, �〉) ÅIR (_) + w N∗  (−_)Æ_∈½Ã,_¿                        (20.3) 

and define for _ ∈ Γk,Nb  

                                   ì[ = (q[/2)a/� HwN  (^) + I R∗  (^)N,  [[ = �(q[/2)a/� HwN  (^) − I R∗  (^)N,                   (20.4)      

ì ;_(|v|)< = ;2x�q(_(v) )<a/� HwN  ;_(v)< + w N∗  ;_(v)< + w N  ;−_(v)< + w N∗  ;−_(v)<N, 
            

ì ;_(−|v|)< = �;2x�q(_(v) )<a/� H−wN  ;_(|v|)< + w N∗  ;_(|v|)< + w N  ;−_(|v|)< − w N∗  ;−_(|v|)<N, 
[ ;_(|v|)< = �;2x�q(_(v) )<a/� HwN  ;_(v)< − w N∗  ;_(v)< + w N  ;−_(v)< − w N∗  ;−_(v)<N, 

              [ ;_(−|v|)< = ;2x�q(_(v) )<�/\ HwN  ;_(|v|)< + w N∗  ;_(|v|)< − w N  ;−_(|v|)< − w N∗  ;−_(|v|)<N, 
              [� = [ ;_(v)<,  ì� = ì ;_(v)<. p ;_(v)< = ] p ;_(|v|)< qr v > 0,p ;−_(|v|)< qr v < 0. 
In terms of these variables, 



              j[,k,N = ���- ∑ 2xa�∈ ℤ,|�(�)�k| ∗ �[�� + q�(`(v) )ì�� − q(`(v) )� = ���- ∑ j��∈ ℤ,|�(�)�k| ∗ .     (20.5)                            

We represent these operators on the '�#  space of ℝ ∗ 4#n with #-measure q the product of the #-measures q� 

                                                �#q�  = (/�/�#)a/�;���-exp(−/�ì�� )<�#ì�                                            (20.6)  

with ì� a multiplicative operator and  

                                                               [� = �(�#/�#ì�) − /�ì� .                                                             (20.7)  

Where 

                                     /� = (_�(v) + q[�)a/� = (`a�(v) + `��(v) + `b�(v) + q[�)a/�. 
A complete set of eigenfunctions for j� is given by 

                                          U�,7(ì�) = (278!#)xa/�S7;ì�(/�)a/�<, 8 ∈ ℕ, ∗                                                (20.8) 

                                           8!# = ���- ∏ [[sJ�7 , 27 = ���- ∏ 2,[sJ�7  

                                       S7(!) = (−1)7;���-exp(!�)< M#9  M#t9 ;���-exp(−!�)<. 
The chief inequality we will exploit is the following numerical inequality for �, 
 ∈ ℝ ∗ 4#, 
 ≥  0: 
                                                        �
 ≤ ���-exp(�) + ���-ln(
).                                                               (20.9) 

The expectation value of the interaction ·k in a state with ℂ ∗ 4#-function ç is given by 

                                                          〈ç|·k|ç〉 = ���- �(|ç|�·k)�#q .                                                          (20.10) 

We apply (18.3.10) with � =  û·k and 
 = ûxaç�   to derive the inequality 

    −〈ç|·k|ç〉 ≤ ���- �;���-exp(−û·k)<�#q + a
ú ¥���- �|ç|�;���-ln(|ç|�)<�#q ¦ − a

ú ;���-ln(û)<.        (20.11)                                         

Here û is a numerical factor to be fixed later. Note that 

                                           ���- �;���-exp(−û·k)<�#q = 〈0|���-exp(−û ·k  )|0〉.                                    (20.12) 

We intend now to bound the second term on the right side of (20.11) by the expectation value of j[.k  in the 
state ç. We consider the following equation: 

                                                           ¥���- �|ç|�;���-ln(|ç|�)<�#q ¦ =                                                     (20.13) 

            = �B (���- � ç∗ j[.kç�#q ) + aB M#  M#í J���- �¥;���-exp(−�j[.k)<∗;���-exp(−�j[.k)< ¦a(Bí�#q LIíZ[, 

which easily follows for functions ç nice enough so that all the integrals exist and the differentiation may be 
moved inside the integral, a dense subspace in '�#. We do not discuss domain questions. We rewrite (20.11) using 
(20.13):  

                       −〈ç|·k|ç〉 ≤ ���- �;���-exp(−û·k)<�#q + �Bú 〈ç�j[.k �ç〉 − a
ú ;���-ln(û)< +                   (20.14) 

                               + aBú
M#  M#í J���- �¥;���-exp(−�j[.k)<∗;���-exp(−�j[.k)< ¦a(Bí�#q LIíZ[. 



The theorem we are after is established provided �û ≥ 2 and we can bound the last term in (20.14). The 
remainder of the paper is devoted to a study of 

    ���- �¥;���-exp(−�j[.k)<∗;���-exp(−�j[.k)< ¦a(Bí�#q = ���- �|���-exp(−�j[.k)|�(�Bí�#q.        (20.15)                                             

We consider, corresponding to any � in '�#(q ), its expression as a sum of products of the functions in (20.8): 

                       �(ì) = ���- ∑ �>~∙,∙∙,>u>~∙,∙∙,>u ?���- ∏ (2>v�]!#)xa] J���-exp(�])S>v;ì](/])a/�<LO.                 (20.16)                                                                              

The ì] are merely the ì� in some order. The coefficient’s �>~∙,∙∙,>u  are now considered as functions on the discrete 

space whose points are the indices of the ��s. To the point (�a∙,∙∙,�n) is associated the point mass 

���- ∏ ;���-exp(2�])< ] . With this measure, the transformation > that carries a set of ��s into the corresponding 

function g as in (20.16) is norm preserving as a map from ̧ �# to '�#. We will later show that > is norm decreasing 
as a map from ¸a# to '
#.  Assuming this for a moment, we complete the proof of the theorem. We apply the 
generalized Riesz-Thorin convexity theorem to the transformation > obtaining 

                                                        ���- �|���-exp(−�j[.k)|�(�Bí�#q ≤                                                          

          ≤ 1���- ¡∑ ���- ∏ ;���-exp(2�])<]>~∙,∙∙,>u × IJ���-exp;−/>~∙,∙∙,>u�<L × �>~∙,∙∙,>uI�(~wx�)~w¿x� ¢2 ~w¿x��(~wx�)
         (20.17)                                                          

with 

                                                                    />~∙,∙∙,>u = ���- ∑ �]/].]                                                                (20.18) 

In the right-hand side of (20.17) we apply the generalized Holder inequality to obtain an expression involving 
the weighted sum of the squares of the absolute values of the ��s which is equal to one: 

                                                               ���- �|���-exp(−�j[.k)|�(�Bí�#q ≤                                                  

                       ≤ 1���- ¡∑ ���- ∏ ;���-exp(2�])<]>~∙,∙∙,>u Å���-exp J−/>~∙,∙∙,>u × �(a(Bí)
�B LÆ¢2�Bí.                 (20.19) 

It follows that 

                                                   
M#  M#í ;���- �|���-exp(−�j[.k)|�(�Bí�#q  <IíZ[ ≤                                                                                          

                     2� × ]���-ln 1���- ¡∑ ���- ∏ ;���-exp(2�])<]>~∙,∙∙,>u Å���-exp J−/>~∙,∙∙,>u × �(a(Bí)
�B LÆ¢2y.   (20.20) 

If q[ /� > 2, this gives an inequality with finite right hand side in the #-limit  i → ∞ ∗ . It is clear that the 
theorem is now reduced to establishing that > is #-norm decreasing from ¸a# to '
#.                                                                           

Lemma 20.1. Let { be the space of sequences º�z», A= 0, 1, . . . , i with #-measure at A, ���-exp(2A); and { the 

space of functions on ℝ ∗ 4# with #-measure 

                                                             (1/�#)a/�;���-exp(−��)<�#�,                                                        (20.21)  

and > the operator from { to { given by 

                                                       >º�z» = ���- ∑ �zz ;a¤í-bcd(z)<|}(¤)
¥�}z!#¦                                                         (20.22) 



with Sz(�) the A-th Hermite polynomial Sz(�) = (−1)7;���-exp(��)< M#9  M#¤9 ;���-exp(−��)< ; then, > is 

#-norm decreasing from ¸a# to '
#.                                                                                                                                                                 
It is easy to see that this lemma would follow from establishing the inequality 

 ~J a
²#L~� ;���-exp(−w − � − E − �)< × 

J���- � �2-(�(4(M(w!#)(�!#)(E!#)(�!#)�xa/� ℝ ∗ �# S-(�)S�(�)S4(�)SM(�);���-exp(−��)<�#�LI ≤ 1 ℝ ∗ �#�  (20.23)                                                                                                     

for all integers w, �, E ∈ ℕ ∗  and � ≥ 0; actually, it is sufficient to let w =  � =  E =  �. We use the generating 
function  

                                                  ���-exp(−�� + 2��) = ���- ∑ íun!#n∈ ℕ ∗ Sn(�)                                            (20.24)                                                                                                    

to obtain  

                               J a
²#L~� J���- � ;���-exp(−��)<S-(�)S�(�)S4(�)SM(�)�#� ℝ ∗ �# L =                               (20.25) 

                    = ;-!#<;�!#<;4!#<;M!#<~ ℝ ∗ �#�
� ℝ ∗ �#�(-(�(4(M)!# × 2 ℝ ∗ �#�

~�(-(�(4(M) ×  (ûè + û� + û� + è� + è� + ��)d,��-�-d��b� 
~�(-(�(4(M)

                                                                                  

where pick-a-power means to find the coefficient of the monomial û-è��4�` in the expansion of the expression. 
Note that w +  � +  E +  � is even or the integral vanishes. We make the crude estimate 

                                               (ûè + û� + û� + è� + è� + ��)d,��-�-d��b� 
~�(-(�(4(M) ≤                                                (20.26) 

                                                 ≤ 2 ℝ ∗ �#� x~�(-(�(4(M) × (û + è + � + �)d,��-�-d��b�
~�(-(�(4(M)

        

Now we get 

                                               (û + è + � + �)d,��-�-d��b�
~�(-(�(4(M) = (-(�(4(M)!#

;-!#<;�!#<;4!#<;M!#<.                                             (20.27) 

Denoting the left-hand side of (20.23) by ℑ and using (20.26) we obtain  

                                 ℑ ≤ ;���-exp(−w − � − E − �)< × 
¥(-(�(4(M)!#¦×�}~�(�w�w�w�)

¥;-!#<;�!#<;4!#<;M!#<¦~/�H~�(-(�(4(M)N!#.                     (20.28)       

 It is easily verify that  

                                                                                    ℑ ≤ 1 ℝ ∗ �#� .                                                                    (20.29)       

The inequality (20.29) finalized the proof of theorem. 

21. Strong #-convergence of operators                                                                                                                                       
In this section we study the sum S + P of two #-selfadjoint operators on a non-Archimedean  Banach spaces 

over field ℂ64#, and we find sufficient conditions for � = S + P to be #-selfadjoint. Our technique is to 

approximate P by a hyper infinite sequence of bounded in ℝ5 4#  #-selfadjoint operators �P7 , 8 ∈ ℕ∗  and so to 

approximate � by #-selfadjoint operators �7 = S + P7.We answer these three questions separately:1.When do 
the operators �7 have a #-lim �? 2.When is � a #-selfadjoint operator? 3.When is � = S + P? In Theorem 21.8 



we give a set of estimates on the relative size of S and P which ensure a positive answer to all three questions. 
Hence these estimates show that  S + P = � is #-selfadjoint. In another paper [17], we used Theorem 21.8 to 
prove the existence of a self-interacting, causal quantum field in 4-dimensional space-time. Formally this field 
theory is Lorentz covariant and has non-trivial scattering; this application was the motivation for the present 

results. In order to investigate the meaning of #-lim7→ .∗ �7, we give a new definition for the strong #-

convergence of a hyper infinite sequence of operators. Consequences of this definition are worked out in this 
section below and we give also estimates on operators �7 which are sufficient to ensure that the                         #-lim7→ .∗ �7 = � exists and that operator � is maximal symmetric or #-selfadjoint. This result is given in 

Theorem 21.5 and Corollary 21.6. We investigate also whether #-lim7→ .∗ �7 = � is equal to S + P. We 

combine this work in Theorem 21.8, our second main theorem, where P is a singular, but nearly positive #-
selfadjoint perturbation of a positive #-selfadjoint operator S. To illustrate this theorem, let S ≥ � and let P be 
essentially #-selfadjoint on domain  K# =∩7∈ ℕ∗ K(S7). Assume now that, for some C > 0 and some B, 

                                                           Sx(axG)BSx(axG) and SGPSF                                                          (21.1) 

are #-densely defined, bounded in ℝ5 4# operators. Also, for some positive w, Ä ∈ ℝ5 4(# satisfying: 2w + Ä < 1, 

suppose that there is a constant � ∈ ℝ5 4# such that, as bilinear forms on  K# × K#,  

                                                                      0 ≤ wS + P + �,                                                                         (21.2) 

                                                               0 ≤ ÄS² + �Sa/�, �Sa/�, P�� + �.                                                        (21.3) 

Then S + P is # -selfadjoint. We see from this example that neither the operator P nor the bilinear form P need 
be bounded relative to S. While it may not appear evident, the conditions (21.1)-(21.3) are closely related to a 

more easily understandable estimate on K# × K#,  

                                                                      S² + P²E(S + P)²+ E.                                                        (21.4) 

In fact, estimates (21.1)-(21.3) are chosen because they allow us not only to prove (1.4), but also the similar 
inequality where P is replaced by P7. Let us now see that if S + P is #-selfadjoint, then (1.4) must hold for 
every vector in  K(S + P) = K(S) ∩ K(P).                                                                                                                  
Proposition 21.1 Let S and P be #-closed operators. Then S + P is #-closed if and only if there is a constant E ∈ ℝ5 4#  such that for all  c ∈ K(S + P) 

                                                   ‖Sc‖# + ‖Pc‖# ≤ ‖(S + P)c‖# + E‖c‖#                                          (21.5) 

and (21.5) is equivalent to (21.4) on K(S + P) × K(S + P).                                                                                      
Proof: Certainly (21.5) implies that S + P is #-closed. Conversely, assume that  S + P is #-closed and introduce 
the #-norms on K(S + P) = K(S) ∩ K(P),                                                                                                                                                                                                                                                

                                                     ‖c‖#a ≜ ‖c‖# +‖Sc‖# + ‖Pc‖#,                                                        (21.6) 

                                                     ‖c‖#� ≜ ‖c‖# +‖(S + P)c‖#                                                                  (21.7) 

Then K(S + P), ‖c‖#� is a non-Archimedean Banach space because S + P is #-closed. The identity map from 
K(S + P), ‖c‖#� to K(S + P), ‖c‖#a has a #-closed graph because  S, P, and S + P are #-closed. By the                         
#-closed graph theorem, the identity map is #-continuous; hence  

                                                                     ‖c‖#a ≤ E ‖c‖#�.                                                                       (21.8) 

Proposition 21.2 Let S ≥ �, P be #-selfadjoint operators with K# ⊂ K(P) and suppose that (21.2) and (21.3) 
hold. Then (21.4) is valid on domain K# × K#.                                                                                                                                   

Proof The operators S², P², SP, PS, and Sa/�PSa/� define bilinear forms on K# × K#. Using (21.2) and (21.3), 
we have the inequality:  



                 S² + P²= (S + P)² − 2Sa/�PSa/� − [Sa/�, [Sa/�, P]] ≤ (S + P)² + (2w + Ä)S² + 2S� + �,                                   
which establishes (21.4).                                                                                                                                                  
Let ℒ(C) be the graph of the operator �. For any hyper infinite sequence {�7}, 8 ∈ ℕ∗  of #-densely defined 
operators we define  

                                ℒ .∗ (�) = {�,×|φ=#-lim7→ .∗ �7 ∈ K(�7),× =#-lim7→ .∗ �7�7}.                           (21.9) 

 In general, ℒ .∗ (�) will not be the graph of an operator. If the hyper infinite sequence {�7}, 8 ∈ ℕ∗                 

#-converges strongly on a #-dense domain K to an operator �∗, namely,  �∗c = #-lim7→ .∗ �7∗ c, c ∈ K,then 

ℒ .∗  is the graph of some operator �∗. In particular, if each �7 is self #-adjoint, and if the �7 #-converge on a   

#-dense set K to an operator � is defined on K,then ℒ .∗ = ℒ .∗ (� .∗ )  and � .∗  is a symmetric extension of  

�.                                                                                                                                                                                 
Definition 21.1 �-#-CONVERGENCE. The hyper infinite sequence of operators  {�7}, 8 ∈ ℕ∗  #-converge 

strongly to � .∗ in the sense of graphs, written  

                                                          �7 →#� � .∗                                                                             (21.10)                                             

if ℒ .∗   is the graph of a #-densely defined operator � .∗  .                                                                                  

Remark 21.1 Note that for a hyper infinite sequence of uniformly bounded in ℝ5 4# operators �7∗, 8 ∈ ℕ∗   such 

that �7 →#� � .∗ , � .∗  is the usual strong #-limit of the operators {�7}, 8 ∈ ℕ∗  and is everywhere defined. 

Definition 21.2.! -#-CONVERGENCE. Let the resolvents !7(!) = ( �7 − !)⁻¹, 8 ∈ ℕ∗  exist for some ! ∈ ℝ5 4#, and be uniformly hyper bounded in 8. The operators �7 #-converge strongly to � .∗ in the sense of 

resolvents, written az  

                                                                         �7 →#� � .∗                                                                           (21.11) 

if the resolvents !7(!)  #-converge strongly to an operator R(z), which has a #-densely defined inverse. 

Remark 21.2 Note that in that case, the operator � .∗ = !⁻¹(!) + ! exists for all ! ∈ ℂ64#, for which the strong 

#-limit of the !7(!) exists, and !⁻¹(!) + ! is independent of !.                                                                                  
Remark 21.3 Note that � -#-convergence is weaker than ! -#-convergence, in the case  �7 = �7∗ at least, 
because, as we shall show, in this case �7 →#� � .∗  implies     �7 →#� � .∗ . It seems likely that                        

G -#-convergence is strictly weaker than ! -#-convergence; this could be established by giving an example for 

which  �7∗ = �7 →#� � .∗  with � .∗  not maximal symmetric. The importance of  � -#-convergence is that it is 

technically easier to verify-and gives less information about the #-limit-than ! -#-convergence, while 
automatically selecting the correct domain in the case that ! -#-convergence also holds. The most familiar 
examples of  � -#-convergence occur where there is �7strong #-convergence on a #-dense domain.                                        
A less trivial example occurs where there is K(�7) is independent of  8 ∈ ℕ∗ , but apparently                                      K(�) ∩ K(�7) = �0 . We have the following connection between G and ! -#-convergence for a hyper infinite  
sequence of  #-selfadjoint operators.                                                                                                                         
Proposition 21.3 Let �7  ∈ ℕ∗  be #-selfadjoint.                                                                                                                     
(a) The domain K .∗ =  ��|{�, ×} ∈ ℒ .∗  for some ×} is #-dense in j and only if  �7 →#� � .∗ , and in this 

case � .∗  is necessarily symmetric.                                                                                                                                    

(b) If !7(!) = ( �7 − !)⁻¹, 8 ∈ ℕ∗  #-converges to a bounded in ℝ5 4# operator !(!) for an unbounded set of z's 

with ‖!!(!)‖# bounded uniformly in ! ∈ ℂ64#, and 8 ∈ ℕ∗  and if �7 →#� � .∗ , ,then each !(!) is invertible.   

(c) If !7(!)  #-converges to an invertible !(!), then �7 →#� � .∗ .                                                                               

(d) If �7 →#� � .∗ .,then �7 →#� � .∗ ,, ℒ .∗   = ℒ(�), and � is maximal symmetric.                                                   

(e) Conversely, if �7 →#� � .∗ , where � is maximal symmetric, then �7 →#� � .∗ .                                                            

Proof. (a) Suppose that K .∗  is #-dense and let �0, c ∈ ℒ .∗  . Then, for some m7 in each K(�7), m7 →#0, 

�7 m7 →#ψ.             



Let � ∈ ℒ .∗ , φ=#-lim7→ .∗ �7, × =#-lim7→ .∗ �7�7.                                                                                        

Then, 0 = 〈0, c〉# = #- lim7→ .∗ 〈m7, �7�7〉# = #- lim7→ .∗ 〈�7m7 , �7〉# = 〈c, �〉#, so c ∈ K .∗Ð  and c = 0. Thus ℒ .∗  

is the graph of an operator � with domain K .∗ , and since K .∗  #-dense by hypothesis, �7 →#� � .∗ . 

Conversely, if   �7 →#� � .∗ , we have K .∗ =  K(� .∗ ,) and, since �, is assumed to be #-densely defined, K .∗  

is #-dense. The expectation values 〈�, � .∗ �〉# = #- lim7→ .∗ 〈�7, �7�7〉# are real and so � .∗ , is symmetric.            

(b) Let !₁ and !₂ be any two !'s for which #- lim7→ .∗ !7(!) exists. Then !(!) satisfies the resolvent equation 

!(!₁) − !(!₂) = (!₁ − !₂)!(!₁)!(!) from which it follows that !(!) has a range and a null space which are 
independent of !. If the null space is zero, !(!) is invertible, and it is sufficient to show that, for large |!|, 
‖!!(!)c + c‖# < ‖c‖#.  Since K .∗  is #-dense, we choose � ∈ K .∗   so that ‖c − �‖# < Ä ≈ 0. 

Then,‖!!(!)c + c‖# ≤ ‖!!(!)(c − �)‖# + ‖!!(!)� + �‖# + ‖� − c‖#. For the ! under consideration, 

‖!!7(!)‖# and ‖!!(!)‖# are uniformly bounded in  ℝ5 4# by a constant ð ∈ ℝ5 4(# . Thus, ‖!!(!)c + c‖# ≤
(ð + 1)Ä + ‖!!(!)� + �‖#. Since {�, ×} ∈ ℒ .∗ ,there exists �7 ∈ K(�7) such that ‖�7 − �‖# →# 0 and  

‖�7�7 − ×‖# →# 0.Thus ǁC_{n}φ_{n}ǁ_{} is uniformly bounded in n∈┊^{ ∗} ℕ┊.Thus 

‖!!(!)� − �‖# ≤ ‖!(!(!) − !7(!))�‖# + ‖!!7(!)(�7 − �)‖# + ‖!!7(!)�7 + �7‖# + 

                       +‖�7 − �‖# ≤ |!|‖(!(!) − !7(!))�‖# +(M+1) ‖� − �7‖# + ‖(�7 − !)⁻¹�7�7‖#.   

 We can choose |!| sufficiently infinite large so that ‖(� − !)⁻¹‖# ≤  ð |!| is infinite small, then the last term 
above is small, uniformly in 8 ∈ ℕ∗ . With this fixed value of !, we choose n large enough so that the first two  

terms are infinite small, and we conclude that  ‖!!(!)� + �‖#  is arbitrarily infinite small for infinite large |z| 
and that the null space of  !(!) is zero.                                                                                                                                    
(c) In order to show that �7 →#� � .∗ , we need only show that � = !(!)⁻¹ + ! is #-densely defined. We show 

that �range!(!) Ð ⊂ null!(!) which implies (c). To prove the inclusion we may suppose that 
 = Im(!) ≠0,because !7(z) + !(!) for ! in an #-open subset of the complex plane ℂ64#. If cÐ�range!(!)  and if ∉null!(!), then ‖c‖#  <  ‖�
!(!)c + c‖#  = #- lim7→ .∗ ‖�
!7(!)c + c‖# ≤ ‖c‖#, which is a contradiction.        

(d) Let �7 →#� � .∗ , and let {�, m} ∈ ℒ(�).Then, for some × ∈ j# and some !, � = !(!)× =  #- ¸�v7→ .∗ �7 =
 #- lim7→ .∗ !7(!)× and �7�7 =(�7-z) �7+z�7χ+�!7 →#χ+!� = ��.Thus,  '(�) ⊂ ℒ(� .∗ ) so K(�) ⊂  K .∗ and 

since K(�) is #-dense by assumption, K .∗   is #-dense also. By  (a), �7 →#� � .∗  and � .∗ . is a symmetric 

extension of �. However, � .∗  - is #-closed and it has a resolvent !(!) ; therefore, � has defect indices (0, 8) 

and is maximal symmetric. Thus, � .∗ . = �. (e) Suppose that ℒ .∗ , =ℒ(� .∗ ) is the graph of a maximal 

symmetric operator. For non-real ! we have ‖!7(!)‖ #bounded uniformly in 8 ∈ ℕ∗ . Let × ∈ j#,and write × in 

the form × = (� .∗ ± �)c for some c ∈ K(� .∗ ). Then, c = #- lim7→ .∗ c7,� .∗ ψ= #- lim7→ .∗ �7c7 and                  

× = #- lim7→ .∗ (� .∗ .±i)c7 = #- lim7→ .∗ c7 . Therefore                                                                                                   

#- lim7→ .∗ !7(∓i)χ= #- lim7→ .∗  !7(∓i)×7 = c = J� .∗ ± �Lxa
and so  �7 →#� � .∗                                                                                                   

Remark 21.4 In case the #-limit of the �7, 8 ∈ ℕ∗  is actually #-selfadjoint, there are further connections 

between � and ! #-convergence.                                                                                                                                                              
Theorem 21.4 Let �7 be #-selfadjoint. The follouiing  conditions are equivalent; (a) �7 →#� �, and � = �∗. (b) 
�7 →#� �, and � = �∗. (c) The hyper infinite sequences !7(!) and �!7(!)�∗, 8 ∈ ℕ∗  #-converge strongly and 

#- lim7→ .∗  !7(!) is invertible for some !. (d) Statement (c) holds for all non-real ! ∈ ℂ64#.                                     
Proof. The theorem follows from Proposition 21.3 and sect.24.                                                                             
Now we give estimates which are sufficient to assure that it � #-convergent sequence of operators is ! -#-
convergent, and that the #-limit is maximal symmetric or #-selfadjoint. In order to measure the rate of               



#-convergence, we introduce a #-selfadjoint operator i ≥ � and the associated non-Archimedean Hilbert spaces 
jB with the scalar product  

                                                          〈c, c〉#B = 〈iB/�c, iB/�c〉#.                                                      (21.12)  

By standard identifications we have for � ≥ 0: jB ⊂ j₀ ⊂ j₋₁ and j₀ = j. If K: jF → jG  is a #-densely 

defined, bounded in ℝ5 4# operator from jF to jG, we let ‖K‖#F,G denote its #-norm. Setting ‖K‖# = ‖K‖#[,[   

we obtain 

                                                                  ‖K‖#F,G = ‖iG/�KixF/�‖#.                                                       (21.13) 

Let �7, 8 ∈ ℕ∗  be a hyper infinite sequence of #-selfadjoint operators, and consider the following three 
conditions. 

(i) Suppose that �7 −  �� is a #-densely defined, bounded in ℝ5 4# operator from jB to jxB, for some �,and that 
as 8, v → ∞∗  

                                                                             ‖K‖#B,xB →# 0 ℝ ∗ �#� .                                                      (21.14) 

(ii) Suppose that, for some p and for an unbounded set of ! = � + �
 ∈ ℂ64#  in the sector |�| ≤ const × |
|, 
                                                                 ‖!7(!)‖#7,B ≤ ð(!),                                                                     (21.15) 

where the bound ð(!) is uniform in 8 ∈ ℕ∗ .  

                                                                                                                                                                                         
(iii) Suppose that, for the above z's, 

                                                                  ‖!7(!)̅‖#7,B ≤ ð(!).                                                      (21.16) 

Theorem 21.5 Let �7, 8 ∈ ℕ∗  be a hyper infinite sequence of #-selfadjoint operators with a common domain, 

such that   �7 →#� � .∗ . If the conditions (i) and (ii) mentioned above hold, then  �7 →#� � .∗  and � is 

maximal symmetric.                                                                                                                                             
Corollary 21.6 If in addition to the hypothesis of Theorem 21.5, condition (iii) also holds, then � is #-selfajoint.            
Remark 21.5 (1) If q = 0 in (ii), then the resolvents #-converge uniformly. (2) If the �7 are uniformly 

semibounded in ℝ5 4# from below, then we may choose the ! in condition (ii) to be infinite large negative 
numbers. In that case the conclusion of the Theorem 21.5 is that �7 →#� � = �∗.                                                                                                                            

We consider now a singular perturbation P of a #-selfadjoint operator S. We give estimates on P which ensure 
that the sum S + P is #-selfadjoint.                                                                                                                        
Abbreviation 21.1 We abbreviate Sx# instead #-S̅.                                                                                                      
Definition 21.3  A #-core of an operator � is a domain K contained in K(�) such that � = (� ↾ K)x#.                    
Lemma 21.7 Let , S7 , 8 ∈ ℕ∗  ,P, P7, 8 ∈ ℕ∗  and �7 = S + P7 , 8 ∈ ℕ∗  be  #-selfadjoint operators with a 

common #-core K. Assume the hypotheses of Theorem 21.5 and Corollary 21.6 for  �7, 8 ∈ ℕ∗  and suppose 

also that, for m ∈  K,                                                                                                                                                        

                                                ‖(S − S7)m‖# + ‖(P − P7)m‖# →# 0 as 8 → ∞∗ ,                                      (21.17) 

                                                 ‖Sm‖#� + ‖Pm‖#� ≤ const.× ‖m‖#� + const.× ‖�7m‖#� ,                         (21.18) 

with constants independent of 8. Then S + P is #-selfadjoint and  �7 →#� (S + P).                                             
Proof. Let c7  = !7(!)×. We have the inequality 

‖S7c7‖# ≤ E�8è�.× ‖c7‖# + const.× ‖�7c7‖# ≤ const.× ‖(�7 − !)c7‖# = const.× ‖×‖#  



Thus, |〈Sm, c〉#| ≤ ‖Sm‖#‖c − c7‖# + ‖(S − S7)m‖# × ‖c7‖# + E�8è�. ‖m‖# × ‖c‖#  and therefore  
|〈Sm, c〉#| ≤ E�8è�. ‖m‖# × ‖c‖# for m ∈ K and c = !(!)×. It follows that c ∈ K(S ↾∗ K) = K(S) and 
similarity we obtain that c ∈ K(P). Since K(�) is the range of  !(!),we have shown that K(�) = K(S + P). 
Since   〈m, (S + P)c〉# = 〈(S + P)m, c〉# = #- lim7→ .∗ 〈�7m, c7〉# = #- lim7→ .∗ 〈m, �7c7〉# = 〈m, �c〉#  we have 

� ⊂ S + P.Thus S + P is a symmetric extension of the #-selfadjoint operator �, and so S + P = �.                                                                                                                             
Remark 21.6 As hypothesis for our next theorem, our second main result, we assume that i ≤ S and that i and S commute. Let  

                                                                        K .∗ (S) =   ⋂ K(Sⁿ)7∈ ℕ∗                                                       (21.19) 

the elements of K .∗ (S) are called � .∗
 vectors for S. Assume that K .∗ (S) is a #-core for the #-selfadjoint 

operator P. Also assume that, as bilinear forms on  K .∗ × K .∗
 and for some B and Ä in the indicated ranges, 

                                                                    0 ≤ Bi + P + const. ,0 ≤ B < 1 ℝ ∗ �#� /2 ℝ ∗ �#� ,                         (21.20) 

                                           0 ≤ ÄS²+ const × P + �Sa/�, �Sa/�, P�� + const. ,2B + Ä < 1 ℝ ∗ �#� .           (21.21) 

Let P be a bounded in ℝ5 4# operator from jZ to jxZ and from jF to jG for some B, C and , C > 0 , where (jF is 

defined following Theorem 21.4. If � ≥ 2 ℝ ∗ �#� , assume that for all Ä > 0  

                                                        0 ≤ Äi7(� + �i(7(a)/�, �i(7(a)/�, P�� + const.                                  (21.22) 

as bilinear forms on K .∗ × K .∗
, for some q > � − 2 ℝ ∗ �#� .                                                                                            

Theorem 21.6. Under the above hypothesis, S + P is #-selfadjoint.                                                                          

Proof Let i = ���-� ��#�B.∗
a  , and let P7 = (�7P�7)#x, S7=A. �7 leaves K invariant and so the domain of 

P7  contains K. For m ∈ K 

                         |〈m, P7m〉#| = |〈 �7m, P�7m〉#|≤ ‖P‖#B,xB × oiX/��7mo#
�
≤8X‖P‖#B,xB × ‖m‖#�           (21.23)  

and so P7 is bounded in ℝ5 4# operator and essentially #-selfadjoint on K. By Corollary 21.8, �7 = S + P7 is 
essentially #-selfadjoint on K and K(�7) = K(S).                                                                                                                 
Let K₀ ⊂ K be those vectors with #-compact support relative to the spectral #-measure of the operator S. In 
other words, if c ∈ K₀, there exist constants B and C such that, for all q ≥ 0, ‖S7c‖#� ≤ BC7.It is clear that the 

vectors (�7 + �)K[ are #-dense in j# and are #-analytic vectors for i7/� for any q. Thus by generalized 

Nelson's theorem [19], i7/� is essentially #-selfadjoint on (�7 + �)K[, and hence  (�7 + �)K[                                       

is #-dense in j7} every μ. In terms of j# 

                                                       i7/� (�7 + �)K ⊃ i7/� (�7 + �)K[                                                      (21.24) 

    is #-dense in j# for every q. For � > � and for v ≤ 8 

                       ‖P7 − P�‖#B,xB =ǁixB/� (P7 − P�)ixB/�ǁ≤ 2 Ôixx}Y� (� − ��)Ô
#

oiX/�PiX/�o# 

≤ 2vx(BxX)/� ‖P‖#B,xB.                                                                                                                                 (21.25)  

The inequality (21.21) is preserved under the substitution P → P7. To see this, we multiply (21.21) by �7 on the 
left and right and notice that  

                                                Ä�7S²�7 + const.×  �7 ≤ ÄS²+ const.                                                      (21.26)  

Similarly we see that (21.20) is preserved under the substitution P → P7. Thus the bounds (21.18) follow from 
Proposition 21.2 applied to the operators S and P7. To prove (21.17), let m ∈ K. Then, 



                                   ‖(P − P7)m‖# ≤(‖� − �7)Pm‖# + ‖P(� − �7)m‖# ≤  

                                 8xG/�‖P‖FG ×ǁoiF/�mo# + 8⁻¹‖P‖FG × ‖ia((F/�)m ‖#. 

We set q = � + 2 and use Lemma 21.7. Because of the uniform lower bound (21.18), we can find infinite large 
negative numbers −E bounded away from the spectrum of �7. If � < 2 ℝ ∗ �#� , then we set q = 0 ℝ ∗ �#� , � = 2 ℝ ∗ �#� , and, 

because of (21.18), we have 

                                            ‖!7(−E)‖7B × ‖i!7(−E)‖7B × ‖S!7(−E)‖7B ≤ const.                         (21.27) 

Now we assume � ≥ 2 and we use (21.22) to bound 

                                         ‖!7(−E)‖7B =  ‖i(7(�)/�!7(−E)ix7/�‖7B.                                                      (21.28) 

Since a bounded in ℝ5 4# operator is determined by its action on any #-dense domain and since i7/�(�7 + E) 
maps onto a #-dense subset of j#, it is sufficient to show that 

                                                i7(� ≤ const.× (�7  + E) i7(�7  + E)                                                      (21.29) 

as a bilinear form on K × K. We expand the right side as 

                                                     (�7 + E)i7(�7 + E) ε²i7(� + 

                   +	 + Ä(S − Äi + P7 + E)i7(a{ (S − Äi + P7 + E)} +Äi7(a(S − Äi + P7 + E)           (21.30) 

with 0 ≤ 	 and so it is sufficient to show that, for some Ä > 0, Ä ≈ 0 

                    0 ≤ Äi7(� +2i(7(a)/�(S − Äi + P7 + E/2) i(7(a)/� + [i(7(a)/�, [ i(7(a)/�, P7]]           (21.31) 

on the domain K × K. In these inequalities, E may be chosen independently of Ä and hence E is an arbitrarily 
large constant. By (21.22), the sum of the first, third and fourth terms are positive and, by (21.20), the second 
term is positive. We have verified the hypotheses of Lemma 21.7, and the theorem follows; S + P is                          
# -selfadjoint.                                                                                                                                                        
Definition 21.4 Let ð, i, ... be a #-closed linear manifolds of a non-Archimedean Banach space �. We denote 
by {� the unit sphere of ð (the set of all � ∈ ð with ‖�‖# = 1). For any two #-closed linear sub manifolds 

ð, i of �, we set: (1) �(ð, i) = sup�∈��{dist(�, i), (2) ��(ð, i) =  max��(ð, i), �(i, ð)].                      
Remark 21.7 Note that (1) has no meaning if ð = 0; in this case we define �(0, i) = 0 for any i. On the 
other hand �(ð, 0) = 1 if ð ≠ 0, as is seen from the definition, �(ð, i) can also be characterized as the 
smallest number � such that (3) dist(�, i) ≤ �‖�‖# for all � ∈ ð.                                                                   

Definition 21.5  �� (ð, i) will be called the gap between the manifoldsð, i.                                                            

Lemma 21.8  (1) �(ð, i) = 0 if and only if ð ⊂ i. (2) �� (M,N) = 0 if and only if ð = i.                                        

(3)  �� (ð, i) =  �� (N,M). (4) 0 ≤ �(ð, i) ≤ 1, 0 ≤ �� (ð, i) ≤ 1.                                                                     
Proof. Directly from the definitions.                                                                                                                                 

Definition 21.6 We set: (1) (ð, i) = sup�∈��dist(�, {n), (2) ��(ð, i) = max��(ð, i), �(i, ð)]. Note that 

(1) does not make sense if either ð or i is 0. In such cases we set (3) �(0, i) = 0 for any i;  ��(ð, 0) = 2   
for ð ≠ 0.                                                                                                                                                                   

Lemma 21.9  � and �� satisfy the triangle inequalities : (1) �(', i) ≤ �(', ð) + �(ð, i),                                             
(2)  �� (', i) ≤ �� (', ð) + �� (ð, i).                                                                                                                                                   
Proof. The second inequality follows from the first, which in turn follows directly from the definition. 
Definition 21.7 We say that hyper infinite sequence >7, 8 ∈ ℕ∗  #-converges to operator >   (>7 →­# >) in the 

generalized sense if �� (>7,>)  →# 0.                                                                                                                                                   
Theorem 21.7 Let >: j → j be a #-selfadjoint operator. Then there is a � > 0,� ≈ 0 such that any #-closed 

symmetric operator { with ��({,>) < � is #-selfadjoint, where ��({,>) denotes the gap between { and >. 



Corollary 21.8 Let  >, >7. be #-closed symmetric operators and let {>7}, 8 ∈ ℕ∗  #-converge to > in the 

generalized sense, see Definition 21.7. If  > is #-selfadjoint, then >7 is #-selfadjoint for sufficiently large 
8 ∈ ℕ∗ \ℕ.                                                                                                                                                             

Corollary 21.9  With the hypothesis of Theorem 21.6, S + AP →#� S as 
 →# 0.                                                           
Proof. This is a special case of Corollary 10(a)                                                                                                          
Corollary 21.10 Let P, Pp be singular perturbations of S, each satisfying the hypothesis of Theorem 21.6, with 

constants independent of Ñ.                                                                                                                                                   

(a) If Pp − PË is a #-densely defined bounded in ℝ5 ∗ 4#  operator from jB to jxB for a sufficiently large �, if  

oPp − PËo#B,xB →# 0 and Pp →#� P, then 

                                                                 S + Pp →#� S + P.                                                                     (21.32) 

(b) If (a) is true for � ≤ 2 and if there is a #-core K of � with ⊂ ⋂ K;Pp<p  , then the resolvents of S + Pp         

#-converge in #-norm to the resolvent of S + P.                                                                                                             
22. Construction of ℝ5 ∗ 4#                                                                                                                                
Definition 22.1 Let w7 , 8 ∈ ℕ be ℝ ∗ 4#- valued countable sequence w: ℕ → ℝ ∗ 4# such that:                                                               

(i) there is ð ∈ ℕ such that {w7}7Z�
. ∗  is monotonically decreasing ℝ ∗ 4+,-#  - valued countable sequence 

w: ℕ→ ℝ ∗ 4+,-#  \{0 ℝ ∗ �#}, We denote these sequences by  {w7}7Z[. , {�7}7Z[. , etc.                                                                                                                       

(ii) there is i ∈  ℕ such that for all 8 > i, w7 ≠ 0 ℝ ∗ �#,                                                                                                      

(iii) for all 8 ∈ ℕ, w7 ≉ 0 ℝ ∗ �#  and for any Ä such that Ä > 0, Ä ≉ 0 ℝ ∗ �# there is i ∈ ℕ such that for all 8 >
i: w7 < Ä and we denote a set of the all these countable sequences by  ¡(↓[.                                                     

Definition 22.2 (i) We define a set  ¡x↓[ by w7 ∈  ¡x↓[ ⇔ −w7 ∈  ¡(↓[.Note that ¡x↓[ = − ¡(↓[.                         

(ii) We define a set  ¡(xa)↓[ by w7 ∈  ¡(xa)↓[ ⇔ w7xa ∈  ¡(↓[.Note that  ¡(xa)↓[ = ; ¡(↓[<xa
.                                

Definition 22.3 Let w7 , 8 ∈ ℕ be ℝ ∗ 4#- valued countable sequence w: ℕ → ℝ ∗ 4# such that:                                                               

(i) there is ð ∈ ℕ such that {w7}7Z�. ∗  is monotonically decreasing ℝ ∗ 4≈#  - valued countable sequence 

w: ℕ→ ℝ ∗ 4(≈#  \{0 ℝ ∗ �#},                                                                                                                                                       

(ii) there is i ∈  ℕ such that for all 8 > i, w7 ≠ 0 ℝ ∗ �#,                                                                                                       

(iii) we denote a set of the all these countable sequences by  ¡≈(↓[.                                                                   

Definition 22.4 (i) We define a set  ¡≈x↓[ by w7 ∈  ¡≈x↓[ ⇔ −w7 ∈  ¡≈(↓[.Note that:  ¡≈x↓[ = − ¡≈(↓[.                                 

(ii) We define a set  ¡≈
(xa)↓[ by w7 ∈  ¡≈

(xa)↓[ ⇔ w7xa ∈  ¡≈(↓[.Note that:  ¡≈
(xa)↓[ = ; ¡≈(↓[<xa

.                            

Definition 22.5 Let w7 , 8 ∈ ℕ be ℝ ∗ 4#- valued countable sequence w: ℕ → ℝ ∗ 4#\{0 ℝ ∗ �#} such that:                                                               

(i) there is ð ∈ ℕ such that {w7}7Z�. ∗  is monotonically increasing ℝ ∗ 4+,-#  - valued countable sequence 

w: ℕ→ ℝ ∗ 4+,-#  \{0 ℝ ∗ �#}, We denote these sequences by  {w7}7Z[. , {�7}7Z[. , etc.                                                                                                                       

(ii) there is i ∈  ℕ such that for all 8 > i, w7 ≠ 0 ℝ ∗ �#,                                                                                                      

(iii) for all 8 ∈ ℕ, w7 ≉ 0 ℝ ∗ �#  and for any Ä such that Ä > 0, Ä ∈ ℝ ∗ 4+,-#  there is i ∈ ℕ such that for all 8 >
i: w7 > Ä and we denote a set of the all these countable sequences by  ¡(↓.                                                

Definition 22.6 (i) We define a set  ¡x↓. by w7 ∈  ¡x↓. ⇔ −w7 ∈  ¡(↓..Note that ¡x↓. = − ¡(↓..                         

(ii) We define a set  ¡(xa)↓. by w7 ∈  ¡(xa)↓. ⇔ w7xa ∈  ¡(↓[.Note that  ¡(xa)↓. =  ¡(↓[.                             

Definition 22.7 (i) We define the ordering relation (∙≤∙)  on a set  ¡(↓[ ×  ¡(↓[ by: let {w7}7Z[. ∈  ¡(↓[ and 
{�7}7Z[. ∈  ¡(↓[ then {w7}7Z[. ≤ {�7}7Z[.  iff there is i ∈ ℕ such that for all 8 > i: w7 ≤ �7.                                                                                                                            

(ii) We define the ordering relation (∙≤∙)  on a set  ¡x↓[ ×  ¡x↓[ by: let {w7}7Z[. ∈  ¡x↓[ and  {�7}7Z[. ∈  ¡x↓[, then 
{w7}7Z[. ≤ {�7}7Z[.  iff there is i ∈ ℕ such that for all 8 > i: w7 ≤ �7                                                                   

(iii) We define the ordering relation (∙≤∙)  on a set  ¡≈(↓[ ×  ¡≈(↓[ by: let {w7}7Z[. ∈  ¡≈(↓[ and {�7}7Z[. ∈  ¡≈(↓[ then 
{w7}7Z[. ≤ {�7}7Z[.  iff there is i ∈ ℕ such that for all 8 > i: w7 ≤ �7.                                                     

Definition 22.8 (i) We define the ordering relation (∙≤∙)  on a set  ¡(↓[ × ℝ ∗ 4(#  by: let {w7}7Z[. ∈  ¡(↓[ and 
� ∈ ℝ ∗ 4(# , then {w7}7Z[. ≤ � iff there is i ∈ ℕ such that for all 8 > i: w7 < �.                                                       

(ii) We define the ordering relation (∙≤∙)  on a set  ¡≈(↓[ × ℝ ∗ 4≈(#  by: let {w7}7Z[. ∈  ¡≈(↓[ and Ä ∈ ℝ ∗ 4≈(# , then 



{w7}7Z[. ≤ Ä iff there is i ∈ ℕ such that for all 8 > i: w7 < Ä.                                                                              

(iii) We define the ordering relation (∙≤∙)  on a set ℝ ∗ 4≈(# ×  ¡≈(↓[ by: let {w7}7Z[. ∈  ¡≈(↓[ and Ä ∈ ℝ ∗ 4≈(# , then 
Ä ≤ {w7}7Z[.  iff there is i ∈ ℕ such that for all 8 > i: Ä < w7 .                                                                                                                                            

Proposition 221 Let {w7}7Z[. ∈  ¡(↓[ and {�7}7Z[. ∈  ¡(↓[, then                                                                                    

(i) {w7}7Z[. + {�7}7Z[. ≜ {w7 + �7}7Z[. ∈  ¡(↓[;                                                                                                              

(ii) {w7}7Z[. − {�7}7Z[. ≜ {w7 − �7}7Z[. ∈  ¡(↓[⋃ ¡x↓[⋃º0 ℝ ∗ �#»7Z[
. , where º0 ℝ ∗ �#»7Z[

.
 is a countable 0 ℝ ∗ �#- valued 

sequence;                                                                                                                                                                      

(iii) {w7}7Z[. × {�7}7Z[. ≜ {w7 × �7}7Z[. ∈  ¡(↓[;                                                                                                        
Proof. Immediately from definitions.                                                                                                                                                                  

Proposition 22.2 Let {w7}7Z[. ∈  ¡(↓[ and {�7}7Z[. ∈  ¡(xa)↓[ then                                                                

{w7}7Z[. × {�7}7Z[. ≜ {w7 × �7}7Z[. ∈  ¡(↓[⋃ ¡(xa)↓[⋃ ¡(↓.⋃º1 ℝ ∗ �#»7Z[
. , where º1 ℝ ∗ �#»7Z[

.
 is a countable 1 ℝ ∗ �#- 

valued sequence;                                                                                                                                                                 
Proof. Immediately from definitions.                                                                                                               

Definition 22.9 (i) Let {w7}7Z[. ∈ ℳ. = Δ¡(↓[⋃ ¡x↓[⋃ ¡(↓. ¡x↓.⋃º0 ℝ ∗ �#»7Z[
. ⋃º1 ℝ ∗ �#»7Z[

.
 , and let  {S7}7Z[

. ∗ ≜
{w7}�7Z[.  be a hyper infinite sequence 

                                      {S7}7Z[
. ∗ ≜ {w7}�7Z[. = (w[, wa, … , w7 , … , {w7}7Z[. , {w7}7Z[. , … ),                                (22.1) 

i.e. for any infinite v ∈ ℕ\ℕ ∗ , S� = {w7}7Z[. .                                                                                                                             

(ii) we define a set ℳ5. by                                                                                                                         

                                          {S7}7Z[
. ∗ ∈ ℳ5. ⇔ J{S7}7Z[

. ∗ = {w7}�7Z[. L ∧ ({w7}7Z[. ∈ ℳ.)                              (22.2) 

Definition 22.10 (i) Let  Ψ: ℕ → ∗ ℳ.⋃ J ℝ ∗ 4#
 ℕ ∗ L be a hyper infinite sequence and we denote these hyper 

infinite sequences by  {Ψ7}7Z[
. ∗ , {Φ7}7Z[

. ∗ ,etc.,                                                                                                                                             

(ii) we denote a set of the all these hyper infinite sequences by ℛ . ∗ . Note that ℳ5. ⊂ ℛ . ∗ ..                                                           

(iii) Let  ℘: ℕ → ∗ ℳ. be a hyperfinite sequence and we denote these hyperfinite sequences by  {ℱ7}7Z[7Z�,v ∈
ℕ\ℕ ∗ , {℘7}7Z[7Z�, ̀ ∈ ℕ\ℕ ∗ , etc.,                                                                                                                                               

(iii) Let  {ℱ7}7Z[7Z�  be {ℱ7}7Z[7Z�,v ∈ ℕ\ℕ ∗ , we define  hyper infinite sequence  {ℱ7}7Z[7Z��  by:                                  

for  8 ≤ v, {ℱ7}7Z[7Z�� = {ℱ7}7Z[7Z�, and for 8 > v, ℱ7 = v.                                                                                                                              

(iv) We denote a set of the all these hyper infinite sequences by �ç . ∗ .                                                                                       

(v) Let  ψ ∈ ℝ ∗ 4#
 ℕ ∗  be a hyper infinite sequence and we denote these hyper infinite sequences by  

{ψ7}7Z[
. ∗ , {ϕ7}7Z[

. ∗ , {θ7}7Z[
. ∗ ,etc.                                                                                                                                  

(vi) Let  ψ ∈ ℝ ∗ 4#
 ℕ ∗  be a hyper infinite sequence .Assume that there is exists  i ∈ ℕ ∗  such that ψ7 ≠ 0 ℝ ∗ �# for 

8 > i. Define hyper infinite sequence {ϕ7}7Z[
. ∗  of hyperreal numbers from ℝ ∗ 4# as follows: for 8 ≤ i, ϕ7 =

0 ℝ ∗ �#, and for  8 > i, U7 = a ℝ ∗ �#«9  

                                              {U7}7Z[
. ∗ = Å0 ℝ ∗ �# , 0 ℝ ∗ �# , … , 0 ℝ ∗ �# , a ℝ ∗ �#

åuw~
, a ℝ ∗ �#

åuw� , … Æ.                                              (22.3) 

This definition (22.3) makes sense since, for 8 > i, an is a nonzero hyperreal number, so  1 ℝ ∗ �#/Ψ7 exists. Then 

ψ7 × U7 is equal to ψ7 × 0 ℝ ∗ �#  = 0 ℝ ∗ �#  for 8 ≤ i, and equals ψ7 × U7 = ψ7 ×  1 ℝ ∗ �#/ψ7 = 1 ℝ ∗ �# for 8 > i. 
Thus hyper infinite sequence {ψ7}7Z[

. ∗  is invertible in the following sense         

                                    J{ψ7}7Z[
. ∗ L × J{U7}7Z[

. ∗ L = ;0 ℝ ∗ �# , 0 ℝ ∗ �# , … , 0 ℝ ∗ �# , 1 ℝ ∗ �# , 1 ℝ ∗ �# , … <.                                (22.4) 



If the equality (22.4) holds we say that hyper infinite sequence  {ψ7}7Z[
. ∗  multiplicative invertible and  {U7}7Z[

. ∗  

is multiplicative inverse or reciprocal for hyper infinite sequence {ψ7}7Z[
. ∗   and denote it by  

                                                                  J{ψ7}7Z[
. ∗ Lxa ℝ ∗ �# ≜ {ϕ7}7Z[

. ∗ .                                                          (22.5) 

Note that 

                                                               ÅJ{ψ7}7Z[
. ∗ Lxa ℝ ∗ �# Æ

xa ℝ ∗ �# ≡ {c7}7Z[
. ∗ .                                                 (22.6) 

Definition 22.11 Let {c7}7Z[
. ∗ ∈ ℝ ∗ 4#

 ℕ ∗  be a hyper infinite sequence such that {c7}7Z[
. ∗ ≢ º0 ℝ ∗ �#»7Z[

.
 and 

{c7}7Z[
. ∗  is not multiplicative invertible. This meant there is exists hyper infinite subsequence  ºc7³»>Z[

. ∗   such 

that c7³ ≠ 0 ℝ ∗ �# , � ∈ ℕ ∗  and  c7 ≡ 0 ℝ ∗ �# if c7 ∉ ºc7³»>Z[
. ∗ .  Define now hyper infinite sequence {ϕ7}7Z[

. ∗  of 

hyperreal numbers from ℝ ∗ 4# as follows: for = 8> , U7 = a ℝ ∗ �#«9³
 and  U7 ≡ 0 ℝ ∗ �# if c7 ∉ ºc7³»>Z[

. ∗ . Thus hyper 

infinite sequence {ψ7}7Z[
. ∗  is invertible in the following sense         

                                                                   {ψ7}7Z[
. ∗ × {U7}7Z[

. ∗ = {/7}7Z[
. ∗ ,                                                    (22.7) 

where  /7 ≡ 1 ℝ ∗ �# if 8 = 8> and /7 ≡ 0 ℝ ∗ �#  if  8 ≠ 8> , � ∈ ℕ. ∗   If the equality (22.7) holds we say that hyper 

infinite sequence  {ψ7}7Z[
. ∗  multiplicative semi-invertible and  {U7}7Z[

. ∗  is multiplicative semi-inverse or semi-

reciprocal for hyper infinite sequence {ψ7}7Z[
. ∗   and denote it by  

                                                             J{ψ7}7Z[
. ∗ Lxa ℝ ∗ �#∎ ≜ {ϕ7}7Z[

. ∗ .                                                              (22.8) 

Note that 

                                                         Å J{c7}7Z[
. ∗ Lxa ℝ ∗ �#∎ Æ

xa ℝ ∗ �#∎ ≡ {c7}7Z[
. ∗ .                                                   (22.9) 

Definition 22.12 (i) Let {w7}7Z[. , {�7}7Z[. ∈  ¡(↓[⋃ ¡x↓[⋃ ¡(↓. ¡x↓.⋃º0 ℝ ∗ �#»7Z[
. ⋃º1 ℝ ∗ �#»7Z[

.
and �, 
 ∈ ℝ ∗ 4#, 

then we define 

                                                      {w7}7Z[. ±{�7}7Z[. ≜ {w7 ± �7}7Z[. ,                                                          (22.10) 

                                                          � ± 
{w7}7Z[. ≜ {� ± 
w7}7Z[. .                                                            (22.11) 

(ii) Let {Ψ7}7Z[
. ∗ , {Φ7}7Z[

. ∗ ∈ ℛ . ∗ . and �, 
 ∈ ℝ ∗ 4#, then we define   

                                                    {Ψ7}7Z[
. ∗ ±  {Φ7}7Z[

. ∗ ≜ {Ψ7 ± Φ7}7Z[
. ∗ ,                                                      (22.12) 

                                                     {Ψ7}7Z[
. ∗ × {Φ7}7Z[

. ∗ ≜ {Ψ7 × Φ7}7Z[
. ∗ ,                                                     (22.13) 

                                                          � ± 
{Ψ7}7Z[
. ∗ ≜ {� ± 
Ψ7}7Z[

. ∗ .                                                          (22.14) 

Definition 22.13 Let hyper infinite sequence {Ψ7}7Z[
. ∗  be in ℛ . ∗ ., i.e. for all 8 ∈ ℕ ∗ ,Ψ7 ∈ ℳ.⋃ J ℝ ∗ 4#

 ℕ ∗ L . Say 

{Ψ7}7Z[
. ∗    #-tends to 0 ℝ ∗ �#

� ≜ 0 ℝ ∗ �#� , as  8 → ∞ ∗ .iff for any given Ä > 0 ℝ ∗ �# , Ä ≈ 0 ℝ ∗ �# there is a hypernatural 

number i ∈ ℕ\ℕ ∗ , i = i(Ä) such that for any 8 > i, |®7| < Ä.                                                                                     

Definition 22.14 Let {Ψ7}7Z[
. ∗   be a hyper infinite sequence such that for all 8 ∈ ℕ ∗ ,Ψ7 ∈ ℳ..We call {Ψ7}7Z[

. ∗ a 



Cauchy hyper infinite sequence if the difference between its terms #-tends to 0 ℝ ∗ �#. To be precise: given any 

Ä > 0 ℝ ∗ �# , Ä ≈ 0 ℝ ∗ �# there is a hypernatural number i ∈ ℕ\ℕ ∗ , i = i(Ä)  such that for any v, 8 > i,  |Ψ7 −
Ψ�| < Ä.                                                                                                                                                                                  

Theorem 22.1 Let {Ψ7}7Z[
. ∗  be in ℛ . ∗ . If {Ψ7}7Z[

. ∗  is a #-convergent hyper infinite sequence (that is, 

Ψ7 →# Φ as 8 → ∞ ∗  for someΦ ∈ ℛ . ∗ .), then {Ψ7}7Z[
. ∗  is a Cauchy hyper infinite sequence.                                                

Proof. We know thatΨ7 →# Φ. Here is a ubiquitous trick: instead of using Ä ≈ 0 ℝ ∗ �# in the definition, start with 

an arbitrary infinitesimal Ä > 0, Ä ≈ 0 ℝ ∗ �# and then choose i ∈ ℕ\ℕ ∗  so that |Ψ7 − Φ| < Ä/2 when 8 > i. 

Then if v, 8 > i, we have   |Ψ7 − Ψ�| =|(Ψ7 − Φ)−( Ψ� − Φ)|≤ |Ψ7 − Φ|  + |Ψ� − Φ| < Ä/2 + Ä/2 = Ä. 
This shows that {Ψ7}7Z[

. ∗  is a Cauchy hyper infinite sequence.                                                                                         

Theorem 22.2 If {Ψ7}7Z[
. ∗  is a Cauchy hyper infinite sequence, then it is bounded in ℝ ∗ 4#; that is, there is some 

number ð ∈ ℝ ∗ 4(#  such that |®7| ≤ ð for all 8 ∈ ℕ ∗ .                                                                                                      

Proof. Since {Ψ7}7Z[
. ∗  is Cauchy, setting Ä = 1 we know that there is some i ∈ ℕ ∗  such that  |Ψ7 − Ψ�| < 1 

whenever v, 8 > i. Thus, |Ψn(a − Ψ7| < 1 for > i . We can rewrite this as Ψn(a − 1 < Ψ7 < Ψn(a + 1.This 
means that  |Ψ7| is less than the maximum of |Ψn(a − 1| and |Ψn(a + 1|. So, set ð ∈ ℝ ∗ 4(#  larger than any 
number in the following hyperfinite list:  {|Ψ₀|, |Ψ₁|, . . . , |Ψn|, |Ψn(a − 1| , |Ψn(a + 1|}. Then for any term Ψ7, 
if 8 ≤ i, then |Ψ7| appears in the list and so |Ψ7| ≤ ð; if 8 > i, then (as shown above) ||Ψ7|is less than at 
least one of the last two entries in the list, and so  |Ψ7| ≤ ð. Hence, ð is a bound for the sequence.                                            
Definition 22.15 Let { be a set of objects. A relation among pairs of elements of { is said to be an equivalence 
relation if the following three properties hold:  (1) Reflexivity: for any è ∈ {, è is related to è. (2) Symmetry: for 
any s,t∈S, if s is related to � then t is related to è. (3) Transitivity: for any s,t,r∈S, if s is related to t and t is 
related to r, then s is related to r.                                                                                                                                 
Remark 22.1 The following well known proposition goes most of the way to showing that an equivalence 
relation divides a set into bins.                                                                                                                               
Proposition 22.3 Let S be a set, with an equivalence relation on pairs of elements. For s∈S, denote by [s] the set 
of all elements in S that are related to s. Then for any s,t∈S, either [s]=[t] or [s] and [t] are disjoint. The sets [s] 
for s∈S are called the equivalence classes, and they are the bins.                                                                            
Corollary 22.1 If S is a set with an equivalence relation on pairs of elements, then the equivalence classes are 
non-empty disjoint sets whose union is all of S.                                                                                           

Definition.22.16 Let ºΨa,7»7Z[
. ∗  andºΨ�,7»7Z[

. ∗ } be in ℛ . ∗ .. Say they are equivalent (i.e. related) if  �Ψa,7 −
Ψ�,7� →# 0 ℝ ∗ �# as 8 → ∞ ∗ .                                                                                                                                               

Proposition 22.4 Definition 22.15 yields an equivalence relation on ℛ . ∗ ..                                                                     

Proof. We need to show that this relation is reflexive, symmetric, and transitive. (1) Reflexive: Ψa,7 − Ψ�,7 =
0 ℝ ∗ �#, 8 ∈ ℕ, ∗  and the hyper infinite sequence all of whose terms are 0 ℝ ∗ �# clearly #-converges to 0 ℝ ∗ �# -valued 

hyper infinite sequence So ºΨa,7»7Z[
. ∗  is related to ºΨ�,7»7Z[

. ∗ . (2)  Symmetric: Suppose that ºΨa,-»7Z[
. ∗  is related 

to ºΨ�,7»7Z[
. ∗ , so �Ψa,7 − Ψ�,7� →# 0 ℝ ∗ �#, as  8 → ∞ ∗ . But Ψ�,7 − Ψa,7 = −;Ψa,- − Ψ�,-<, and since only the 

absolute value  �Ψa,7 − Ψ�,7� = �Ψ�,7 − Ψa,7� comes into play in Definition 22,15 it follows that                    

�Ψ�,7 − Ψa,7� →# 0 ℝ ∗ �#,  as  8 → ∞ ∗   as well. Hence, ºΨ�,7»7Z[
. ∗  is related to {ºΨa,7»7Z[

. ∗ . (3) Transitive: Suppose 

ºΨa,7»7Z[
. ∗   is related to ºΨ�,7»7Z[

. ∗ , and ºΨ�,7»7Z[
. ∗ is related to ºΨb,7»7Z[

. ∗ . This means that �Ψa,7 − Ψ�,7� →# 0 ℝ ∗ �# 

and �Ψ�,7 − Ψb,7� →# 0 ℝ ∗ �#, as  8 → ∞ ∗ . To be fully precise, let us fix infinite small  ∈ ℝ ∗ 4(#  ; then there exists an 

i ∈ ℕ\ℕ ∗  such that for all 8 > i, �Ψa,7 − Ψ�,7� < Ä/2; also, there exists an ð ∈ ℕ\ℕ ∗  such that for all 

8 > ð, �Ψ�,7 − Ψb,7� < Ä/2. Well, then, as long as  >  max(i, ð) , we have that   

          �Ψ�,7 −Ψb,7� = �;Ψa,7 −Ψ�,7< + ;Ψ�,7 −Ψb,7<� ≤ �Ψa,7 −Ψ�,7� + �Ψ�,7 −Ψb,7�  < Ä/2 + Ä/2 = Ä.     
So, choosing ' equal to the max of i, ð, we see that given infinite small Ä > 0 we can always choose ' so that 

for 8 > ',| �Ψa,7 −Ψb,7� < Ä. This means that �Ψa,7 −Ψb,7�  →# 0 ℝ ∗ �# , i.e. ºΨa,7»7Z[
. ∗  is related to ºΨb,7»7Z[

. ∗ .   



So, we really have equivalence relation, and so by Corollary 22.1 the set ℛ . ∗ . Is partitioned into disjoint subsets 

(equivalence classes).                                                                                                                                                      

Definition 22.17 The hyperreal numbers ℝ5 ∗ 4# are the equivalence classes H{Ψ7}7Z[
. ∗ , N of Cauchy hyper infinite 

sequences of, as per Definition 22.16.That is, each such equivalence class is a hyperreal number in ℝ5 ∗ 4#. 

Definition 22.18 Let {w7}7Z[. ∈ ℝ5 ∗ 4# . We define external countable sum ���̄ - ∑ w77Z.7Z[  by:  

                    (i)               ���̄ - ∑ w77Z.7Z[ ≜ (�[, �a, … , �� , … , {�7}7Z[. , {�7}7Z[. , … ) = {�7}� 7Z[.  ,                   (22.15) 

where �[ = w[, … , ��, . . ; �� = ���-∑ w7, ` ∈ ℕ7Z�7Z[ .  

(ii) We set  

                                                           ���̄ - ∑ w7 ≡7Z.7Z[ ���-∑ w77Z.7Z[ .                                                          (22.16) 

Remark 22.2 Note that in non-Archimedean field  ℝ5 ∗ 4# external countable sum ���-∑ w77Z.7Z[ is not preserved in 
general case under the substitution w7 = �7 , 8 ∈ ℕ, i.e.  w7 = �7 , 8 ∈ ℕ ⟹],± ���-∑ w7 =7Z.7Z[ ���-∑ �7 .7Z.7Z[  

For example in non-Archimedean field ℝ5 ∗ 4#  for countable sequence: B, Bû, Bû², … . Bû7 , … , 8 ∈ ℕ, û < 1 we get                                                                                                                       

                                ���- ∑ Bû77Z.7Z[ = ���̄ - ∑ Bû7 = B a ℝ5 ∗ �#a ℝ5 ∗ �#xú
7Z.7Z[ ;1 ℝ5 ∗ �# − {û7}�7Za7Z.<. 

However in non-Archimedean field  ℝ ∗ 4# one obtains that  

                                                                    ���- ∑ Bû7 = B a ℝ ∗ �#a ℝ ∗ �#xú
7Z.7Z[  ,  

see Example 22.1.                                                                                                                                                                                           
Example 22.1 Consider countable sequence: B, Bû, Bû², … . Bû7 , … , 8 ∈ ℕ, û < 1. 

          ���̄ - ∑ Bû7 = B ]a ℝ ∗ �#}ù9
a ℝ ∗ �#xú
� y

7Z[

7Z.
= B a ℝ5 ∗ �#a ℝ5 ∗ �#xú

7Z.7Z[ − B ] ú9
a ℝ ∗ �#xúy�

7Za

7Z.
= B a ℝ5 ∗ �#a ℝ5 ∗ �#xú − F

a ℝ5 ∗ �#xú {û7}�7Za7Z..      (22.17) 

Notice that {û7}�7Za7Z. ∈  ¡(↓[.                                                                                                                                           

Definition 22.19 Let {w7}7Z[7Z� ∈ �ç . ∗ , v ∈ ℕ\ℕ. ∗  We define external hyper finite sum ���̄ - ∑ w77Z�7Z[  by:  

                    (i)               ���̄ - ∑ w77Z�7Z[ ≜ (�[, �a, … , �� , … , {�7}7Z[7Z�, {�7}7Z[7Z�, … ) = {�7}� 7Z[7Z� ,               (22.18) 

where �[ = w[, … , ��, . . , ��; �� = ���-∑ w7 , ` ∈ ℕ. ∗7Z�7Z[   

(ii) We set   

                                                           ���̄-∑ w7 ≡7Z�7Z[ ���� -∑ w7 ,7Z�7Z[                                                             (22.19) 

where ���� -∑ w7 ≜ E�²7Z�7Z[ , E� = ��� - ∑ w77Z�7Z[ .                                                                                                                                                                    
Example 22.2 Consider hyper finite sequence: B, Bû, Bû², … , Bû� , v ∈ ℕ\ℕ ∗ , û < 1. 

          ���̄ - ∑ Bû7 = B ]a ℝ ∗ �#}ù9
a ℝ ∗ �#xú
� y

7Z[

7Z�
= B a ℝ ∗ �#a ℝ ∗ �#xú

7Z�7Z[ − B ] ú9
a ℝ ∗ �#xúy�

7Za

7Z�
= B a ℝ ∗ �#a ℝ ∗ �#xú − F

a ℝ ∗ �#xú {û7}�7Za7Z�.      (22.20) 

From (22.17) and (22.20) we obtain  

                                      ���̄ -∑ Bû7  = F
a ℝ ∗ �#xú ;{û7}�7Za7Z. − û�<7∈ ℕ\ℕ,7�� ∗ > 0 ℝ ∗ �# .                                     (22.21) 



Example 22.3 Consider hyper infinite sequence: , Bû, Bû², … . Bû7 , … , 8 ∈ ℕ, û < 1. 
8 ∈ ℕ ∗ .Type equation here. 
 ���̄ – ∑ Bû77∈ ℕ ∗ ≜ #- lim�→ . ∗ (���̄ − ∑ Bû7) = B a ℝ5 ∗ �#a ℝ5 ∗ �#xú

7Z�7Z[ − ·#−lim�→ . ∗ B ] ú9
a ℝ ∗ �#xúy�

7Za

7Z�¸ = 

= B a ℝ5 ∗ �#a ℝ5 ∗ �#xú.                                                                                                                                                      (22.22) 

From (22.17) and (22.22) we obtain  

                                                   ���̄ -∑ Bû7 = {û7}�7Za7Z.7∈ ℕ ∗ > 0 ℝ5 ∗ �# .                                                           (22.23) 

Definition 22.20 Let è, � ∈ ℝ5 ∗ 4#, so there are Cauchy hyper infinite sequences {Ψ7}7Z[
. ∗  and {Φ7}7Z[

. ∗  with 

è = {Ψ7}7Z[
. ∗  and � = {Φ7}7Z[

. ∗  .                                                                                                                                                     

(i) Define è + � to be the equivalence class of the hyper infinite sequence {Ψ7 +Φ7}7Z[
. ∗ .                                            

(ii) Define è × � to be the equivalence class of the hyper infinite sequence {Ψ7 ×Φ7}7Z[
. ∗ .                         

Proposition 22.5 The operations +,× in Definition 22.18 (i),(ii) are well-defined.                                             

Proof. (i) Suppose that {Ψ7}7Z[
. ∗ = ºΨa,7»7Z[

. ∗  and {Φ7}7Z[
. ∗ = ºΦa,7»7Z[

. ∗  .Thus means that  Ψ7 −Ψa,7 →# 0 ℝ ∗ �#, 

and Φ7 −Φa,7 →# 0 ℝ ∗ �#  as  8 → ∞ ∗ . Then (Ψ7 +Φ7) − ;Ψa,7 +Φa,7< = ;Ψ7 −Ψa,7< + ;Φ7 −Φa,7<. Now, 

using the familiar 
�
� trick, you can construct a proof that this #-tends to 0 ℝ ∗ �#, and so H{Ψ7 +Φ7}7Z[

. ∗ N =
HºΨa,7 +Φa,7»7Z[

. ∗ N.                                                                                                                                                                    

(ii) Again, suppose that {Ψ7}7Z[
. ∗ = ºΨa,7»7Z[

. ∗  and {Φ7}7Z[
. ∗ = ºΦa,7»7Z[

. ∗ .  We wish to show that H{Ψ7 ×Φ7}7Z[
. ∗ N = HºΨa,7 ×Φa,7»7Z[

. ∗ N ,or, in other words, that Ψ7 ×Φ7 −Ψa,7 ×Φa,7 →# 0 ℝ ∗ �# as  8 → ∞ ∗ .    Well, we 

add and subtract one of the other cross terms, say Φ7 ×Ψa,7: 

 Ψ7 ×Φ7 −Ψa,7 ×Φa,7 = Ψ7 ×Φ7 + ;Φ7 ×Ψa,7 −Φ7 × Ψa,7< −Ψa,7 ×Φa,7 = ;Ψ7 ×Φ7 −Φ7 ×Ψa,7< + 

+;Φ7 ×Ψ7 −Φ7 × Ψa,7< + ;Φ7 ×Ψa,7 −Ψa,7 ×Φa,7< = Φ7 × ;Ψ7 −Ψa,7< +Ψa,7 × ;Φ7 −Φa,7<.  

Hence, we have � Ψ7 ×Φ7 −Ψa,7 ×Φa,7� ≤ |Φ7| × �Ψ7 −Ψa,7� + �Ψa,7� × �Φ7 −Φa,7� ≤ !;�Ψ7 −Ψa,7� +�Φ7 −Φa,7�<.  Now, noting that both Ψ7 −Ψa,7 and Φ7 −Φa,7 #-tend to 0 ℝ ∗ �#  as  8 → ∞ ∗   and using the Ä/2 

trick (actually, this time we'll want to use Ä/2!, we see that Ψ7 ×Φ7 −Ψa,7 ×Φa,7 →# 0 ℝ ∗ �# as  8 → ∞ ∗ .     

Theorem 22.3 (i) Given any hyperreal number è ∈ ℝ5 ∗ 4#, è = {Ψ7}7Z[
. ∗   such that è ≠ H0 ℝ ∗ �#

�N and there is i such 

that for all 8 > i,Ψ7 is multiplicative invertible, then there is a hyperreal number � ∈ ℝ5 ∗ 4# such that è × � =
1 ℝ ∗ �#
� ≜ 1 ℝ ∗ �#� .  (ii) Given any hyperreal number è ∈ ℝ5 ∗ 4#, è = {Ψ7}7Z[

. ∗   such that è ≠ H0 ℝ ∗ �#
�N  and there is i such 

that for all 8 > i,Ψ7 is multiplicative semi-invertible, then there is a hyperreal number � ∈ ℝ5 ∗ 4# such that 
è × � = [/7], where  /7 ≡ 1 ℝ ∗ �# if 8 = 8> and /7 ≡ 0 ℝ ∗ �#  if  8 ≠ 8>, � ∈ ℕ. ∗                                                                                                                              

Proof. (i) First we must properly understand what the theorem says. The premise is that è is nonzero, which 

means that è is not in the equivalence class of  0 ℝ ∗ �#� ≜ 0 ℝ ∗ �#� . In other words, è = {Ψ7}7Z[
. ∗  where {Ψ7}7Z[

. ∗ − 0 ℝ ∗ �#�  

does not #-converge to 0 ℝ ∗ �#�  as  8 → ∞ ∗ . From this, we are to deduce the existence of a hyperreal number 

� = {Φ7}7Z[
. ∗  such that è ×  � = H{Ψ7 ×Φ7}7Z[

. ∗ N is the same equivalence class as 1 ℝ ∗ �#� . Doing so is actually an 

easy consequence of the fact that nonzero hyperreal numbers from ℝ ∗ 4# have multiplicative inverses, but there is 

a subtle difficulty. Just because è is nonzero (i.e. {Ψ7}7Z[
. ∗  does not #-tend to 0 ℝ ∗ �#�  as 8 → ∞ ∗ , there's no reason 

any number of the terms in {Ψ7}7Z[
. ∗  can't equal 0 ℝ ∗ �#. However, it turns out that eventually, {Ψ7}7Z[

. ∗ ≠ 0 ℝ ∗ �#�  by 



Lemma 22.1.                                                                                                                                                                             
Proof. (ii) Immediately from definitions and by Lemma 22.1.                                                                                       

Lemma 22.1 If {Ψ7}7Z[
. ∗  is a Cauchy hyper infinite sequence which does not #-tend to 0 ℝ ∗ �#, then there is an 

i ∈ ℕ ∗  such that: (i) for all 8 > i, Ψ7 ≠ 0 ℝ ∗ �#  or  (ii) there is hyper infinite subsequence  ºΨ7³»7³Z[
. ∗ ⊂ {®7}7Z[

. ∗  

such that ºΨ7³»7³Z�
. ∗ ≠ 0 ℝ ∗ �# , � ∈ ℕ ∗ , ð ∈ ℕ\ℕ ∗ .                                                                                                                                                                   

We will now use it to complete the proof of Theorem 22.3.                                                                                                     

Let i ∈ ℕ ∗  be such that Ψ7 ≠ 0 ℝ ∗ �# for 8 > i. Define hyper infinite sequence {Φ7}7Z[
. ∗  of hyperreal numbers 

from ℝ ∗ 4# as follows: for 8 ≤ i, Φ7 = 0 ℝ ∗ �#, and for 8 > i, Φ7 = a ℝ ∗ �#
¹9

.   Thus we obtain hyper infinite sequence  

{Φ7}7Z[
. ∗ = Å0 ℝ ∗ �# , 0 ℝ ∗ �# , … , 0 ℝ ∗ �# , a ℝ ∗ �#ºuw~

, a ℝ ∗ �#ºuw� , … Æ. This makes sense since, for 8 > i, an is a nonzero hyperreal 

number, so  1 ℝ ∗ �#/Ψ7 exists. Then Ψ7 ×Φ7 is equal to Ψ7 × 0 ℝ ∗ �#  = 0 ℝ ∗ �#  for 8 ≤ i, and equals Ψ7 ×Φ7 = Ψ7 ×  1 ℝ ∗ �#/Ψ7 = 1 ℝ ∗ �# for 8 > i. Well, then, if we look at the hyper infinite sequence 1 ℝ ∗ �#� ≜ 1 ℝ ∗ �#� ,  we have 

1 ℝ ∗ �#� − {Ψ7 ×Φ7}7Z[
. ∗  is the hyper infinite sequence which is 1 ℝ ∗ �#

� − 0 ℝ ∗ �#
� = 1 ℝ ∗ �#�   for 8 ≤ i and equals 1 ℝ ∗ �#� − 

1 ℝ ∗ �#� = 0 ℝ ∗ �#�   for 8 > i. Since this hyper infinite sequence is eventually equal to 0 ℝ ∗ �#
�, it #-converges to  0 ℝ ∗ �# as 

8 → ∞ ∗ , and so H{Ψ7 ×Φ7}7Z[
. ∗ N = 1 ℝ ∗ �#� . This shows that � =  H{Φ7}7Z[

. ∗ N is a multiplicative inverse to è =
H{Ψ7}7Z[

. ∗ N.                                                                                                                                                       

Definition 22.21 Let è ∈ ℝ5 ∗ 4#. Say that s is positive if è ≠ 0 ℝ ∗ �#� , and if è = H{Ψ7}7Z[
. ∗ N for some Cauchy hyper 

infinite sequence such that for some i, Ψ7  > 0 ℝ ∗ �# for all 8 > i. Given two hyperreal numbers è, � ∈ ℝ5 ∗ 4#, say 

that è > � if è − � is positive.                                                                                                                           

Theorem 22.3 Let è, � ∈ ℝ5 ∗ 4# be hyperreal numbers such that è > �, and let û ∈ ℝ5 ∗ 4#. Then è + û > � + û.             
Proof. Let è = H{Ψ7}7Z[

. ∗ N , � =  H{Φ7}7Z[
. ∗ N and û = H{Θ7}7Z[

. ∗ N. Since è > �, i.e. −� > 0 ℝ ∗ �# , we know that there 

is an i ∈ ℕ ∗  such that, for 8 > i, Ψ7 −Φ7  > 0 ℝ ∗ �# .So Ψ7 > Φ7 for 8 > i. Now, adding Θ7 to both sides of 

this inequality, we have Ψ7 + Θ7 > Φ7 + Θ7 for 8 > i, or (Ψ7 + Θ7) − (Φ7 + Θ7) > 0 ℝ ∗ �# for 8 > i. Note 

also that (Ψ7 + Θ7) − (Φ7 + Θ7) = Ψ7 −Φ7 does not #-converge to 0 ℝ ∗ �# as 8 → ∞ ∗ , by the assumption that 

è − � > 0 ℝ ∗ �#�,. Thus, by Definition 22.19, this means that: è + û = H{Ψ7 + Θ7}7Z[
. ∗ N > H{Ψ7 +Φ7}7Z[

. ∗ N = � + û. 

Remark 22.3 There is canonical imbedding 
                                                                        ℝ ∗ 4# ↪> ℝ5 ∗ 4#                                                                             (22.24)                      
defined by �: w ↦ [w½].                                                                                                                                                  
23. Generalized convergence of hyper infinite sequences of #-closed operators                                                              
When we consider various perturbation problems related to #-closed operators, it is necessary to make precise 
what is meant by a "small" perturbation. This can be done in a most natural way by introducing a metric in the 
set 4(?,{) of all #-closed operators from ? to {. If  >, { ∈ 4(?,{), their graphs �(>),�({) are #-closed 
linear manifolds in the product space  ? × {. Thus the "distance" between > and { can be measured by the 
"gap" between the closed linear manifolds. �(>),�({). In this way we are led to consider how to measure the 
gap of two #-closed linear manifolds of a non-Archimedean Banach space. In this paragraph we shall consider -
closed linear manifolds ð, i, . .. of a non-Archimedean Banach space �. We denote by {� the unit sphere of ð 
(the set of all � ∈ ð with‖�‖# = 1). For any two #-closed linear manifolds ð, i of  �, we set 

                                                         �(ð, i) = sup�∈��  dist(�, i),                                                             (23.1) 

                                                      ��(ð, i) =   max��(ð, i), �(i, ð)].                                                        (23.2)                  



Note that (23.1) has no meaning if ð = ∅; in this case we define �(0, i) = 0 ℝ ∗ �#�  for any i. On the other hand 

�(ð, 0) = 1 ℝ ∗ �#�  if ð ≠ ∅, as is seen from the definition. �(ð, i) can also be characterized as the smallest 

number � such that   

                                                                    dist(�, i) ≤ �‖�‖#                                                                      (23.3)      

for all � ∈ ð.                                                                                                                                                                                                

Definition 23.1 The quantity ��(ð, i) is called the gap between ð, i.                                                                   
The following relations follow directly from the definition. 

                                                         �(ð, i) = 0 ℝ ∗ �#�  if and only if ð ⊂ i.                                                    (23.4)                     

                                                    ��(ð, i)  = 0 ℝ ∗ �#�  if and only if ð = i.                                                        (23.5) 

                                                                  �� (ð, i) =  �� (i, ð).                                                                    (23.6) 

                                                   0 ℝ ∗ �#� ≤ �(ð, i) ≤ 1 ℝ ∗ �#� , 0 ℝ ∗ �#� ≤ ��(ð, i)  ≤ 1 ℝ ∗ �#� .                                       (23.7)                

(23.5) and (23.6) suggest that �(ð, i) could be used to define a distance between ð and i. But this is not 
possible, since the function �(?,{) does not in general satisfy the triangle inequality required of a distance 
function'.This inconvenience may be removed by modifying the definition (23.1)-(23.2). We set 

                                                             �(ð, i) = sup�∈�� dist(�, {n),                                                         (23.8)   

                                                            ��(ð, i) = max��(ð, i), �(i, ð)].                                                   (23.9) 

(23.8) does not make sense if either ð or i is 0. In such cases we set 

                                                  �(0, i) = 0 ℝ ∗ �#�  for any i; �(ð, 0) = 2 ℝ ∗ �#�  for ð ≠ ∅.                               (23.10)                      

Furthermore, � and �� satisfy the triangle inequalities : 

                                        �(', i) ≤ �(', ð) + �(ð, i), ��(', i) ≤ ��(', ð) + ��(ð, i).                            (23.11)            

The second inequality of (23.11) follows from the first, which in turn follows easily from the definition. The 
proof will be left to the reader. The case when some of ', ð, i are 0 should be considered separately; note 

(23.10). The set of all #-closed linear manifolds of Z becomes a metric space endowed with  ℝ5 ∗ 4#-valued metric 

if the distance between ð, i is defined by ��(', i).                                                                                            
Definition 23.2 A hyper infinite sequence ð7,8 ∈ ℕ ∗  of #-closed linear manifolds #-converges to ð if                    

�� (ð7 , ð) →# 0 ℝ ∗ �#�   as  8 → ∞ ∗ . Then we write ð7 →# ð or #-lim7→ . ∗ ð7 =  ð.                                            
Remark 23.1 Although the gap �� is not a proper distance function, it is more convenient than the proper 

distance function �� for applications since its definition is slightly simpler. Furthermore, when we consider the 
topology of the set of all closed linear manifolds, the two functions give the same result. This is due to the 
following inequalities 

                                                        �(ð, i) ≤ �(ð, i) ≤ 2�(ð, i),                                                          (23.12) 

                                                        ��(ð, i) ≤ ��(ð, i) ≤ 2��(ð, i).                                                          (23.13) 

    We set 

                            �(>, {) = �(�(>),�({)) , ��(>, {) = ��(�(>),�({)) = max��(>, {), �({,>)].               (23.14) 



The quantity ��(>, {) will be called the gap between > and {. Similarly we can define the distance ��(>, {) 

between > and { as equal to��(�(>), �({)). Under this distance function 4(?,{) becomes a non-Archimedean  

metric space endowed with  ℝ5 ∗ 4#-valued metric. In this space the #-convergence of a hyper infinite sequence  >7 ∈ 4(?,{) to a > ∈ 4(?,{) as  8 → ∞ ∗  is defined by ��(>7,>) →# 0 ℝ ∗ �#� . But since     ��(>, {) ≤ ��(>, {) ≤
2��(>, {) in virtue of (23.13), this is true if and only if ��(>7 ,>) →# 0 ℝ ∗ �#�   as  8 → ∞ ∗ .                                                
Definition 23.3 Let >7 ∈ 4(?,{), 8 ∈ ℕ. ∗  If ��(>7 ,>) →# 0 ℝ ∗ �#�   as  8 → ∞ ∗  we shall say that the operator >7   

#-converges to > or >7 →# > in the generalized sense.                                                                                       
Theorem 23.1 Let >: j# → j# be a #-selfadjoint operator. Then there is a � > 0 such that any #-closed 

symmetric operator { with ��({,>) < � is #-selfadjoint, where ��({,>) denotes the gap between { and >. 
Corollary 23.1 Let >,>7. be #-closed symmetric operators and let hyper infinite >7 , 8 ∈ ℕ. ∗  #-converge to > in 
the generalized sense. If > is #-selfadjoint, then >7 is #-selfadjoint for sufficiently large 8 ∈ ℕ. ∗                               
24. Strong convergence of the resolvent                                                                                                                                                   
Let >7, 8 ∈ ℕ ∗ ,>7 ∈ 4(?,?) be a hyper infinite sequence of #-closed operators in a non-Archimedean Banach 
space ?. In this section we are briefly concerned with general considerations on strong #-convergence of the 

resolvents !7(') = ( >7 − ')xa ℝ ∗ �#�
. We remind the fundamental result on the #-convergence in #-norm of the 

resolvents: if !7(')  #-converges in #-norm to the resolvent !(') = ( > − ')xa ℝ ∗ �#�
 of a #-closed operator > for 

some ' ∈ 	(>), then the same is true for every ' ∈ 	(>) (see Theorem 23.2 and Remark 23.2). There is no 
corresponding theorem for strong #-convergence of the resolvents. Nevertheless, we can prove several theorems 
on the set of points ξ where the !7(')are strongly #-convergent or bounded. Let us define the region of 

boundedness, denoted by  �, for the hyper infinite sequence  !7(') as the set of all complex numbers ' ∈ ℂ6 ∗ 4# 
such that ' ∈ 	(>7) for sufficiently large 8 ∈ ℕ ∗  and the sequence  ‖ !7(')‖# is bounded [for 8 so infinite large 
that the  !7(')  are defined]. Furthermore, let  ] be the set of all ' such that s-#-lim7→ . ∗   !7(') =  !′(') 

exists.  ] will be called the region of strong #-convergence for !7('). Similarly we define the region  � of   #-
convergence in #-norm for !7('). Obviously we have  �  ⊂  ] ⊂   � .                                                         

Theorem 24.1  � is an #-open set in the complex plane ℂ6 ∗ 4#. Operator !7(') is bounded in ℝ ∗ 4#�  uniformly in 8 
and ' in any #-compact subset of  �.                                                                                                                     

Proof. Let '₀ ∈  �; for |' − '₀| < 1 ℝ ∗ �#� /‖ !7('[)‖# = (‖ !7('[)‖#)xa ℝ ∗ �#�
   we have the Neumann hyper infinite 

series   

                                                         !7(') = ���-∑ (' − '₀) �‖ !7('[)‖#��. ∗�Z[ .                                            (24.1) 

If ‖ !7('[)‖# ≤ ð₀, then ‖ !7('[)‖# ≤ ð₀(1 ℝ ∗ �#� − ð₀ |' − '₀|xa ℝ ∗ �#�
) for |' − '₀|  < ð[

xa ℝ ∗ �#�
 The theorem 

follows immediately.                                                                                                                                                       
Remark 24.1 Theorem 24.1 implies that  � consists of at most a hyper infinite number of #-connected #-open 
sets  �~ , �� , . . ., (the components of  �).                                                                                                                       

Theorem 24.2   ] is relatively #-open and #-closed in  � (so that  ] is the union of some of the components  �¿ of  �). The strong #-convergence  !7(')  →# !(') is uniform in each #-compact subset of  ].                            

Remark 24.2 For convenience we call  � also the region of boundedness for the sequence if there is no 
possibility of confusion. Similarly for  ] and  �.                                                                                                            
Remark 24.3The strong #-convergence  !7(')  →# !(') is uniform in ξ if  ‖!7(') − !(')‖# →# 0 ℝ ∗ �#�  

uniformly in ' for each fixed � ∈ ?.                                                                                                                                   
Remark 24.4 The strong #-limit R′(ξ) of !7(') for ' ∈  ] need not be the resolvent of an operator. In any case, 
however, !′(') satisfies the resolvent equation 

                                          !′('₁) − !′('₂) = ('₁ − '₂)!′('₁)!′('₂), '₁, '₂ ∈  ],                                          (24.2) 

as the strong #-limit of operators !7(') which satisfy the same equation.                                                              
Definition 24.1 For this reason R′(ξ) is called a pseudo-resolvent. Note that !′('₁) and !′('₂) commute. 



Remark 24.5 The Eq.(24.2) implies that the null space i = i(!′(')) and the range ! = !(!′(')) of !′(') are 
independent of '. In fact, it follows from Eq.(24.2) that !′('₂)� = 0 implies !′('₁)� = 0 and that � =  !′('₁)� 
implies � = !′(')� with � = � − ('₁ − '₂)�.                                                                                                             
Remark 24.6 The pseudo-resolvent !′(') is a resolvent of an #-closed operator > if and only if i = 0.                     
Theorem 24.3 Let  ] be nonempty. There are the alternatives: either !′(') is invertible for no ' ∈  ] or !′(') is 

equal to the resolvent  !(') = (> − ') xa ℝ ∗ �#�
 of a unique operator > ∈ 4(?,?). In the latter case we have  ] = 	(>) ∩  � .                                                                                                                                                                   

Proof. Only the last statement remains to be proved. We have   ]  ⊂ 	(>) ∩  �} since  ] ⊂ 	(>). To prove 
opposite inclusion, we note the identity  

                !7 (')  − !(') = (1 ℝ ∗ �#� + (' − '₀) !7 (')) ( !7 (ξ₀)  − !('₀))(1 ℝ ∗ �#� +  (' − '₀)!('))              (24.3) 

for ', '₀ ∈ 	(>) ∩  � this is a simple consequence of the resolvent equations for !7(') and !('). If '₀ ∈  ], 
we have s-#-lim  !7('₀) =  !′('₀) = !('₀) so that Eq.(24.3) gives s-#-lim !7 (') = !(') by the uniform 
boundedness of hyper infinite sequence  !7('), 8 ∈ ℕ ∗ .This shows that ' ∈  ] and completes the proof.  
Corollary 24.1 Let >7 , 8 ∈ ℕ ∗  and > be sebe #-selfadjoint operators in a non-Archimedean Hilbert space, with 

the resolvents  !7 (') and !('). If s-#-lim7→ . ∗  !7 (') = !(') for some complex number ' ∈ ℂ6 ∗ 4#, then the 

same is true for every nonreaal ' ∈ ℂ6 ∗ 4#.                                                                                                                    
Proof. Since ‖ !7 (') ‖# ≤ 1 ℝ ∗ �#� /|Im'|, all nonreal numbers ' are included in  � as well as in 	(>). Thus 

	(>) ∩  � also includes all nonreal ξ, and the assertion follows from Theorem 24.3.                                      
Definition 24.2 When the second alternative of Theorem 24.3 is realized, we shall say that  !7 (') #-converges 
strongly to !(') on  ], and that >7 #-converges strongly to > in the generalized sense.                                                  
A criterion for generalized strong convergence is given by:                                                                                    
Theorem 24.5 Let >7,> ∈ 4(?,?) and let there be a #-core K of > such that each � ∈ K belongs to K(>7) for 
sufficiently infinite large 8 and >7� →# >�. If 	(>) ∩   � is not empty, >7 #-converges strongly to > in the 
generalized sense and  ] = 	(>) ∩   �. 

 

 

 

                                                                                                                                                                                      

25. Conclusion                                                                                                                                                      
A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field 
operator �(�, �) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued 
function. We prove using this novel approach that the quantum field theory with Hamiltonian 	(�)
 exists and 
that the canonical �∗- algebra of bounded observables corresponding to this model satisfies all the Haag-Kastler 
axioms except Lorentz covariance. We prove that the �(�
)
 quantum field theory model is Lorentz covariant. 
For each Poincare transformation w ,&  and each bounded region Ö of Minkowski space we obtain a unitary 
operator , which correctly transforms the field bilinear forms �(�, �) for (�, �) ∈ Ö. The von Neumann algebra  
ℭ(Ö) of local observables is obtained as standard part of external nonstandard algebra ℬ#(Ö).                  
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