A connection between the Darwin term and a non-spherical charge distribution

John French

email: johnf10035@yahoo.com

Published in *Physics Essays*, Vol 37, No. 3 (2024)

https://physicsessays.org/

Abstract

 A derivation of the Darwin term is given based on assuming a non-spherical charge distribution. The total translational energy of the system is obtained for a static electric field and the corresponding quantum equation is found to contain the Darwin term under certain conditions.

I. Introduction.

If we make a non-relativistic expansion of the Dirac equation, one of the terms in the expansion is the Darwin term, (for example see Sakurai¹). It is named for C. G. Darwin² who first investigated it. It takes the form $-\frac{q\hbar^2}{2m^2}$ $\frac{q_0}{8m^2c^2}$ $\nabla \cdot \vec{E}$ where \vec{E} is the electric field, m is the mass of the particle, q its charge, and c is the speed of light. A bold symbol represents a vector.

 The most common explanation of the Darwin term is that it is an effect due to Zitterbewegung, (for example see Sakurai¹). Wilson³ extends this approach by representing the electron as an oscillator. Yu, Henneberger⁴ propose that it is an extension of the spin-orbit

term while Fushchych et al.⁵ show that it can thought of as a non-relativistic effect by expanding the Levi- Leblond equation. Khripolovich and Milstein⁶ show that the Darwin term can be considered of the same origin as the spin-orbit term. Faber⁷ shows that it can be associated with a random walk. We show that by using a non-spherical charge distribution it is possible to derive it in a way different from the above sources.

II. Charge Distribution

 Consider a rotating cylindrically symmetric charge distribution in a frame where the angular velocity ω aligns with the z axis in an x, y, z rectangular coordinate system. Also take the charge density ρ to be centered at the center of the coordinate system and symmetric with respect to z. Call this the primed frame. We need $\int \rho dV = q$ where the spatial integral is over the particle. Because of the charge symmetry we also have

$$
\int \rho x'dV = \int \rho y'dV = \int \rho z'dV = 0
$$
\n(1a)

$$
\int \rho x' y' dV = \int \rho x' z' dV = \int \rho y' z' dV = 0
$$
\n(1b)

In this frame we then define the values Q_1 and Q_2 by the relations

$$
Q_1 = \int \rho z'^2 dV \tag{1c}
$$

$$
Q_2 = \int \rho x'^2 dV = \int \rho y'^2 dV \tag{1d}
$$

Note that Q_1 and Q_2 are similar to the moment of inertia for a mass distribution, but are defined in terms of the charge density instead of the mass density. In general for a rotating

object the charge distribution will not be spherically symmetric but will depend upon the angular velocity ω . As a result of this Q_1 and Q_2 will also depend upon ω .

Now we need $Q_1 = Q_2$ as ω goes to zero, so to second order set $Q_1 = Q_0(1 + \alpha_1 \omega + \alpha_2 \omega^2)$ and $Q_2 = Q_0(1 + \beta_1 \omega + \beta_2 \omega^2)$ for some constants Q_0 , α_1 , α_2 , β_1 and β_2 . We want this to be unchanged if we replace ω by - ω , so we need $\alpha_1 = \beta_1 = 0$. To make the units work out correctly we can set $\alpha_2 = \alpha \frac{I}{m}$ $\frac{1}{mc^2}$ and $\beta_2 = \beta \frac{1}{mc}$ $\frac{1}{mc^2}$ where I is the moment of inertia of the particle and α and β are dimensionless constants. I is the standard moment of inertia for a mass distribution and has units of grams-cm² (for example see Goldstein⁸). Thus we have

$$
Q_1 = Q_0 \left(1 + \alpha \frac{l}{mc^2} \omega^2 \right) \tag{2a}
$$

$$
Q_2 = Q_0 \left(1 + \beta \frac{l}{mc^2} \omega^2\right) \tag{2b}
$$

In general rectangular coordinates x^i , where $i = 1,2,3$, using eqs. (2a,b), eqs. (1a-d) take the form

$$
\int \rho \delta x^i dV = 0 \tag{3a}
$$

$$
\int \rho \delta x^i \delta x^j dV = Q_0 \left(\left(1 + \beta \frac{l}{mc^2} \omega^2 \right) \delta^{ij} + \left(\alpha - \beta \right) \frac{l}{mc^2} \omega^i \omega^j \right) \tag{3b}
$$

where δx^{i} represents the coordinate distance from the center of the charge.

We will consider a current density $\mathbf{j} = \rho(\mathbf{v} + \boldsymbol{\omega} \times \delta \mathbf{x})$ where **v** is the velocity of the particle. The magnetic moment μ and g factor are defined by (for example see Jackson⁹)

$$
\mu = \frac{1}{2c} \int \delta x \times j dV \tag{4}
$$

$$
\mu = \frac{gq}{2mc} \mathbf{S} \tag{5}
$$

where **s** is the interior angular momentum of the particle. If we take $s = I\omega$, and use our relation for **j** given above along with eq. (4) and eqs. (3a,b) in eq. (5) we obtain

$$
Q_0 = \frac{gq}{2m} I(1 - \beta \frac{I}{mc^2} \omega^2)
$$

to order $1/c^2$. The α term cancels out. The moment of inertia can also be a function of ω^2 so set $I = I_0(1 + \gamma \frac{\omega^2}{c^2})$ $\frac{\omega^2}{c^2}$) for some constants γ and I_0 , so to order $1/c^2$

$$
Q_0 = \frac{gq}{2m} I_0 (1 + \gamma \frac{\omega^2}{c^2} - \beta \frac{I_0}{mc^2} \omega^2)
$$

In order for Q_0 and I_0 to be independent of ω we need $\gamma = \beta \frac{I_0}{m}$ $\frac{n_0}{m}$ so that

$$
Q_0 = \frac{gq}{2m} I_0 \tag{6}
$$

III. Equations of Motion and Quantization

Now consider the translational equation of motion with only a static electric field **E**.

$$
m\frac{dv}{dt} = \int \rho E dV \tag{7}
$$

Expanding **E** in a Taylor series about the center of the particle we have

$$
\mathbf{E} = \mathbf{E}_0 + (\delta \mathbf{x} \cdot \nabla) \mathbf{E}_0 + \frac{1}{2} (\delta \mathbf{x} \cdot \nabla)^2 \mathbf{E}_0
$$
\n(8)

where \mathbf{E}_0 is \mathbf{E} and its derivatives evaluated at the center of the particle, and we have ignored terms higher than quadratic in δx .

Using eq. (8), eqs. (3a,b), and eq. (6) along with the condition $\int \rho dV = q$ in eq. (7) we obtain the relation

$$
m\frac{dv}{dt} = q\{E_0 + \frac{I_0}{2m}((1+\beta\frac{I_0}{mc^2}\omega^2)\nabla^2 E_0 + (\alpha - \beta)\frac{I_0}{mc^2}(\omega \cdot \nabla)^2 E_0)\}\tag{9}
$$

where we have ignored terms higher than quadratic in δx and dropped terms higher than $1/c^2$. We have also set $g = 2$.

Since we are only considering static electric fields, we can set $\mathbf{E}_0 = -\nabla \phi$ where ϕ is the scalar potential. Expressing E_0 in this form eq. (9) becomes

$$
m\frac{dv}{dt} = -q\nabla{\{\phi + \frac{l_0}{2m}((1+\beta\frac{l_0}{mc^2}\omega^2)\nabla^2\phi + (\alpha-\beta)\frac{l_0}{mc^2}(\omega\cdot\nabla)^2\phi)\}}\tag{10}
$$

The right hand side can be viewed as the gradient of a potential so the total energy E of the system can be written as

$$
E = \frac{1}{2}mv^2 + q\{\phi + \frac{l_0}{2m}((1 + \beta \frac{l_0}{mc^2}\omega^2)\nabla^2\phi + (\alpha - \beta) \frac{l_0}{mc^2}(\omega \cdot \nabla)^2\phi)\}
$$

$$
= \frac{1}{2m}p^2 + q\{\phi + \frac{l_0}{2m}\nabla^2\phi + \frac{1}{2m^2c^2}(\beta s^2\nabla^2 + (\alpha - \beta)(s \cdot \nabla)^2)\phi\}
$$
(11)

where **p** is the momentum, and again ignoring terms higher than $1/c²$.

We will quantize the system by expressing the energy in eq. (11) as an operator by replacing **p** by $-i\hbar \nabla$ and **s** by $\frac{1}{2} \hbar \sigma$ where σ are the Pauli spin matrices in vector form (for example see $Saxon¹⁰$ so that our Schrodinger type equation takes the form

$$
i\hbar \frac{\partial \psi}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + q \{ \phi + \frac{l_0}{2m} \nabla^2 \phi + \frac{\hbar^2}{8m^2 c^2} (\beta \sigma^2 \nabla^2 + (\alpha - \beta)(\boldsymbol{\sigma} \cdot \nabla)^2) \phi \} \right] \psi
$$

$$
= \left[-\frac{\hbar^2}{2m} \nabla^2 + q \{ \phi + \frac{\hbar^2}{8m^2 c^2} (2\beta + \alpha) \nabla^2 \phi \} \right] \psi
$$
 (12)

We have used the properties of the σ matrices so that $\sigma^2 = 3$ and $({\sigma \cdot \nabla})^2 = {\nabla}^2$ and have taken the limit of I_0 going to zero. If we think of a rotating object then as ω increases the equator moment should expand and the moment parallel to ω should reduce in size. Therefore β should be positive and α negative. If we set $-\alpha = \beta = 1$ we obtain the Darwin term.

Conclusion.

 One interesting thing about this derivation is that the 1/8 in front of the Darwin term comes out naturally, although there is no apparent reason why $2\beta + \alpha$ should be 1. The other c^{-2} corrections in the non-relativistic expansion of the Dirac eq., the spin-orbit and relativistic mass correction terms, are due to a relativistic correction to the velocity while in our case the Darwin term appears to be a relativistic correction to the spin.

 Instead of including the rotational equations and using a finding a Lagrangian for the whole system, the translational energy has just been used. It turns out that if we try to find a Lagrangian for the translational and rotational equations we run into problems.

 In spite of these assumptions it is interesting that the Darwin term can be obtained by using a non-spherical charge distribution, and perhaps a more sophisticated derivation will lead to a better understanding.

References

- ¹J. J. Sakurai, *Advanced Quantum Mechanics* (Addison-Wesley, Reading, Mass., 1967).
- C. G. Darwin, Proc. R. Soc. London, Ser. A 118, 654 (1928).
- J. H. Wilson, Physics Essays 34, 17 (2021).
- X. Yu, W. C. Henneberger, Il Nuovo Cimento, 109B, 439 (1994).
- W. I. Fushchych, A. G. Nikitin, V. A. Salogub, Scientific Works 1, 431 (2000).
- I. B. Khriplovich, A. I. Milstein, Physics Lett. A 221, 370 (1996).
- M. Faber, Particles 7, 25 (2024).
- H. Goldstein, *Classical Mechanics* (Addison-Wesley, Reading, Mass.,1950).
- J. D. Jackson, *Classical Electrodynamics, 2ed ed.* (Wiley, New York, 1975).
- D. S. Saxon, *Elementary Quantum Mechanics* (Holden-Day, San Francisco, 1968).