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Abstract.
This paper presents a unified second-order model that resolves key limitations of tra-
ditional first-order potential theories in both fluid dynamics and electromagnetism. By
employing the vector Laplacian and defining a space-time derivative operator, d

dt = −k∆,
we establish a fundamental connection between spatial structure and temporal evolu-
tion, providing a more complete and physically consistent framework.
This approach integrates the electric and magnetic fields with force and torque densi-
ties, reinterpreting charge, current, and electromagnetic fields in terms of fluid dynamic
quantities such as mass density and momentum diffusivity.
Additionally, the model proposes a potential unification of gravitational and electro-
magnetic forces by expressing the gravitational potential as proportional to the square
of the electric field. This redefinition creates a seamless link between the two forces,
treating gravitational interactions as a secondary effect of electric field behavior.
Higher-order time derivatives, such as jerk and yank, are introduced to further extend
the framework’s ability to describe dynamic systems in both fluid and electromagnetic
contexts.
The results demonstrate consistency across scales, from quantum phenomena to cos-
mological dynamics, offering a comprehensive alternative to existing theories while
eliminating gauge fixing ambiguities and enhancing mathematical coherence.

1 Introduction

In fluid dynamics and electromagnetism, potential theory
plays a central role in describing flow and field interactions.
However, potential fields, as traditionally defined, present
several unresolved issues that prevent them from being fully
comprehensive. One key limitation is that the potential fields
in these models are not uniquely defined and rely only on
first-order spatial operators, namely the gradient and curl. As
a result, these first-order models do not utilize the second spa-
tial derivative, the vector Laplacian, which is a unique and
complete operator in three-dimensional space, as established
by the fundamental theorem of vector calculus. This intro-
duces both ambiguities and inconsistencies, particularly when
comparing fluid dynamics and electromagnetic theory.

The need for a consistent and fundamental approach
based on the vector Laplacian is evident in both fields. In
fluid dynamics, potential theory is commonly framed using
the scalar potential φ and vector potential A⃗, which are higher-
dimensional generalizations of the two-dimensional stream
function. In electromagnetism, Maxwell’s equations intro-
duce similar scalar and vector potentials to describe electric
and magnetic fields. However, both frameworks suffer from
inherent limitations in their first-order formulations, leading
to a lack of completeness and ambiguity in the boundary con-
ditions and physical interpretation of the fields.

In fluid dynamics, an incompressible fluid flow can be
described using the following potential decomposition for the
velocity field v⃗ [1]:

v⃗ = ∇φ + ∇ × A⃗, (1)

where:
φ is the scalar potential, satisfying the Laplace equation:

∆φ = 0, (2)

and A⃗ is the solenoidal vector potential∇·A⃗ = 0, governed
by the Poisson equation:

∆A⃗ = −ω⃗, (3)

where ω⃗ = ∇ × v⃗ is the vorticity field.
The issue with this representation lies in the fact that the

scalar and vector potentials are not uniquely defined. Their
values depend on the flow boundary conditions and the topo-
logical properties of the domain. This leads to a degree of
arbitrariness in their selection, which introduces uncertainty
in solving real-world problems.

In electromagnetism, Maxwell’s equations are expressed
using the electric field E⃗ and magnetic field B⃗. These fields
are related to the scalar potential Φ and the vector potential
A⃗:

B⃗ = ∇ × A⃗, (4)

E⃗ = −∇Φ −
∂A⃗
∂t
. (5)

While this formulation successfully describes electro-
magnetic interactions, the potentials Φ and A⃗ are subject to
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gauge freedom, meaning they can be transformed without al-
tering the physical fields. This lack of uniqueness in the po-
tentials mirrors the problem seen in fluid dynamics.

The key limitation of these first-order models is their
failure to employ the vector Laplacian, which is the only
unique second-order spatial derivative in three dimensions.
The Laplacian allows for a more rigorous, second-order treat-
ment of the fields by decomposing them into divergence-free
and curl-free components, as outlined in the Helmholtz de-
composition.

The fundamental theorem of vector calculus states that
any sufficiently smooth vector field can be uniquely decom-
posed into the sum of a curl-free (irrotational) field and a
divergence-free (solenoidal) field. This decomposition is inti-
mately tied to the vector Laplacian and provides a mathemat-
ically complete way of describing physical fields, free from
the ambiguities present in first-order models.

It is often thought that the Helmholtz decomposition is
restricted to static fields, but studies have confirmed its appli-
cability to time-varying fields as well [2], particularly in the
context of electromagnetic fields (EM) [3]. The decomposi-
tion holds for fields that are sufficiently smooth and decay at
large distances, regardless of their time dependency. In the
case of time-varying fields, the decomposition allows for a
rigorous breakdown of the field into curl-free and divergence-
free components, which can provide deeper insights into both
the temporal and spatial evolution of the fields.

To overcome the inconsistencies and incompleteness of
first-order models, we propose a new framework based on the
space-time derivative operator:

d
dt
= −k∆, (6)

where k represents the momentum diffusivity or kine-
matic viscosity and ∆ is the vector Laplacian. This second-
order model builds directly on the Helmholtz decomposi-
tion, ensuring that the derived scalar and vector potentials are
uniquely determined by the second spatial derivative, avoid-
ing the arbitrariness of first-order models.

By using the vector Laplacian as the core operator, this
model provides a unified framework that treats both the lin-
ear and angular components of the fields consistently. This
resolves the boundary condition ambiguities in fluid dynam-
ics potential theory and eliminates the gauge redundancy seen
in Maxwell’s equations.

Furthermore, it offers a more fundamental interpretation
of the connection between space and time, where the second-
order space-time derivative operator describes how fields
evolve in both space and time, based on geometric principles
as well as the fundamental principles of vector calculus.

2 Methods

2.1 Fundamental Space-Time Derivative Operator

In this section, we establish a mathematical connection be-
tween space and time, grounded in the principles of vec-
tor calculus. Specifically, we derive the space-time deriva-
tive operator by applying the vector Laplacian to a fluid ve-
locity field. This operator describes how the spatial struc-
ture of the field influences its evolution over time, reflecting
how momentum, force, and related quantities propagate in the
medium.

It is important to clarify that this model does not suggest
any transformation of space into time or a change in the pas-
sage of time, as might be inferred from relativistic theories.
Instead, the space-time connection in this context refers to
the temporal evolution of physical fields based on their spa-
tial distribution, a concept familiar in many areas of physics
such as fluid dynamics and wave propagation.

The result reveals a deep relationship between diffusiv-
ity, the second spatial derivative (vector Laplacian) and time
evolution in fluid dynamics and electromagnetism. The time
evolution of the field is governed by the spatial gradients de-
scribed by the vector Laplacian, without implying any direct
transformation between space and time. This framework pro-
vides a structured way to model how spatial variations in the
medium drive the propagation and change of fields over time.

The vector Laplacian ∆F⃗ is the generalization of the
scalar Laplacian, applied component-wise to a vector field F⃗.
In Cartesian coordinates, for a vector field F⃗ = (Fx, Fy, Fz)
the vector Laplacian is given by:

∆F⃗ = (∆Fx,∆Fy,∆Fz), (7)

where ∆ is the scalar Laplacian operator ∆ = ∇2. This
operator plays a central role in governing the evolution of
physical quantities in space, and in our model, it forms the
basis of the second-order space-time derivative that links spa-
tial structure to temporal evolution. It is uniquely defined as
the second spatial derivative of a vector field F⃗, given by:

∆F⃗ = ∇(∇ · F⃗) − ∇ × (∇ × F⃗), (8)

where the first term represents the linear component (di-
vergence based), and the second term represents the angular
component (curl based).

We begin by negating the vector Laplacian and applying
it to the velocity field v⃗, multiplied by the dynamic viscosity
of the fluid η:

−∆η⃗v = −∇(∇ · η⃗v) + ∇ × (∇ × η⃗v), (9)

We can write this out to define the following fields:

2 2 Methods



PREPRINT (2024)

p = ∇ · η⃗v = η∇ · v⃗

τ⃗ = ∇ × η⃗v = η∇ × v⃗ = ηω⃗

f⃗l = −∇p = −η∇(∇ · v⃗)

f⃗a = ∇ × τ⃗ = η∇ × ω⃗,

(10)

where p is the scalar pressure field, τ⃗ is the torque density
field, f⃗l is the linear force density field, and f⃗a is the angular
force density field.

And since the curl of the gradient of any twice-
differentiable scalar field is zero (∇ × ∇p = 0) and the di-
vergence of the curl of any vector field is zero (∇ · ∇ × τ⃗ = 0)
as well, we have obtained a Helmholtz decomposition of the
vector field η⃗v and we can recognize that the linear force den-
sity field f⃗l is curl-free and the angular force density field f⃗a
is divergence-free.

Next, we express the total force density f⃗ as the sum of
the linear and angular components:

f⃗ = f⃗l + f⃗a = −η∆v⃗. (11)

According to Newton’s second law, force density is re-
lated to the product of mass density ρ and acceleration a⃗:

f⃗ = ρa⃗. (12)

Substituting this into the expression for f⃗ , we obtain:

ρa⃗ = −η∆v⃗. (13)

Dividing both sides of the equation by the mass density ρ,
we arrive at the velocity diffusion equation:

a⃗ =
dv⃗
dt
= −
η

ρ
∆v⃗. (14)

This equation describes how the velocity field evolves
over time based on the spatial distribution of velocity. The
quantity k = η

ρ
is the momentum diffusivity or kinematic vis-

cosity, usually denoted by ν in fluid dynamics, which governs
how momentum diffuses through the fluid.

Thus, the acceleration a⃗ can be written as:

a⃗ =
dv⃗
dt
= −k∆v⃗. (15)

This result expresses the time evolution of the velocity
field in terms of the second spatial derivative, highlighting
the fundamental role of diffusivity in this process.

Finally, by dividing both sides of the equation by v⃗, we
define the space-time derivative operator:

d
dt
= −k∆. (16)

This operator establishes a direct relationship between
time evolution and the spatial structure of a field, governed

by the Laplacian. Since the vector Laplacian is the unique
second-order spatial derivative in 3D, and the Helmholtz de-
composition uniquely separates the linear (curl-free) and an-
gular (divergence-free) components, this operator represents
a fundamental connection between space and time. It cap-
tures how the spatial configuration of fields drives their evolu-
tion over time, with diffusivity k acting as the proportionality
constant.

In classical electromagnetism, the concept of diffusion
is typically not associated with field propagation, as electro-
magnetic waves travel without dissipation in a vacuum. How-
ever, in our model, the diffusion equation is introduced not
as a mechanism of energy dissipation but rather as a natural
outcome of applying the second-order space-time derivative
operator to the evolution of field quantities. This diffusion
equation captures the way momentum and other field-related
quantities spread throughout space.

The vector Laplacian ∆ describes how a vector field varies
spatially, and when coupled with diffusivity k to form the
space-time derivative operator d

dt = −k∆, this leads to a diffu-
sion equation for quantities such as velocity or force density.
Specifically, this represents how the spatial structure of the
field evolves over time, analogous to how diffusion equations
describe the spread of particles or heat in traditional systems.
In this model, the equation does not imply physical dissipa-
tion but rather reflects the redistribution of field quantities in
space over time, preserving the energy of the system.

By defining this second-order operator, we describe how
spatial gradients (captured by the Laplacian) drive the tempo-
ral evolution of the fields. The result is a diffusion equation
that governs the evolution of the fields without introducing
energy dissipation, maintaining consistency with the princi-
ples of electromagnetism.

The diffusion equation in this model serves three main
purposes:

• Spatial Evolution: The diffusion equation here serves
to express how the fields evolve in space, with the vec-
tor Laplacian representing spatial variation.

• Momentum Redistribution: In the context of this
model, the diffusion equation describes the redistri-
bution of momentum and force densities within the
medium.

• Mathematical Coherence: The second-order equation
naturally arises from the use of the vector Laplacian
and is consistent with the principles of vector calculus,
providing a structured way to describe both the linear
and angular components of the field.

Therefore, the introduction of the diffusion equation is
a mathematical consequence of using the vector Laplacian
and space-time derivative operator to describe field evolu-
tion, rather than a physical assumption about dissipation. The
equation reflects how spatial gradients in the medium drive
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the propagation of fields, consistent with the behavior of elec-
tromagnetic waves in a non-dissipative environment.

2.2 Extending to Higher-Order Time Derivatives

By applying the space-time derivative operator to the acceler-
ation field a⃗, we can compute the time derivative of accelera-
tion, commonly known as jerk j⃗:

j⃗ =
da⃗
dt
= −k∆a⃗. (17)

Jerk describes how acceleration changes over time and is
often relevant in systems where sudden changes in motion
are involved. In the context of this model, it reflects how
the acceleration field evolves due to the spatial distribution of
forces and torques within the medium.

We can now also define the vector potential A⃗ for the ac-
celeration field, which is analogous to the second order ver-
sion of the vector potential in fluid dynamics A⃗ f d [1]:

∆A⃗ f d = −∇ × (∇ × A⃗ f d) = −ω⃗. (18)

This can be rewritten to:

∇ × (∇ × A⃗ f d) = ω⃗ = ∇ × v⃗. (19)

Or:

∇ × A⃗ f d = v⃗. (20)

By defining the vector potential A⃗ for the acceleration
field rather than the velocity field, we obtain:

∇ × A⃗ = a⃗ = k∇ × ∇ × v⃗, (21)

which can be simplified to:

A⃗ = k∇ × v⃗ = kω⃗ =
1
ρ
τ⃗. (22)

resulting in a unit of measurement in [ m2

s2 ] or velocity
squared.

To move from the abstract concept of jerk to something
more physically tangible, we can multiply jerk by the mass
density ρ to obtain yank density y⃗, where yank is the time
derivative of force. Yank has only recently been named and
studied in biomechanics, where it has been shown to be an
important variable in sensorimotor systems [4]:

y⃗ = ρ j⃗ = −ρk∆a⃗ = −η∆a⃗. (23)

Here, yank density describes how force density changes
over time within the medium. It represents the rate at which
force is applied or altered in a given volume, providing a
higher-order insight into the dynamics of the system.

In this model:

• Force density f⃗ describes the distribution of forces act-
ing within the medium.

• Yank density y⃗ describes how this force density
changes over time, adding a layer of dynamical detail.

The introduction of yank density is especially useful in
time-sensitive and reactive systems where changes in forces
need to be rapidly addressed. In the referenced study, yank
was found to be crucial for activities like prey capture, pos-
tural stability, and escape responses, which all rely on how
quickly forces can be adjusted.

The significance of incorporating yank into the second-
order framework lies in the fact that it allows the model to
describe higher-order time derivatives consistently, in a way
that was not previously possible. This means that:

• The model can capture rapid changes in force (as yank
is the time derivative of force) and torque (through the
angular component), which are essential in dynamic
systems.

• The resulting fields, including yank density, are free
from the ambiguities that often arise in first-order mod-
els, as they are derived using the vector Laplacian, en-
suring both mathematical correctness and physical con-
sistency.

The inclusion of yank density further strengthens the
model by providing a higher level of detail about how the
medium reacts to time-dependent forces, while also aligning
with the growing recognition of yank as an important variable
in biomechanics and other fields.

2.3 Application to the Medium

The newly defined space-time derivative operator allows for a
unified treatment of fluid dynamics and electromagnetism by
considering both systems as governed by second-order equa-
tions derived from the vector Laplacian. In this section, we
use the space-time derivative operator to describe the medium
and, through this, we redefine key physical properties such
as charge, current, and the electromagnetic fields in terms of
fluid dynamic quantities like mass density, viscosity and mo-
mentum diffusivity.

To apply the space-time derivative operator to a medium,
we first define its physical properties in a manner consistent
with the fluid dynamics framework. These properties include
the mass density ρ, the dynamic viscosity η, and the diffusiv-
ity k, which govern the medium’s response to forces, torques,
and diffusive processes.

We start by defining the dynamic viscosity η in [ kg
m·s ] using

the inverse of the vacuum permeability µ0:

η =
1

4π × 10−7 . (24)

Next, we define the mass density ρ to have the same value
as the vacuum permittivity ϵ0, but with units of [kg/m3]. Us-
ing the standard relation between ϵ0, c(speed of light), and µ0,
we get:
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ϵ0 =
1

c2µ0
. (25)

And substituting ρ = ϵ0 and η = 1/µ0, we obtain:

ρ =
η

c2 . (26)

This establishes the medium’s mass density in terms of
both viscosity and the speed of light.

The momentum diffusivity or kinematic viscosity k is de-
fined as:

k =
η

ρ
. (27)

Subtituting η = 1/µ0 and ρ = ϵ0, we obtain:

k =
1
µ0ϵ0

= c2, (28)

implying that the value of the diffusivity in this framework
corresponds to the square of the speed of light. However, the
unit of measurement is [m2/s], indicating that k governs the
relationship between spatial and temporal variations of the
fields.

2.3.1 Fundamental Nature of Diffusivity k

The unit [m2/s] reveals that diffusivity k is more than just a
measure of momentum diffusivity in a fluid-like system —
it represents a fundamental geometric relationship between
space and time. Unlike quantities that involve mass or force,
k involves only meters and seconds, which are the basic units
of space and time, respectively. This strongly suggests that
diffusivity k plays a fundamental role in the propagation of
fields through space, analogous to the role of the speed of
light c in electromagnetism and special relativity.

In classical fluid dynamics, kinematic viscosity k de-
scribes how momentum spreads through a medium, but in this
framework, it extends beyond describing physical fluid mo-
tion. By equating k with c2, we highlight its fundamental con-
nection to wave propagation and field dynamics. Since c is
the speed at which electromagnetic waves propagate through
vacuum, and k = c2 in this context, we see that the diffusion
described here is analogous to the propagation of informa-
tion or disturbances through a medium, not the dissipation of
energy.

The appearance of only spatial ([m2]) and temporal ([s])
units in k indicates that this constant captures the intrinsic
scaling of space and time at the infinitesimal level. The in-
finitesimal relationship between spatial diffusion and time
evolution is governed purely by this constant, making it a
scaling factor for how physical quantities like velocity, force,
or charge density evolve in time as they spread through
space. The fact that this constant is equal to the square of
the speed of light suggests that any process described by

this model—whether in fluid dynamics, electromagnetism, or
other field theories—evolves at a rate governed by the speed
of light.

Thus, k not only controls the dynamics of momentum in a
fluid but also describes how physical disturbances propagate
in time and space in a more universal sense. This points to
the idea that k plays a role similar to that of c in relativis-
tic theories, bridging the gap between space, time, and field
propagation, although this does not imply that diffusivity k
should be considered as an absolute universal constant since
inversely proportional to mass density ρ.

2.4 Elementary charge and mass

With the space-time derivative operator applied to describe
fundamental properties of the medium, we can now extend
this approach to redefine elementary physical quantities such
as charge, by relating them to mass flow and other dynamic
properties. First, we work out the unit of measurement for
charge in Coulomb by equating the units of measurement of
ρ in [ kg

m3 ] and ϵ0 in [ C2

N−m2 ] or [ C2·s2

kg·m3 ]:

C2 · s2

kg · m3 =
kg
m3 ⇒ C2 · s2 = kg2 ⇒ C =

kg
s

(29)

Thus, we reinterpret charge in Coulombs as having units
of [ kg

s ], aligning the concept of charge with mass flow in our
framework.

Elementary charge e retains its standard value from the SI
system but is now expressed in terms of [kg/s]:

e = 1.602176634 × 10−19. (30)

Having redefined charge in terms of mass and time, we
now turn our attention to elementary mass, leveraging obser-
vations from quantized vortices in rotating superfluids. This
allows us to introduce a new understanding of mass within the
context of the diffusivity of the medium. Using the quantiza-
tion of circulation κo = h/m [5], we define elementary mass
as:

m =
h
k
, (31)

with h Planck’s constant. This provides a mass of approx-
imately 7.372× 10−51 kg, yielding interesting properties such
as a Compton frequency of 1 Hz, which challenges the mass-
energy equivalence principle.

2.5 Vacuum charge density

Within this framework, charge density is treated as mass
flux density, reinterpreting the traditional notion of charge in
terms of the flow of mass per unit volume and time. This
approach allows us to view charge as a dynamic property of
the medium, tied directly to the physical characteristics of the
system, such as viscosity and mass density.

We define the vacuum charge density ρq0 as:
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ρq0 = e
η

h
, (32)

where:

• e is the elementary charge,
• η is the dynamic viscosity of the medium, and
• h is Planck’s constant.

This yields units of [ kg
m3·s ], aligning the vacuum charge

density with a mass flux-based interpretation of charge.
In this formulation, vacuum charge density represents the

inherent charge distribution within the medium, even in the
absence of external particles or currents. This definition re-
flects a deeper connection between mass and charge, where
charge can be understood as the movement or flow of mass in
time. The relationship ρq0 = e ηh suggests that the charge den-
sity in the vacuum is proportional to the dynamic properties
of the medium, specifically its viscosity, and inversely related
to Planck’s constant.

This proportionality emphasizes the idea that charge is not
a standalone entity but is intrinsically linked to the dynam-
ics of the medium. In this view, the vacuum itself carries a
background charge density, which could explain subtle elec-
tromagnetic effects even in empty space. This charge den-
sity contributes to the broader electromagnetic behavior of
the medium, reinforcing the connection between electromag-
netic phenomena and fluid dynamics principles.

With the concept of vacuum charge density established,
we can now redefine the electromagnetic fields in terms of
this mass flux-based interpretation of charge. The vacuum
charge density provides a natural foundation for expressing
both the electric and magnetic fields as emergent properties
of the medium. In the following sections, we will explore
how these redefined fields integrate seamlessly with the over-
all framework of second-order dynamics, where force and
torque densities govern the behavior of the system.

This redefinition not only grounds the idea of charge in
more fundamental properties of the medium but also paves
the way for a unified treatment of gravitational and electro-
magnetic forces, as both can now be derived from a com-
mon understanding of mass flux and charge density within
the medium.

2.6 Electric and Magnetic Fields

Using the definitions of the medium, we now extend these
concepts to redefine the electric and magnetic fields in fluid
dynamical terms.

Coulomb’s law traditionally defines the relationship be-
tween charge q and electric force F⃗. In our model, we observe
that the electric field E⃗ carries units of [m/s] corresponding
to velocity. Thus, we define the electric field as:

E⃗ =
1
ρq0

f⃗l, (33)

where f⃗l is the linear force density. This redefinition
aligns Coulomb’s law with:

F⃗ = qE⃗ =
q
ρq0

f⃗l. (34)

Ampere’s law in its original form (without the displace-
ment current) is given by:

∇ × B⃗ = µ0 J⃗. (35)

Substituting η = 1/µ0, we redefine the current density J⃗
as:

J⃗ = η∇ × B⃗. (36)

However, by relating the magnetic field B⃗ to the torque
density τ⃗ , we define B⃗ as:

B⃗ =
1
e
τ⃗, (37)

with units of [ 1
m−s ], and the magnetizing field H⃗ as:

H⃗ = ηB⃗ =
η

e
τ⃗. (38)

This results in current density J⃗ being expressed as:

J⃗ = η∇ × B⃗ = ∇ × H⃗ =
η

e
∇ × τ⃗. (39)

Finally, the Lorentz force is given by:

F⃗ = q
(

1
ρq0

f⃗l +
1
e
v⃗ × τ⃗

)
. (40)

This consistent formulation integrates Coulomb’s law,
Ampere’s law, and the Lorentz force into a unified framework
where:

• The electric field E⃗ is defined in terms of the linear
force density f⃗l.
• The magnetic field B⃗ is defined in terms of the torque

density τ⃗.
• The units of measurement align properly with the

definitions and physical interpretations in the fluid
dynamics-inspired model.

2.7 Wave equation and operator

To derive the wave equation in the context of the new model,
we can start by considering the space-time derivative opera-
tor:

d
dt
= −k∆. (41)

So the second space-time derivative operator becomes:

d2

dt2 = k2∆2. (42)
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We can substitue this in the the d’Alembert or wave oper-
ator:

□ =
1
c2

∂2

∂t2 − ∆, (43)

to obtain the second order spatial wave operator:

□ =
k2

c2∆
2 − ∆. (44)

We can do the same for the wave equation:(
∆ −

1
c2

∂2

∂t2

)
u(r, t) = 0, (45)

to obtain the second order spatial wave equation:(
∆ −

k2

c2∆
2
)

u(r, t) = 0. (46)

And by substituting:

∆v⃗ = −
a⃗
k

(47)

and:

k2

c2∆
2v⃗ =

j⃗
c2 , (48)

with j⃗ the jerk, this can be simplified to:

j⃗
c2 +

a⃗
k
= 0. (49)

Using separation of variables in spherical coordinates,
this equation can be broken down into radial and angular
parts, typically involving spherical harmonics for the angular
component and spherical Bessel functions for the radial part.
This approach will allow solving the second order spatial
wave equation for specific boundary conditions and eigen-
values related to the physical properties of the medium. The
general solution will be a combination of these functions:

F⃗(r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

[
Alm jl(kr) + Blmyl(kr)

]
Ylm(θ, ϕ), (50)

where:

• jl(kr) are the spherical Bessel functions.

• yl(kr) are the spherical Neumann functions.

• Ylm(θ, ϕ) are the spherical harmonics.

• Alm and Blm are coefficients determined by boundary
conditions.

These solutions are consistent with those found in quan-
tum mechanics, but without the need for probabilistic inter-
pretations. And given that these solutions are valid at both
large and small scales, these are sufficient to explain what we
now call nuclear forces, so the hypothesis of the existence of
distinct nuclear forces (strong and weak) is no longer neces-
sary.

2.8 Gravitational Potential as the Square of the Electric
Field

In this section, we explore a potential unification of the grav-
itational field and the electromagnetic field by deriving the
gravitational force from the properties of the electric field.
This approach builds on the idea that a force proportional
to the gradient of the square of the electric field exists, as
demonstrated in classical electrodynamics [6]. By examin-
ing the dimensional consistency and the physical behavior of
these fields, we propose that the gravitational force may be
represented within this second-order fluid dynamics frame-
work.

In classical electrodynamics, the behavior of a dielectric
in an electric field reveals that the force acting on the dielec-
tric is proportional to the gradient of the square of the elec-
tric field. This can be understood intuitively: as the electric
field polarizes the dielectric, the resulting force arises from
the induced polarization charges, which themselves are pro-
portional to the electric field. The force, therefore, scales with
the square of the field, and its gradient dictates the strength
and direction of the force.

In classical mechanics, the gravitational potential V at a
point in space is defined as the gravitational potential energy
U per unit mass m:

V =
U
m
, (51)

where U is the gravitational potential energy at that point.
The gravitational potential is a scalar field that represents the
amount of work required to move a mass from a reference
point (usually taken to be infinitely far away) to the location
of interest. This is analogous to the electric potential in elec-
trostatics, where charge plays the role of mass.

In Newtonian mechanics, the gravitational potential V is
related to the gravitational field g⃗ through the relation:

g⃗ = −∇V. (52)

However, in our model, we propose a redefinition of the
gravitational potential based on the behavior of the electric
field E⃗. Instead of treating the gravitational potential as a
function of mass alone, we define it in terms of the square of
the electric field:

Vg =
1
2

E⃗ · E⃗. (53)
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This new gravitational potential Vg is proportional to the
square of the magnitude of the electric field, drawing on the
concept that the electric field drives both the electromagnetic
and gravitational interactions. Here, the gravitational field g⃗
is expressed as the gradient of this gravitational potential:

g⃗ = −∇

(
1
2

E⃗ · E⃗
)
. (54)

In this framework, the gravitational force on a mass m is
given by the gradient of the square of the electric field, much
like how a gravitational potential is traditionally linked to the
gravitational force:

F⃗g = mg⃗ = −m∇
(

1
2

E⃗ · E⃗
)
. (55)

This analogy allows us to unify the gravitational and elec-
tric potentials within a single framework, where the electric
field is the source for both the gravitational potential and the
electric potential.

From a mathematical perspective, the gravitational poten-
tial as defined here shares similarities with the Newtonian
potential, which is the fundamental solution of the Laplace
equation. The Newtonian potential is defined as an operator
that acts as the inverse of the Laplacian:

∆V = −ρ, (56)

where ρ is the mass density that generates the potential
V . In the context of our model, we maintain the analogy by
relating the electric field to the source of the gravitational po-
tential, which emerges naturally from the spatial structure of
the electric field.

The gravitational potential in this new formulation thus
becomes a second-order scalar field, driven by the square of
the electric field, offering a more integrated approach to un-
derstanding how gravitational and electromagnetic forces are
connected.

3 Conclusions

This paper presents a unified and more complete framework
for describing the dynamics of both fluid systems and elec-
tromagnetic fields by employing the vector Laplacian and the
second order space-time derivative operator. Both fluid dy-
namics and electromagnetism have long relied on first-order
potential theories, which are inherently incomplete due to
their reliance on non-unique potentials and first-order spatial
operators. By shifting to a second-order framework based on
the vector Laplacian, we resolve key ambiguities and provide
a mathematically consistent description of physical fields that
evolve over space and time.

The space-time derivative operator d
dt = −k∆, derived

from well-established principles, reveals a fundamental rela-
tionship between space and time:

• Vector Laplacian: The second-order spatial derivative
that uniquely describes the behavior of vector fields in
3D, ensuring that the decomposition into curl-free and
divergence-free components is unambiguous.
• Helmholtz Decomposition: The vector Laplacian nat-

urally leads to a decomposition of any vector field
into divergence-free and curl-free components, which
forms the basis of our model.
• Diffusivity: As a measure of how momentum diffuses

in a fluid, momentum diffusivity k provides a physical
connection between the space-time derivative operator
and the evolution of fluid or electromagnetic fields.

This operator highlights how spatial structures evolve
over time in the presence of diffusivity, establishing a rigor-
ous basis for describing the dynamics of a medium, whether
it is a classical fluid or an electromagnetic system. This con-
nection offers a deeper understanding of how fields evolve
and interact in physical systems, with broad implications for
fluid dynamics, electromagnetism, and beyond.

Using this formalization, we redefine electromagnetic
fields in terms of fluid dynamical quantities, creating a uni-
fied model that ties together charge, mass, and force densities
in a cohesive framework. In particular:

• The electric field E⃗ is related to the linear force density.
• The magnetic field B⃗ is related to the torque density.

This allows for a consistent formulation of Coulomb’s
law, Ampere’s law, and the Lorentz force within the same
framework, eliminating the need for gauge fixing and ensur-
ing that all fields are uniquely defined.

One of the key advantages of this new approach is its po-
tential to unify the gravitational and electromagnetic forces.
By considering the gravitational force as proportional to the
gradient of the square of the electric field, we provide a path-
way to integrate both forces into a single framework. This
unification suggests that both gravitational and electromag-
netic phenomena emerge from the same underlying medium,
governed by the diffusivity and vector Laplacian.

In this model, gravity is no longer treated as a separate,
fundamental force but rather as a secondary effect linked to
the gradient of the electric field squared. This challenges the
traditional view of gravity and electromagnetism as distinct
forces and opens the door for further exploration of how these
forces might be integrated into a fluid dynamics-based model
of the medium.

We have also shown how the dynamics of the medium
can be described using the fundamental relationship between
space and time derived from the vector Laplacian. By com-
puting the time derivative of the velocity field, we obtain two
acceleration fields representing the linear and angular com-
ponents of the system. These fields correspond to the electric
and magnetic fields in electromagnetism, but are derived us-
ing a purely fluid dynamical approach.
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Moreover, the second-order time derivatives of these
fields allow us to define higher-order fields, such as yank den-
sity, the time derivative of force density, and the angular coun-
terpart, which describes the time derivative of torque den-
sity. This method provides a straightforward way to compute
higher-order time derivatives in 3D, offering a more complete
description of the dynamics of the medium than was previ-
ously possible.

A significant advantage of this method is that it provides a
mathematically rigorous and consistent description of physi-
cal fields. The use of the vector Laplacian ensures that all
potential fields are uniquely defined, eliminating the need for
arbitrary gauge fixing. Furthermore, the formulation relies on
only three fundamental units of measurement: meters ([m]),
seconds ([s]), and kilograms ([kg]). This simplicity makes it
easier to relate the units of measurement used in fluid dynam-
ics to those used in electromagnetism, ensuring dimensional
consistency throughout the framework.

Finally, the model allows for the derivation of a second-
order spatial wave equation that has no explicit time depen-
dence. The solutions to this wave equation are consistent
with those found in quantum mechanics, but without requir-
ing probabilistic interpretations. The model is valid on all
scales, from the quantum to the cosmological, offering a po-
tential bridge between classical and quantum physics.

The logic of this medium-based model demands that there
is only one fundamental force of nature. Both nuclear and
gravitational forces can be understood as different manifesta-
tions of this single force, described by the following equation
for force density:

f⃗ = ρa⃗ = −ρk∆v⃗ = −η∆v⃗. (57)

In addition to force, we have found a fundamental field
for yank density, the time derivative of force density:

y⃗ = ρ j⃗ = −ρk∆a⃗ = −η∆a⃗. (58)

These two fields, along with the second-order spa-
tial wave equation, describe the complete dynamics of the
medium, providing a unified and mathematically consistent
model that resolves many of the ambiguities in existing theo-
ries. This model holds the potential to unify the fundamental
forces of nature into a single coherent framework based on
fluid dynamics principles, offering new insights into the be-
havior of mass, space, and time.
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