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Abstract 

Supply chain risk management is a critical challenge in today’s increasingly complex and 

interconnected global markets, particularly within specific supply chains where disruptions can 

have far-reaching consequences. Generative Artificial Intelligence (GAI) transformer models 

have emerged as powerful tools for effectively managing these risks. However, selecting the 

most suitable GAI model for specific supply chain contexts remains a significant challenge due 

to the diverse range of available models and the complex interplay of risk factors involved. This 

challenge is further compounded by the necessity of considering human-centric criteria to ensure 

that the chosen model aligns with ethical standards and practical needs. This paper addresses this 

challenge by introducing an enhanced multi-criteria decision-making (MCDM) framework that 

refines the Evaluation based on Distance from Average Solution (EDAS) method. Our approach 

first improves the logical structure of the EDAS method and then incorporates the interactions 

and interdependencies between criteria, thereby overcoming key limitations of traditional 

MCDM methods and providing a more accurate and comprehensive evaluation process. We 

applied this improved EDAS model to the task of selecting the best GAI transformer model for 

risk management in the food supply chain. Through a systematic evaluation of various GAI 

models, considering their performance across multiple risk factors, our study identified GPT 

(Generative Pre-trained Transformer) as the most suitable model for this context, demonstrating 

superior capabilities in addressing the complex challenges associated with food supply chain 

risks. This research not only advances the theoretical foundation of MCDM techniques but also 

offers practical insights into the application of AI in supply chain management, highlighting the 

importance of human-centric AI approaches that prioritize transparency, ethical alignment, and 

effective decision-making. 
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Abbreviation Full Form 

AI Artificial Intelligence 

ANN Artificial Neural Network 

BERT Bidirectional Encoder Representations from 
Transformers 

DL Deep Learning 



EDAS Evaluation Based on Distance from Average Solution 

EVAMIX The EValuation of MIXed data 

GAI Generative Artificial Intelligence 

GNN Graph Neural Networks 

GPT Generative Pre-trained Transformer 

IoT Internet of Things 

IV-SFS Interval-Valued Spherical Fuzzy Sets 

LSTM Long Short-Term Memory 

MABAC Multi-Attributive Border Approximation Area 
Comparison 

MADM Multi-Attribute Decision Making 

MCDM Multi-Criteria Decision-Making 

ML Machine Learning 

NLP Natural Language Processing 

RoBERTa Robustly optimized BERT approach 

SCOM Supply Chain Operations Management 

SCRM Supply Chain Risk Management 

T5 Text-To-Text Transfer Transformer 

TODIM Tomada de Decisão Interativa Multicritério 

TOPSIS Technique for Order of Preference by Similarity to Ideal 
Solution 

VIKOR Vlsekriterijumska Optimizacija I Kompromisno Resenje 

WASPAS Weighted Aggregated Sum Product Assessment 

 XAI explainable AI 

 

1. Introduction 

In today's interconnected and dynamic global economy, supply chain management plays a 

pivotal role in ensuring the seamless flow of goods, services, and information from producers to 

consumers. The complexity and interdependencies within supply chains make them vulnerable to 

a variety of risks, including demand fluctuations, supply disruptions, and logistical challenges. 

Effective risk management is crucial to maintain the resilience, efficiency, and sustainability of 

supply chains [1]. Supply chains are inherently complex and involve numerous stakeholders, 

including suppliers, manufacturers, distributors, and retailers, each contributing to the overall 

flow of goods and services. This complexity introduces multiple points of vulnerability, making 

supply chains susceptible to a wide array of risks [2]. For instance, sudden shifts in consumer 

demand, geopolitical events, natural disasters, and supplier insolvencies can all disrupt the 

smooth operation of supply chains. Traditional risk management approaches often struggle to 

cope with these uncertainties due to their limited ability to process and analyze large volumes of 

data in real-time. The COVID-19 pandemic highlighted the fragility of global supply chains, 

underscoring the need for more resilient and adaptive risk management strategies. During the 

pandemic, many organizations faced unprecedented disruptions, leading to shortages of critical 

goods, delays in production, and significant financial losses [3]. 



Artificial Intelligence (AI) has emerged as a transformative technology offering novel solutions 

for enhancing supply chain risk management. AI has revolutionized many aspects of supply 

chain management by enabling better data analysis, improved decision-making, and enhanced 

operational efficiency [4]. AI technologies such as machine learning, predictive analytics, and 

natural language processing (NLP) are increasingly being utilized to optimize various supply 

chain processes. For example, machine learning algorithms can analyze historical data to forecast 

demand more accurately, while predictive analytics can help identify potential bottlenecks and 

optimize inventory levels [5]. AI-powered systems can also enhance supplier risk management 

by analyzing vast amounts of data to assess supplier reliability and predict potential disruptions. 

Furthermore, AI applications in logistics can improve route optimization, reducing transportation 

costs and delivery times. By leveraging AI, businesses can gain deeper insights into their supply 

chains, allowing for more proactive and informed decision-making [6]. One of the most 

promising subsets of AI that is gaining traction in supply chain risk management is Generative 

AI (GAI). GAI refers to a class of algorithms that can generate new data or predict future 

scenarios based on existing data. Unlike traditional AI models that primarily analyze and classify 

data, GAI creates new possibilities, making it particularly valuable for forecasting, scenario 

planning, and decision support in supply chain management. By leveraging vast amounts of data, 

GAI can identify patterns, anticipate disruptions, and propose proactive measures to mitigate 

risks, thereby enhancing the overall robustness of supply chains [7]. 

Several advanced methods within GAI, such as NLP and transformers, are particularly effective 

in supply chain risk management. NLP enables AI systems to understand and interpret human 

language, allowing for the analysis of unstructured data such as news articles, social media posts, 

and supplier communications, which is crucial for identifying potential risks and disruptions 

early on. For example, NLP can scan news reports for signs of political instability in supplier 

regions or monitor social media for customer sentiment about product shortages. These 

capabilities allow companies to anticipate disruptions and implement mitigation strategies 

proactively. Additionally, transformers, a type of deep learning model, have significantly 

enhanced the performance of NLP tasks by improving the understanding and generation of 

human language, thus enabling more accurate and efficient risk assessments. By leveraging these 

technologies, businesses can gain comprehensive insights into their supply chains, enhance 

decision-making processes, and maintain resilience in the face of unforeseen disruptions. For 

instance, during the COVID-19 pandemic, GAI techniques were instrumental in forecasting 

demand fluctuations and managing inventory, helping organizations navigate through 

unprecedented challenges [8]. Furthermore, AI-driven systems using generative models can 

simulate various supply chain scenarios, allowing businesses to explore different strategies and 

outcomes, thus better preparing for potential risks [9]. 



Transformers, a type of deep learning model, have revolutionized NLP by providing a framework 

for understanding context and relationships within text data. Models like GPT (Generative Pre-

trained Transformer) can process and generate human-like text, making them ideal for predicting 

future scenarios based on historical data. In supply chain management, transformers can be used 

to simulate various risk scenarios and develop contingency plans, as well as enhance demand 

forecasting by analyzing complex patterns in large datasets (Fig. 1). Specific models such as 

BERT (Bidirectional Encoder Representations from Transformers), RoBERTa (Robustly 

optimized BERT approach), and T5 (Text-To-Text Transfer Transformer) have shown remarkable 

capabilities in understanding and generating human language, making them valuable for 

sentiment analysis, extracting insights from unstructured text, and various other applications.  

In recent years, the high complexity and diverse capabilities of NLP and GAI methods have 

posed challenges for organizations in selecting the best approach for their supply chains to 

reduce risks. The choice of methods depends on various factors, such as organizational needs, 

supply chain nature, available data, and desired outcomes. Companies must evaluate trade-offs 

between models for tasks like demand forecasting, risk prediction, or supplier evaluation. 

Integration of these AI systems require significant investments in technology, skilled personnel, 

and ongoing maintenance to ensure effectiveness and adaptability. The rapid pace of AI 

advancements complicates the selection process, necessitating companies to stay updated and 

address issues related to data quality, privacy, and security. Therefore, a strategic approach 

involving thorough evaluation, testing, and continuous improvement is essential for leveraging 

AI to mitigate supply chain risks effectively. 

 

Figure 1.Various applications of GAI in supply chain management 

Another crucial issue for the most suitable GAI model for supply chain risk management is the 

consideration of human-centric factors. These include aspects such as data privacy measures, 



adherence to regulatory standards, tailored solutions for industry specifics, and the ease of model 

version control. These factors are essential because they directly influence how well the AI 

system aligns with human values, ethical principles, and practical operational needs. Ensuring 

robust data privacy is critical for maintaining user trust and safeguarding sensitive information, 

which is increasingly important in a world where data breaches can have significant 

consequences [10]. Adherence to regulatory standards is vital for ensuring that the AI operates 

within the legal and ethical boundaries set to protect societal interests, reinforcing the model's 

credibility and acceptability. Additionally, providing tailored solutions that consider industry-

specific needs ensures that the AI’s outputs are relevant and actionable for human decision-

makers in various contexts. Finally, ease of model version control is important for enabling 

human operators to efficiently manage and update the AI system, ensuring that it remains 

adaptable and user-friendly over time. By prioritizing these human-centric considerations, 

organizations can enhance the effectiveness and ethical deployment of AI in managing supply 

chain risks, ensuring that the chosen model not only meets technical requirements but also 

respects and supports human stakeholders [11]. 

The aim of this study is to select the best GAI and transformer language model for supply chain 

risk management. To address the challenges of selecting the best NLP and GAI methods for 

supply chain risk management, one effective solution is the use of Multi-Criteria Decision-

Making (MCDM) methods. MCDM methods help organizations evaluate and prioritize different 

options based on multiple criteria, ensuring a more comprehensive and balanced decision-

making process. There are various MCDM methods, and in this article, we focus on the 

Evaluation Based on Distance from Average Solution (EDAS) method. 

The EDAS method is recognized as a valuable MCDM technique for supply chain risk 

management, offering a systematic framework for assessing multiple risk factors simultaneously, 

thereby helping decision-makers identify the most suitable solution from a range of options [12]. 

However, EDAS does have certain limitations. It may not provide sufficient depth in 

comparative analyses in complex decision-making contexts, as it relies on mean evaluations, 

potentially leading to oversimplification. Therefore, modifications are necessary to refine EDAS, 

address its limitations, and improve the overall ranking procedure [13]. In addition, the EDAS 

method cannot consider interactions between criteria, which is a significant limitation in 

complex decision-making scenarios where criteria are often interdependent. 

In this context, this paper introduces several significant and innovative contributions to the fields 

of supply chain risk management and multi-criteria decision-making (MCDM). First, we present 

an enhancement of the EDAS method by refining its logical foundation to better integrate it with 

the R.Graph method [14], which accounts for causal relationships within a chain of variables. . 

This includes the development of a novel approach that accounts for the interactions and 



interdependencies between criteria, which has traditionally been a limitation of the basic EDAS 

method. By integrating these interactions, we propose a new decision support framework that 

offers a more comprehensive and accurate evaluation process. 

Second, we apply this improved model and methodology to the critical task of identifying the 

most effective GAI technique for supply chain risk management. Our proposed framework not 

only evaluates the performance of various GAI models but also considers the complex 

dependencies among different risk factors, providing decision-makers with a robust tool for 

selecting the most suitable AI methods. This dual contribution advances both the theoretical 

foundation of MCDM techniques and their practical application in the rapidly evolving 

landscape of supply chain risk management. 

The current paper is organized into several sections, each addressing a specific aspect of the 

research. Section 2 provides a comprehensive survey of existing literature on causality models 

and supply chain resilience, highlighting key findings and gaps in current knowledge. In Section 

3, the paper delves into the preliminaries explaining the fundamental concepts and mathematical 

formulations that underpin the research. Section 4 introduces the proposed method, detailing its 

construction, underlying assumptions, and theoretical framework. A relevant case study is 

presented in Section 5, demonstrating the practical application of the proposed model in a real-

world context. Finally, Section 6 summarizes the key findings of the research, synthesizing the 

insights gained from the literature review, theoretical discussions, and case study analysis, and 

proposes directions for future research. 

2. Literature review 

Section 2.1 of the literature review examines the application of GAI in supply chain operations, 

detailing how these technologies optimize processes such as demand forecasting, inventory 

management, and logistics. Subsection 2.2 focuses on the use of GAI in supply chain risk 

management, highlighting its role in predicting and mitigating disruptions. Subsection 2.3 

explores the integration of NLP and transformer models, which enhance communication and data 

analysis within supply chains. Finally, subsection 2.4 discusses the research gaps and potential 

areas for innovation, suggesting how future advancements could further transform the field. 

2.1.  Application of GAI in Supply Chain operations 

In recent years, the integration of AI technologies in supply chain management has significantly 

transformed traditional practices. Particularly, the utilization of GAI has emerged as a powerful 

tool for optimizing various aspects of the supply chain. This literature review aims to explore the 

impact and potential applications of GAI in Supply chain operations 

Demand forecasting plays a crucial role in supply chain and operations management, acting as 

the guiding force for inventory, production, and distribution choices [15]. In recent times, the 



significance of AI in enhancing this essential procedure has grown considerably. AI algorithms 

are now extensively employed for demand forecasting, utilizing large sets of data to decipher 

complex patterns and generate forecasts. By learning and adjusting over time, these AI models 

enhance the precision of forecasting and aid in the efficient management of operations, thereby 

optimizing the entire supply chain process [16]. Kantasa-Ard, et al. [17] introduced a method for 

predicting demand in intricate supply chains by utilizing a Long Short-Term Memory model, 

with its parameters adjusted through a combination of genetic algorithms and scatter search. 

Another area that has been addressed in recent years in the field of GAI in the supply chain is the 

distribution and transportation strategy. Huang et al. [18] focused on optimizing the shortest path 

interdiction problem, which is a major issue in the distribution and transportation strategy in 

SCOM. The main goal is to maximize the length of the shortest route that a follower can take, 

while taking into account a restricted interdiction budget. The study suggests a new approach 

that leverages AI tools, such as learning, prediction, interaction, and adaptation, to address the 

problem. Priore et al. [19] have reviewed a study on the user domain of GAI in supply chain 

design. The study sheds light on how AI can be utilized to streamline intricate scenarios, 

improving inventory management efficiency. It employs an inductive learning algorithm, an 

example of Supervised Learning, to construct a flexible framework. This framework enables the 

identification of optimal replenishment policies by effectively adjusting to changing conditions, 

showcasing AI's capacity for learning and adaptation. Integrating AI into learning and adaptation 

processes aligns seamlessly with the three-tier supply chain model outlined in this paper, which 

revolves around seven variables: cost structure, demand fluctuations, three lead times, and two 

partners' inventory policies. 

2.2. Application of GAI in Supply Chain Risk Management 

As the demand for efficient and resilient supply chain management grows, the application of 

General Artificial Intelligence (GAI) has garnered significant attention. This subsection aims to 

explore the existing body of knowledge on how GAI can be leveraged to mitigate supply chain 

risks and enhance overall operational performance. By examining recent studies and industry 

practices, this section seeks to provide valuable insights into the potential benefits and challenges 

associated with integrating GAI into supply chain risk management. 

Managing risks within the supply chain entails implementing tactics to recognize, evaluate, 

alleviate, and supervise unforeseen circumstances that may have adverse effects on any segment 

of the supply chain. Given the necessity for swift and flexible decision-making rooted in 

extensive and intricate data reservoirs, the realm of supply chain risk management emerges as a 

fertile ground for the utilization of AI technologies [20]. Wong et al [21] highlighted the 

importance of AI, specifically its abilities in learning, predicting, and reasoning, in improving the 



effectiveness and flexibility of supply chain risk management, particularly for small and 

medium-sized businesses. The scientists utilized AI to investigate how it influences supply chain 

risk management, offering a distinct viewpoint based on the resource-based view. They utilized a 

comprehensive method that involved partial least squares-based structural equation modeling and 

artificial neural network, demonstrating AI's ability to learn from intricate data sets and derive 

valuable insights. Rashid  [22] explored the integration of AI in supply chain risk management, 

emphasizing a proactive approach with AI augmenting human capabilities. The study highlights 

the shift towards early risk detection and continuous monitoring enabled by AI, reflecting market 

trends and offering businesses insights to benchmark their AI maturity in SCRM. GAI is widely 

used in mitigating supply chain risks, offering various tools and features that revolutionize the 

management of potential disruptions. By utilizing advanced algorithms, this technology can 

analyze large amounts of data, including historical and real-time information. He et al. [23] 

emphasized that GAI primarily serves in forecasted risk evaluation to alleviate risks. Through 

analyzing historical data, current patterns, and external influences, AI systems anticipate 

potential disruptions. Armed with such foresight, supply chain managers can devise strategies 

and implement preemptive measures to counteract potential disruptions proactively. In addition, 

supply chain operations can take advantage of simulations and scenario planning enabled by GAI 

[24]. This tool creates various risk scenarios by utilizing past and present data, aiding in the 

assessment of potential outcomes and development of tailored contingency plans for various risk 

types. These simulations are crucial for assessing the effectiveness of mitigation strategies. GAI's 

real-time monitoring capabilities offer a proactive approach to minimizing risks. By continuously 

analyzing supplier performance, market data, and IoT device data, AI algorithms can quickly 

detect deviations that may signal potential threats. This real-time surveillance allows for early 

intervention to prevent or mitigate disruptions. Additionally, GAI enables adaptive decision-

making by providing dynamic insights into risk-relevant data, allowing for real-time adjustments 

to inventory levels, logistical routes, and supplier relationships in response to changing risk 

indicators. This agility empowers supply chain managers to swiftly address emerging risks and 

minimize their impact on operations [25]. Further enhancing this field, Yang et al. [26] proposed 

a machine learning model for financial risk prevention in supply chains, emphasizing the 

transformation of traditional supply chains into intelligent, smartly managed systems. Burstein 

and Zuckerman [27] presented a machine learning framework aimed at reducing human 

subjectivity in risk assessments, thus improving prediction accuracy. Lastly, Hung et al. [28] 

discussed the application of Bayesian networks in predicting supply chain risks, highlighting the 

improvement in resilience and continuity that such technologies offer. These recent studies 

underscore the transformative potential of GAI in supply chain risk management, illustrating 



various methodologies and technologies that contribute to more resilient and adaptive supply 

chain operations 

2.3. Applications of NLP and transform models 

The introduction of Transformers has greatly transformed the field of NLP. Since their debut in 

2017, Transformers have become widely adopted and have significantly influenced NLP 

advancements. Bender et al. [29] analyzed the current trend in NLP of creating and utilizing 

larger language models like BERT, GPT-2/3, and Switch-C, questioning if size alone is driving 

progress. They offered recommendations to mitigate the risks of these models, including 

accounting for environmental and financial costs, carefully curating and documenting datasets, 

assessing how well the technology aligns with research and development goals and stakeholder 

values, and promoting research that goes beyond just scaling up language models. Other studies, 

such as the one by [30], have offered thorough overviews of specific NLP tasks like sentiment 

analysis. They highlight the potential of deep learning models in addressing these challenges by 

reviewing recent works that build models using term frequency–inverse document frequency and 

word embeddings. However, these reviews might miss concurrent and synergistic advancements 

by focusing solely on one task. Historically, NLP systems relied on transparent methods like 

rules and decision trees, which are naturally explainable. However, the rise of deep learning 

models has reduced their interpretability. This lack of transparency in AI systems can undermine 

trust, making explainable AI (XAI) an important area of focus in the field. Danilevsky et al. [31] 

conducted the first survey specifically focused on XAI in NLP, reviewing works presented at 

major NLP conferences over the past seven years. Deep learning models necessitate large 

datasets, posing a challenge for many NLP tasks, particularly in low-resource languages. 

Furthermore, these models demand substantial computing power. The growing interest in 

transfer learning stems from the need to address these limitations and leverage the extensive 

trained models now available. Alyafeai et al. [32] have explored the recent advancements in 

transfer learning within the NLP field. Another study by [33] explored the use of graph neural 

networks (GNNs) for NLP tasks. GNNs are similar to Transformers in their capacity to capture 

long-range dependencies and complex relationships between data entities. However, GNNs differ 

from traditional Transformers in their unique structure, modeling data explicitly as graphs and 

utilizing graph structures for computation and information propagation. In contrast, Transformers 

operate on flattened sequences, making them more suitable for processing language data. This 

distinction justifies a separate investigation of GNNs. The adoption of pre-trained language 

models, as discussed by Devlin et al. [34], has further revolutionized NLP by enabling models to 

leverage vast amounts of textual data to improve performance across various tasks. Their BERT 

model, in particular, introduced bidirectional training of Transformers, leading to significant 



advancements in understanding context in text processing. Furthermore, Liu et al. [35] 

introduced RoBERTa, an optimized version of BERT that demonstrates the importance of 

training techniques and hyperparameters in enhancing model performance, reinforcing the idea 

that model architecture alone is not sufficient for optimal results. Lastly, a study by Brown et al. 

[36] on GPT-3 highlighted the potential of scaling up language models, showcasing how 

increased parameters and training data can result in substantial improvements in various NLP 

benchmarks. Their research emphasizes the balance between model size, training data, and 

computational resources in pushing the boundaries of what NLP models can achieve 

2.4. Research Gap and Innovations 

Despite the significant advancements in AI and NLP technologies within supply chain risk 

management (SCRM), critical gaps remain. Traditional risk management approaches often 

struggle to handle the real-time analysis and large volumes of data required for modern supply 

chains. Moreover, selecting the most appropriate GAI and NLP methods for specific 

organizational needs is a complex task, given the diversity of available techniques. From 

machine learning algorithms to transformer-based generative models, each presents distinct 

strengths and limitations that complicate decision-making for businesses aiming to enhance risk 

mitigation strategies. 

Although several studies [29-31] highlighted the potential of AI in supply chain contexts, there is 

a lack of comprehensive frameworks that guide organizations in selecting the best technologies 

effectively in their supply chain operations. Many current models fail to account for the complex, 

interrelated risk factors that influence decision-making in supply chains. They also neglect 

human-centric considerations such as data privacy, regulatory compliance, and real-time 

adaptability, which are crucial for aligning AI with organizational goals. 

This study addresses existing gaps by proposing an integrated framework called the R.Graph-

enhanced EDAS method, a novel approach that combines the strengths of the R.Graph method, 

which considers interactions between criteria, with the enhanced EDAS technique to overcome 

some limitations of the traditional EDAS method. By accounting for interdependencies among 

risk factors, this method provides a more refined decision-making framework, enabling 

businesses to visualize trade-offs and assess the relative performances of various AI models. In 

conclusion, the R.Graph-enhanced EDAS model fills the gap by offering a comprehensive 

decision-making framework that addresses the shortcomings of conventional AI selection 

models. It emphasizes both technical performance and human-centric criteria, ensuring that 

supply chains remain resilient, adaptable, and ethically aligned to meet contemporary challenges. 

3. Preliminaries 



This section is divided into two parts, each dedicated to a distinct methodological approach used 

in decision analysis and causal inference. The first part introduces the classical EDAS method. 

This method is a widely recognized MCDM technique that assesses alternatives based on their 

performance relative to the average solution across multiple criteria. It provides a structured 

approach to evaluating and ranking alternatives by calculating their distances from the average 

performance and incorporating both positive and negative distances. The second part discusses 

the R. Graph causal method, a technique designed to analyze the causal relationships between 

variables and events. Unlike the EDAS method, which focuses on performance evaluation, the R. 

Graph method is used to understand how changes in certain variables or the occurrence of 

specific events can influence other components within a system. This method involves 

constructing a causal graph where variables and events are represented as nodes, and their causal 

interactions are depicted as directed edges. 

3.1. Classic EDAS method 

The classic EDAS method is a systematic multi-criteria decision-making approach that involves 

creating a decision matrix with all alternatives and criteria. It calculates an average solution to 

serve as a benchmark, then determines Positive and Negative Distance from Average matrices 

based on the nature of the criteria (beneficial or cost-related). These distances are weighted, 

summed, and normalized to calculate an appraisal score for each alternative. Finally, the 

alternatives are ranked by their appraisal scores, with the highest score indicating the optimal 

choice, providing a thorough evaluation based on relative performance across various criteria. 

Step 1: Creating the decision matrix ( ) as illustrated below: 
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Within the framework of the study, 𝑥   represents the performance measurement of the i-th 

alternative with respect to the j-th criterion. This method allows for an accurate evaluation of the 

performance of alternatives across multiple criteria, improving the decision-making process by 

providing a structured assessment of their strengths and weaknesses. 

Step 2: Calculating the average solution across all criteria, as illustrated below: 
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  (2) 

where 
 



 𝑥  =
∑    
𝑛
   

𝑛
  (3) 

Step 3: Computing the Positive Distance from Average 𝑢 and Negative Distance from Average   

matrices based on the nature of the criteria (beneficial and cost) as shown below: 

{
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If  j 𝑡  criterion is non-beneficial, we have: 
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Step 4: At this stage, the weighted summation of 𝑢 and   is calculated, and is expressed by 

Equations (10) and (11): 

{
   = ∑ 𝑤 

𝑚
  1 𝑢  
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  1 𝑢  

  
  (7) 

Where      indicates the weighted total of 𝑢  
 , and       represents the weighted sum of     

  for 

the i-th alternative, with 𝑤  representing the weight of the j-th criterion. 

Step 5: The values of SP and SN are normalized, shown as follows: 

{
    =

   

𝑚   (   )
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  (8) 

Step 6: The appraisal score (  ) is calculated for all the alternatives by using Eq (14): 

   =
1

2
 (         )            (9) 

The normalized values of SP are indicated as     , whereas the normalized values of SN are 

represented as     . 

Step 7: In this phase, the alternatives are ranked according to their decreasing Appraisal Scores 

(AS). The alternative with the highest AS is identified as the optimal choice among the candidate 

solutions. 

3.2. R. Graph casual method 



The R. Graph technique involves a fixed series of non-looping causal components that impact 

one another. Its purpose is to analyze the proportion of variation in each component resulting 

from shifts in other components or the emergence of distinct occurrences within a consistent 

timeframe, based on the assumption that these occurrences are guaranteed. Within this technique, 

the ideas are outlined as below [14]: 

Variable: Any element capable of taking on a value and magnitude as its strength. When there 

exists a causal relationship between two variables, an alteration in the causal variable can result 

in a modification in the other variable. In the R. Graph approach, the  -th variable is represented 

as    and illustrated in the shape of a circle. 

Event: An element that lacks a precise intensity or quantity and is typically depicted as either 

zero or one. The occurrence of such an event can initiate other events or result in alterations to 

the values of other variables. In the R. Graph method, event   is denoted as  ( ) and illustrated 

as a rectangle. 

Factor: Each of the variables or events is termed a factor. 

Parent: When there is a cause-and-effect relationship between two factors, the one that affects 

the other is called the parent. 

Different scenarios of the effects of events and occurrences on each other are illustrated in Fig. 2, 

and a type of R. Graph is shown in Fig. 3. 

 

Figure 2.Different scenarios of influence in deterministic R.Graph method 



 

Figure 3.A typical R.Graph diagram 

Definition 1: In the R. Graph method, risks or deviations are defined as the exact deviation of a 

parameter from its modified value, which can be calculated using Equations (15) and (16) [35]. 
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where, if  𝑒2 denotes the changed value and 𝑒1 denotes the initial value, the risk (effect) value is 

calculated using Equation (16). 
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Definition 2. In the R.Graph method, the way of influencing different factors is represented 

through the R.Graph matrix (      𝑝 ) as follows [35]: 
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𝑽𝟐…
𝑽𝒗…
𝑽𝑽
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𝑏  
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𝑏𝑉 
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𝑬𝟏
𝑬𝟐…
𝑬𝒆…
𝑬𝑬
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𝑏21
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𝑏 1

 𝑏 2
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𝑏𝐸1
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 … 𝑏 𝐸
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𝑏𝐸 
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     =
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𝑬𝟐…
𝑬𝒆…
𝑬𝑬
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 𝑏12

 …

𝑏21
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… …  
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 … 𝑏1𝐸
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 … 𝑏2𝐸
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𝑏 1
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𝑏𝐸1
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 … 𝑏 𝐸

 

…  …
𝑏𝐸 
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 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

1

5) 

 𝑣 =   …  𝑒 =   …    



where 

 {
  =   …    𝑎 𝑑   =   …         𝛼                

  =   …    𝑎 𝑑   =   …    𝑏  
  𝑏  

  *   + 
. 

According to Equation (15), the R. Graph matrix consists of four distinct submatrices, which 

represent the influences of variable risks on other variables, the influences of variable risks on 

events, the influences of event risks on variables, and the influences of event risks on other 

events. Furthermore, in the above equation, 𝛼   represents the risk of variable 𝑣 due to a 100% 

risk in variable  . As the R. Graph is non-cyclic, if 𝛼   takes a value, then 𝛼  =  .  

Additionally,    represents the risk to variable 𝑣 caused by the occurrence of event  . In the 

above equations, 𝑏  
   denotes the likelihood of event 𝑒 occurring due to event j, while  

𝑏  
 
indicates the likelihood of event  𝑒  occurring due to variable   . If 𝑏  

 
and 𝑏  

 
 take the 

value of one, it indicates the susceptibility of event 𝑒 occurring due to event   and the variable  . 

If they are zero, it indicates non-susceptibility. Here, as the R. Graph is non-cyclic, if 𝑏  
 
=1 and 

𝑏  
 
 =1, we will have 𝑏  

 
=0 and 𝑏  

 
=0. 

Definition 3. Consider a set of  ́ variables and  ́ events that influence a specific variable   , 

where  =   …    ́  =   …    ́,. If the objective is to analyze the rate of change (risk) of the 

variable    with respect to all these factors, under the assumption that all factors are independent, 

the following expression holds [14]: 

(12)  (  ) =  (  | 𝑎𝑟(  )) = ∑ 𝛼   (  )
�́�
  1  ∑    

�́�
  1   

Here,  𝑎𝑟(  )  denotes all the parent variables of   ,  (  ) represents the risk associated with 

the   th variable, and  (  | 𝑎𝑟(  )) refers to the rate of change (or risk) resulting from 

alterations or occurrences in the parents of   . 

Definition 4. The risk associated with variable    according to the desired event   , can be 

defined in the following manner [14]:  

(13) 
{
 (  |  ) = 𝛼   (  )  ∑ 𝛼   (  |  )  

𝐿
  1   ∑  𝑘 

𝐾
𝑘 1                        𝑎𝑟(  )   

 (  |  ) = ∑ 𝛼   (  |  )  
𝐿
  1   ∑  𝑘 

𝐾
𝑘 1                                           ∉  𝑎𝑟(  )

  

where    denotes the variables that are either directly or indirectly influenced by   ;   represents 

the impact of events on    , which are the parent variables of   , and     influences their 

occurrence. Therefore, based on Equation (16), we can derive the following: 

Definition 5. The risk of the variable    can be defined according to the desired event   , i.e., 

 (  |  ) as follows: 



(14) 
{
 (  |  ) =     ∑  𝑘  

𝐾
𝑘 1 ∑ 𝛼   (  |  )

𝐿
  1                     𝑎𝑟(  )  

 (  |  ) = ∑  𝑘  
𝐾
𝑘 1 ∑ 𝛼   (  |  )

𝐿
  1                             ∉  𝑎𝑟(  )

   

In this relation,  𝑘  represents the influence of events on   , which acts as the parent of   , and 

also demonstrates how   impacts their occurrences. Additionally,    refers to variables that are 

directly or indirectly influenced by   .  

Definition 6. In the R.Graph method, the relative significance of each variable is determined as 

follows [14]: 

(15) {𝑤 
 =

∑ | (𝑉𝑣|𝑉 )|
𝑉
𝑣  +| (𝑉 )|

∑ ∑ (| (𝑉𝑣|𝑉 )|+| (𝑉 )|)+∑ ∑ | (𝑉𝑣|𝐸 )|
𝑉
𝑣  

𝐸
   

𝑉
𝑣  

𝑉
   

  

In this context, 𝑤 
 represents the relative significance of each variable, which is calculated based 

on its own risk value and its influence on the risks of other variables. 

4. Proposed R.Graph-Enhanced EDAS Model for Selecting the Best Human-

Centric GAI Transformer Model  

In this section, we present a comprehensive framework that integrates the R.Graph and Enhanced 

EDAS methodologies to select the most suitable human-centric GAI Transformer model for 

supply chain risk management. The proposed model addresses the complexities involved in 

evaluating and choosing the optimal AI tool by considering multiple criteria pertinent to supply 

chain risk management. By leveraging the strengths of R.Graph for modeling interactions 

between criteria and Enhanced EDAS for multi-criteria decision-making, this approach ensures a 

rigorous and systematic selection process. The framework is designed to improve the 

effectiveness of AI deployment in managing supply chain risks, ensuring that the chosen model 

aligns with both operational goals and human-centric considerations. 

Step 1: Formation of Decision and Interaction Matrices with Criteria Weighting 

In the first step, a decision matrix is created, representing the GAI alternatives evaluated against 

selected criteria. This matrix forms the basis for the decision-making process by capturing the 

performance of each GAI model. Additionally, an interaction matrix, denoted as 𝐶  𝐶 and 

corresponding to the     matrix in the R.Graph method, is developed to account for the 

interdependencies between criteria (see Appendix B for a sample). Once these matrices are 

established, subjective weights for each criterion are assigned by decision-makers, reflecting the 

importance of each criterion in the specific supply chain context. These elements collectively 

provide a robust foundation for evaluating and selecting the most suitable GAI model.  

                     𝑐1 𝑐1 … 𝑐𝑛 (16) 



 =

𝑎1
𝑎2
⋮
𝑎𝑚

(

𝑥11 𝑥12
𝑥21 𝑥22
⋮
𝑥𝑚1

⋮
𝑥𝑚2

    

… 𝑥1𝑛
… 𝑥2𝑛
⋮
…

⋮
𝑥𝑚𝑛

,  

                         𝟏   𝟐  …       …    

𝐶  𝐶 =  

 𝟏
 𝟐…
  
…
  

 

[
 
 
 
 
 
 𝛼12 …
𝛼21  …
… …  

     
𝛼1 … 𝛼1𝑛
𝛼2 … 𝛼2𝑛
… … …

𝛼 1 𝛼 2 …

…  …
𝛼𝑛1 𝛼𝑛2  

     

 … 𝛼 𝑛
…  …
𝛼𝑛 …  ]

 
 
 
 
 

  

  

(17) 

 = [𝑤  ]1 𝑛
  

(18) 

where   is the decision matrix, representing the evaluation of 𝑚 alternatives with respect to   

criteria, 𝐶  𝐶 is the interaction matrix between criteria, and 𝛼 𝑛 denotes the impact of the  -th 

attribute on the  -th criterion based on a 100% change in Attribute  .   is the subjective weight 

matrix, where 𝑤   denotes the subjective weight of the  -th attribute. 

Step 2: Computing the Mean Values of Each Criterion 

In the second step, we calculate the mean value for each criterion across all alternatives. This 

step helps us to understand the average performance of each criterion, which will be used as a 

reference point in subsequent calculations. The mean value of the  -th criterion is calculated 

using the formula: 

𝑚𝑒𝑎  =
1

𝑚
∑ 𝑥  
𝑚
  1   (19) 

where 𝑚𝑒𝑎   is the average value of the  -th criterion, 𝑥   denotes the performance value of the 

 -th alternative for the  -th criterion, and 𝑚 is the total number of alternatives 

Step 3: Calculating the Relative Utilities and Losses 

In the third step, we calculate the relative utilities and losses for each alternative with respect to 

the mean values computed in Step 2. This step helps to determine how each alternative performs 

relative to the average performance of each criterion. We consider both beneficial and non-

beneficial criteria in these calculations. Beneficial criteria are those for which higher values are 

better, while non-beneficial criteria are those for which lower values are better. 

For beneficial criteria, the relative utilities and losses are calculated using the following 

formulas: 

{
𝑢  
 = max(  

    𝑚  𝑛 

𝑚  𝑛 
*    

   
 = max(   

    𝑚  𝑛 

𝑚  𝑛 
* 

  (20) 



For non-beneficial criteria, the relative utilities and losses are calculated using these formulas: 

{
𝑢  
 = max(  

𝑚  𝑛     

𝑚  𝑛 
*   

   
 = max(   

𝑚  𝑛     

𝑚  𝑛 
* 

  (21) 

where 𝑢  
  denotes the relative utility of the  -th alternative for the  -th criterion, and    

  

represents the relative loss of the  -th alternative for the  -th criterion. By using these formulas, 

we can assess how each alternative performs in comparison to the mean performance for each 

criterion, taking into account whether the criterion is beneficial or non-beneficial. 

Step 4: Mean of Utilities and Losses Calculations 

In the fourth step, we calculate the mean values for both utilities and losses. This step helps us to 

understand the distribution of utilities and losses around the performance values of each 

alternative. The formulas for calculating the mean values for utilities and losses are: 

{
 
 

 
 𝑢 

 =
∑  𝑘 

𝑆𝑚
𝑘        (   

𝑆 > )

∑  𝑚
𝑘   (   

𝑆 > )
 

  
 =

∑  𝑘 
𝑆𝑚

𝑘        (   
𝑆 > )

∑  𝑚
𝑘   (   

𝑆 > )
   

   

(22) 

where 𝑢 
  represents the mean of utility values for the  -th criterion, and   

 represents the mean of 

loss values for the  -th criterion. By calculating these mean values, we gain a clearer 

understanding of how each alternative's performance compares to the distribution of performance 

values across each criterion. 

Step 5: Calculating Relative Utilities and Losses Using Mean Values 

In the fifth step, we calculate the relative utilities and losses using the mean values obtained in 

Step 4. This step further refines the evaluation of each alternative's performance by comparing it 

to the calculated mean values. This comparison offers insights into how each alternative ranks in 

relation to others, considering both higher and lower performance values. For beneficial criteria, 

the relative utilities and losses are calculated using the mean values as follows: 

{
 
 
 
 

 
 
 
    

𝑆 𝑎𝑏𝑜𝑣𝑒
    (  

𝑢  
𝑆 −𝑢 

𝑆

𝑢 
𝑆+ 

+

   
𝑆 𝑏𝑒𝑙𝑜𝑤

    (  
𝑢 
𝑆−𝑢  

𝑆

𝑢 
𝑆+ 

+

   
𝑆 𝑎𝑏𝑜𝑣𝑒

    (  
𝑙  
𝑆 −𝑙 

𝑆

 −𝑙 
𝑆 +  

   
𝑆 𝑏𝑒𝑙𝑜𝑤

    (  
𝑙 
𝑆−𝑙  

𝑆

 −𝑙 
𝑆 +  

  

 

 

 

(23) 

 

For non-beneficial criteria, the relative utilities and losses using mean values are calculated as: 



{
 
 
 
 

 
 
 
    

𝑆 𝑏𝑒𝑙𝑜𝑤
    (  

𝑢  
𝑆 −𝑢 

𝑆

 −𝑢 
𝑆 +

   
𝑆 𝑎𝑏𝑜𝑣𝑒

    (  
𝑢 
𝑆−𝑢  

𝑆

 −𝑢 
𝑆 + 

   
𝑆 𝑏𝑒𝑙𝑜𝑤

    (  
𝑙  
𝑆 −𝑙 

𝑆

𝑙 
𝑆+ 

+  

   
𝑆 𝑎𝑏𝑜𝑣𝑒

    (  
𝑙 
𝑆−𝑙  

𝑆

𝑙 
𝑆+ 
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  (24) 

where 𝑢  
  𝑏  𝑜𝑤

represents the below-average utility performance value for each alternative, based 

on the mean utility value for the  -th criterion, and 𝑢  
   𝑏𝑜  

 represents the above-average utility 

performance value for each alternative, based on the same mean. Similarly,    
  𝑏  𝑜𝑤

 denotes the 

below-average loss performance value for each alternative, using the mean loss value for the  -th 

criterion, and    
   𝑏𝑜  

 indicates the above-average performance value using the mean loss value 

for the  -th criterion. By applying these formulas, we enhance the evaluation of each alternative’s 

performance, providing a more precise understanding of how each alternative ranks compared to 

others, in terms of both better and worse performance values. 

Step 6: Calculating the weights of the criteria considering the interactions using R.Graph 

Using the R.Graph method, where the total number of criteria is represented by  , the relative 

importance of each attribute is determined by analyzing its impact on the other criteria within the 

system. This approach considers both the direct and indirect effects that each criterion has on the 

overall decision-making process. The subjective weights provided by decision-makers are then 

incorporated into this analysis, allowing for a more nuanced understanding of each criterion's 

significance. The final relative importance of each attribute is calculated using Eq. (25), which 

integrates these interactions and subjective weights to provide a comprehensive assessment of 

the criteria's influence. 

𝑤 =
𝑤  (∑ | ( 𝑣|  )|

𝑛
𝑣  +| (  )|)

∑ 𝑤  (∑ | ( 𝑣|  )|
𝑛
𝑣  +| (  )|)

𝑛
   

  
(25) 

where 𝑤  is the final weight of Attribute   considering 𝑤   (the subjective weight of Attribute  ), 

and interdependencies between all criteria,  (𝐶 |𝐶 ) represents the effect on Criterion 𝑣 due to 

Criterion  , and  (𝐶 ) denotes the total effect on Criterion  . Accordingly, we have: 

| (𝐶 )| =   | (𝐶 | 𝑎𝑟(𝐶 ))| =   ∑ 𝛼   (𝐶 )
𝑛
  1   (26) 

{
 (𝐶 |𝐶 ) = 𝛼   (𝐶 )  ∑ 𝛼   (𝐶 |𝐶 )  

𝑛
  1                       𝐶  𝑑 𝑟𝑒𝑐𝑡 𝑡 𝑦 𝑎𝑓𝑓𝑐𝑒𝑡𝑠 𝐶    

| (𝐶 |𝐶 )| = ∑ 𝛼   (𝐶 |𝐶 )  
𝑛
  1                                            𝐶    𝑑 𝑟𝑒𝑐𝑡 𝑡 𝑦 𝑎𝑓𝑓𝑐𝑒𝑡𝑠 𝐶 

  
(27) 



Derivation: Eqs. )25( and )26( are derived from Eqs. (12) and (13). It is important to note that 

since we only consider the effects of criteria on other criteria, to align with the R.Graph-

Enhanced method, we assume that the effects of occurrences are a constant value for all criteria 

and equal to one. This ensures that no weight ends up being zero. 

Step 7: Summarizing the Weighted Values 

In this step, we summarize the weighted values calculated for each alternative. This involves 

summing the weighted values for utilities and losses across all criteria. The summarized 

weighted values give an overall picture of the performance of each alternative, taking into 

account the contributions of all criteria. 

The formulas for summarizing the weighted utility values are: 

{

𝑢  𝑤       = ∑ 𝑢  
  𝑤                       

𝑢  𝑏  𝑜𝑤 𝑤       = ∑ 𝑢  
  𝑏  𝑜𝑤  𝑤   

𝑢   𝑏𝑜   𝑤       = ∑ 𝑢  
   𝑏𝑜   𝑤    

  

(28) 

 

Similarly, the formulas for summarizing the weighted values for losses are: 

{

   𝑤       = ∑    
  𝑤                        

   𝑏  𝑜𝑤 𝑤       = ∑    
  𝑏  𝑜𝑤  𝑤     

    𝑏𝑜   𝑤       = ∑    
   𝑏𝑜   𝑤     

  

(29) 

where 𝑢  𝑤        is the total weighted utility of the  -th alternative, 𝑢  𝑏  𝑜𝑤 𝑤        is the total 

weighted below-average utility using the mean utility values for the  -th alternative, and 

𝑢   𝑏𝑜   𝑤        is the total weighted above-average utility based on the mean utility values for 

the  -th alternative. Similarly,    𝑤        represents the total weighted loss of the  -th alternative, 

   𝑏  𝑜𝑤 𝑤        is the total weighted below-average loss using the mean loss values for the  -th 

alternative, and     𝑏𝑜   𝑤        is the total weighted above-average loss using the mean loss 

values for the i-th alternative. By summarizing these weighted values, we obtain an overall 

measure of the utility and loss for each alternative, taking into account the weights assigned to 

the criteria. These summarized values will be used in the next steps to calculate the total utility, 

total loss, and the final appraisal score for each alternative.  

Step 8: Calculating the Total Utility, Total Loss, and Appraisal Score of Each Alternative 

In this step, we calculate the total utility, total loss, and appraisal score for each alternative. 

These calculations combine the summarized weighted values from Step 7 to provide a 

comprehensive evaluation of each alternative's performance. The formulas for calculating the 

total utility and total loss are: 



𝑢 =

𝑢  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
max𝑢  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

+
𝑢  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max𝑢  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
𝑢  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max𝑢  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
+

𝑢  𝑏𝑒𝑙𝑜𝑤 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max𝑢  𝑏𝑒𝑙𝑜𝑤 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
+

𝑢  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max𝑢  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

  (30) 

  =

𝑙  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
max 𝑙  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

+
𝑙  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max 𝑙  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
𝑙  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max 𝑙  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
+

𝑙  𝑏𝑒𝑙𝑜𝑤 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max 𝑙  𝑏𝑒𝑙𝑜𝑤 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
+

𝑙  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

max𝑙  𝑎𝑏𝑜𝑣𝑒 𝑤𝑒 𝑔ℎ𝑡𝑒𝑑

  (31) 

where 𝑢  is the total utility of the  -th alternative, and    is the total loss of the  -th alternative. 

Step 9: Calculating the Appraisal Score (AS) 

Finally, the appraisal score     is calculated using the total utility and total loss: 

   =
1

2
 (

  

𝑚   (  )
   

  

𝑚   (  )
)  (32) 

where     is the appraisal score of the  -th alternative. The appraisal score     provides a 

comprehensive measure of each alternative's performance by considering both the total utility 

and total loss. The higher the appraisal score, the better the performance of the alternative. This 

score is used in the next step to rank the alternatives. 

Now, the alternatives are ranked based on their appraisal scores in descending order. The 

flowchart of the proposed model is depicted in Fig. 4 and Algorithm 1. 

 



 

Figure 3. Flowchart of the proposed model 

Algorithm 1: R.Graph-Enhanced method 

Input: Decision matrix ( ), Interaction matrix (𝐶  𝐶) and subjective weight matrix ( ) 
Output: Ranked alternatives 

Step 1:  Formation of Decision ( ), and Interaction Matrices (𝐶  𝐶) with Criteria Weighting ( ) 

 Step 2:  Computing the Mean Values of Each Criterion 

𝑚𝑒𝑎  =
1

𝑚
∑ 𝑥  
𝑚
  1   

Step 3:  Calculating the Relative Utilities and Losses of each option in j-th attribute: 

For beneficial criteria: {
𝑢  
 = max(  

    𝑚  𝑛 

𝑚  𝑛 
* 

   
 = max(   

    𝑚  𝑛 

𝑚  𝑛 
* 
   For non-beneficial criteria: {

𝑢  
 = max(  

𝑚  𝑛     

𝑚  𝑛 
*   

   
 = max(   

𝑚  𝑛     

𝑚  𝑛 
* 

 

Step 4: Mean of Utilities and Losses Calculations of Each Attribute 

{
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5. Case Study 

The food industry's supply chain is particularly dynamic and intricate, making it one of the most 

critical and important supply chains in the global economy. Its efficient functioning has a 

profound and influential impact on various aspects of society and the economy. Ensuring the 

smooth operation of this supply chain is essential for maintaining food security, supporting 

economic stability, safeguarding public health, and promoting environmental sustainability. 

Disruptions in the food supply chain can lead to significant consequences, highlighting the need 

for robust management and innovative solutions to mitigate risks and enhance resilience.  

Step 5: Calculating Relative Utilities and Losses Using Mean Values 

For beneficial criteria::

{
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     For non-beneficial criteria: 
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Step 6: Calculating the weights of the criteria considering the interactions using R.Graph 

𝑤 =
𝑤  (∑ | ( 𝑣|  )|

𝑛
𝑣  +| (  )|)

∑ 𝑤  (∑ | ( 𝑣|  )|
𝑛
𝑣  +| (  )|)

𝑛
   

  
 

where: 

| (𝐶 )| =   | (𝐶 | 𝑎𝑟(𝐶 ))| =   ∑ 𝛼   (𝐶 )
𝑛
  1    

{
 (𝐶 |𝐶 ) = 𝛼   (𝐶 )  ∑ 𝛼   (𝐶 |𝐶 )  

𝑛
  1                       𝐶  𝑑 𝑟𝑒𝑐𝑡 𝑡 𝑦 𝑎𝑓𝑓𝑐𝑒𝑡𝑠 𝐶    

| (𝐶 |𝐶 )| = ∑ 𝛼   (𝐶 |𝐶 )  
𝑛
  1                                            𝐶    𝑑 𝑟𝑒𝑐𝑡 𝑡 𝑦 𝑎𝑓𝑓𝑐𝑒𝑡𝑠 𝐶 

   

Step 7: Summarizing the Weighted Values 

The weighted utility values: {

𝑢  𝑤       = ∑ 𝑢  
  𝑤                       

𝑢  𝑏  𝑜𝑤 𝑤       = ∑ 𝑢  
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 The weighted losses values:  {

   𝑤       = ∑    
  𝑤                        

   𝑏  𝑜𝑤 𝑤       = ∑    
  𝑏  𝑜𝑤 𝑤     
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Step 8: Calculating the Total Utility, Total Loss, and Appraisal Score of Each Alternative 

𝑢 =

𝑢  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
max𝑢  𝑤𝑒 𝑔ℎ𝑡𝑒𝑑
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Step 9: Calculating the Appraisal Score (AS) 
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The food industry supply chain is a complex system involving multiple stages, each presenting 

unique challenges and risks. It begins with the procurement of raw materials from various 

suppliers, often spread across different regions, leading to risks such as supplier delays and 

natural disasters disrupting supply. The materials then undergo processing and manufacturing, 

where issues like equipment malfunctions and quality control problems can cause delays or 

product recalls. Transportation and logistics are crucial but face risks like delays, fuel price 

fluctuations, and political instability. Finally, the delivery of goods to retailers and consumers 

involves managing inventory, forecasting demand, and ensuring food safety, while adapting to 

changing consumer preferences and market trends. 

 

Figure 4.A simplified food industries supply chain system 

Risk management in supply chain operations is crucial for ensuring continuity, minimizing 

losses, and maintaining customer satisfaction. It involves identifying, assessing, and mitigating 

risks to reduce disruptions and control costs. In today's globalized market, strong risk 

management is vital for staying competitive and protecting against unexpected events. Strategies 

include diversifying suppliers, maintaining safety stock, and using advanced technologies for 

better forecasting. Generative AI (GAI) transformers have emerged as effective tools for 

analyzing large datasets and identifying risks. This section focuses on using the R.Graph-

Enhanced EDAS method to evaluate and rank GAI transformer algorithms for supply chain risk 

management. In our analysis, we engaged three experts with relevant knowledge of GAI 

technologies and food supply chain risk management. We utilized interactive methods to define 

appropriate criteria, alternatives, and develop both a decision matrix and an interaction matrix 

between the criteria. These collaborative efforts ensured a comprehensive and informed 



evaluation of GAI transformer algorithms for effective risk management in the food supply 

chain. 

The alternatives considered for evaluating the most efficient NLP transformer algorithm for 

managing supply chain risks are: BERT (A1), GPT (A2), Transformer-XL (A3), XLNet (A4), 

RoBERTa (A5), T5 (A6), and DistilBERT (A7). Each of these models offers unique features and 

capabilities, making them suitable for different aspects of supply chain risk management. To 

enable a comprehensive comparison, the key characteristics of each alternative are summarized 

in Table 1 below. 

Table 1. Classification of elected NLP transformers algorithms 

Alternative Descriptions 

 

BERT (A1): BERT (Bidirectional Encoder Representations from Transformers) excels in 

understanding the context of words in a sentence by looking at both directions. It is widely used for 
various NLP tasks due to its strong performance in understanding language nuances. BERT is 
particularly effective in tasks requiring deep understanding of text. 

 

GPT (A2): GPT (Generative Pre-trained Transformer) is designed for text generation and language 
modeling tasks. It leverages unsupervised learning to generate coherent and contextually relevant 
text. GPT's strength lies in its ability to produce high-quality, human-like text based on the input it 
receives. 

 

Transformer-XL (A3): Transformer-XL introduces a segment-level recurrence mechanism to 

capture longer-term dependencies in text. This model is particularly useful for tasks involving long 
documents or sequences. It provides improved performance on tasks that require understanding of 
long-range context. 

 

XLNet (A4): XLNet is a generalized autoregressive pretraining method that combines the 
advantages of BERT and Transformer-XL. It can capture bidirectional context while also handling 
long-term dependencies. XLNet outperforms many models in various NLP benchmarks by 
addressing limitations in previous models. 

 

RoBERTa (A5): RoBERTa (Robustly optimized BERT approach) is an optimized version of BERT 

with improved training techniques and more extensive data. It achieves higher performance on 
many NLP tasks by refining BERT's pretraining process. RoBERTa is known for its robustness and 
efficiency in text understanding tasks. 



 

T5 (A6): T5 (Text-To-Text Transfer Transformer) treats all NLP tasks as text-to-text problems, 
making it highly versatile. It can handle a wide range of tasks, from translation to summarization, 
with a single model architecture. T5's unified approach simplifies the application of the model to 
various tasks. 

 

DistilBERT (A7): DistilBERT is a distilled version of BERT, designed to be smaller and faster 
while retaining most of BERT's performance. It offers a more efficient solution for applications 
with limited computational resources. DistilBERT is ideal for scenarios where speed and resource 
efficiency are critical. 

 

Table 2 presents the criteria and sub-criteria, along with their respective weights, which were 

determined by experts in the fields of GAI technologies and supply chain risk management. 

These criteria have been carefully selected to cover various aspects of performance, reliability, 

and impact. By assigning weights to each criterion and sub-criterion, we can prioritize the factors 

that are most crucial for the effective management of supply chain risks using NLP transformer 

algorithms. This expert-driven, structured approach ensures a comprehensive evaluation, 

enabling stakeholders to identify the strengths and weaknesses of different algorithms in real-

world applications. The decision matrix for this research, presented in Table 3, was also 

developed by the experts through a thorough interactive and consensus-based process using a 

questionary (Appendix A). This matrix evaluates the performance of various alternatives 

according to the carefully selected criteria, serving as a comprehensive tool for assessing the 

effectiveness, efficiency, adaptability, and overall impact of each NLP transformer algorithm. By 

systematically comparing each alternative against these weighted criteria, the decision matrix 

facilitates an objective and data-driven determination of the most suitable algorithm for 

enhancing supply chain resilience and reliability. 

 



Table 2. Criteria and Sub-Criteria with Weights for Evaluating NLP Transformer Algorithms in Supply Chain Risk Management 

Criteria Weight Criterion Type Sub-Criteria Weight Description 
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0.335 

Qualitative 
Accuracy of Demand Volatility 

Predictions (C1) 
0.224 

This criterion refers to the precision of forecasts in predicting variations in demand. It 

measures how well the system can accurately anticipate changes in customer demand 

patterns within a given time frame. 

Qualitative 
Timeliness of Supplier Disruption 

Alerts (C2) 
0.212 

This criterion focuses on the promptness of alerts generated by the system in response to 

supplier disruptions. It assesses how quickly and efficiently the system can notify relevant 

stakeholders about potential disruptions in the supply chain. 

Qualitative 
Precision in Transportation Delay 

Forecasts (C3) 
0.200 

This criterion gauges the accuracy of forecasts related to transportation delays. It evaluates 

the system's ability to provide precise estimations of delays that may occur during the 

transportation of goods, enabling proactive measures to mitigate their impact. 

Quantitative 
Detection Rate of Inventory 

Imbalances (C4) 
0.188 

This criterion measures the effectiveness of the system in identifying inventory 

imbalances, such as excess or insufficient stock levels. It evaluates the system's capability 

to detect and flag discrepancies between expected and actual inventory quantities. 

Quantitative 
Identification Rate of Production 

Bottlenecks (C5) 
0.176 

This criterion assesses how well the system can identify production bottlenecks, which are 

constraints that limit the overall output of a manufacturing process. It measures the 

system's ability to pinpoint specific areas where production inefficiencies occur. 
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0.230 

Qualitative 
Data Privacy Measures 

Implemented (C6) 
0.235 

This criterion focuses on the measures implemented to ensure data privacy and security. It 

evaluates the system's adherence to data protection regulations, confidentiality of sensitive 

information, and the implementation of safeguards to prevent unauthorized access or data 

breaches. 

Quantitative 
Model Training Time and 

Complexity (C7) 
0.217 

This criterion pertains to the time required and the complexity involved in training the 

system's predictive models. It assesses the efficiency and feasibility of the model training 

process, considering factors such as computation resources, algorithm complexity, and data 

preparation. 

Quantitative Initial Implementation Costs (C8) 0.200 

This criterion measures the upfront costs associated with implementing the system. It 

includes expenses related to software acquisition, hardware infrastructure, implementation 

services, and any necessary customization or integration with existing systems. 

Qualitative 
Computational Resources 

Utilization (C9) 
0.183 

This criterion evaluates the efficient utilization of computational resources by the system. 

It assesses factors such as CPU, memory, and storage usage, and how effectively the 

system optimizes resource allocation to ensure smooth and reliable operations.  

Qualitative 
Adherence to Regulatory 

Standards (C10) 
0.165 

This criterion focuses on the system's compliance with relevant regulatory standards and 

industry-specific requirements. It assesses whether the system meets the necessary legal 

and industry-specific guidelines, ensuring data privacy, security, and ethical data usage. 

A d a p ta b
i li ty
 0.125 Qualitative Frequency of Real-time Updates 0.264 This criterion measures the frequency at which the system provides real-time updates and 



Criteria Weight Criterion Type Sub-Criteria Weight Description 

(C11) information. It assesses how quickly the system can capture and relay relevant data, 

enabling stakeholders to make timely decisions based on the most current information 

available. 

Qualitative 
Tailored Solutions for Industry 

Specifics (C12) 
0.232 

This criterion evaluates the system's ability to provide customized solutions that address 

specific requirements and challenges within a particular industry. It assesses whether the 

system can adapt and accommodate industry-specific nuances and optimize its 

functionality accordingly. 

Qualitative 
Scalability with Data Volume 

Increases (C13) 
0.200 

This criterion measures the system's scalability in handling and processing larger volumes 

of data. It assesses whether the system can effectively scale up its computational 

capabilities and accommodate increasing data loads without compromising performance or 

efficiency. 

Qualitative 
Compatibility with Existing IT 

Infrastructure (C14) 
0.168 

This criterion evaluates the compatibility of the system with the organization's existing IT 

infrastructure. It assesses whether the system can seamlessly integrate with the 

organization's current software, hardware, and data architecture, minimizing disruptions 

and maximizing efficiency. 

Qualitative 
Ease of Model Version Control 

(C15) 
0.136 

This criterion assesses the ease of managing and controlling different versions of the 

system's predictive models. It evaluates whether the system provides efficient mechanisms 

for tracking, updating, and deploying new versions of models while ensuring consistency 

and reliability. 
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0.310 

Quantitative 
Percentage Reduction in 

Disruptions (C16) 
0.271 

This criterion measures the effectiveness of the system in reducing disruptions within the 

supply chain. It evaluates the system's impact by quantifying the percentage decrease in 

the occurrence of disruptions, such as delays, stockouts, or quality issues. 

Quantitative 
Cost Reduction in Risk 

Management (C17) 
0.242 

This criterion focuses on the system's ability to reduce costs associated with risk 

management activities. It assesses whether the implementation of the system leads to 

tangible cost savings by minimizing the occurrence and impact of supply chain risks.  

Qualitative 
Improvement in Decision-making 

Speed (C18) 
0.216 

This criterion measures the system's impact on enhancing decision-making speed within 

the supply chain. It evaluates whether the system provides timely and accurate information 

that enables stakeholders to make faster and more informed decisions. 

Qualitative 
Efficiency Gains in 

Communication (C19) 
0.165 

This criterion assesses the efficiency gains achieved in communication processes within 

the supply chain. It measures whether the system facilitates smoother and more effective 

communication among stakeholders, reducing delays, misunderstandings, and errors. 

Qualitative 
Energy-Efficient Model Design 

(C20) 
0.106 

This criterion focuses on the energy efficiency of the system's model design. It assesses 

whether the system's algorithms and computational processes are optimized to minimize 

energy consumption, contributing to sustainable and environmentally-friendly operations. 



Table 3. Decision Matrix Evaluating the Performance of NLP Transformer Algorithms 

Criteria Sub-Criteria Unit BERT (A1) GPT (A2) 
Transformer-

XL (A3) 
XLNet (A4) 

RoBERTa 

(A5) 
T5 (A6) 

DistilBERT 

(A7) 
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Accuracy of Demand Volatility Predictions (C1) - H VH M H VH H M 

Timeliness of Supplier Disruption Alerts (C2) - M H H VH H VH M 

Precision in Transportation Delay Forecasts (C3) - H VH H H H VH M 

Detection Rate of Inventory Imbalances (C4) Percentage (%) 85% 90% 80% 90% 85% 85% 80% 

Identification Rate of Production Bottlenecks (C5) Percentage (%) 80% 85% 75% 85% 85% 80% 80% 
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Data Privacy Measures Implemented (C6) - H VH H H VH VH H 

Model Training Time and Complexity (C7) Time (Minutes) 120 180 150 160 130 200 90 

Initial Implementation Costs (C8) Currency ($) $10000 $15000 $12000 $13000 $11000 $14000 $9000 

Computational Resources Utilization (C9) - M L M M H L H 

Adherence to Regulatory Standards (C10) - H VH H H VH VH H 
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Frequency of Real-time Updates (C11) - H VH H VH VH VH H 

Tailored Solutions for Industry Specifics (C12) - M H M H H VH M 

Scalability with Data Volume Increases (C13) - H VH H H VH VH H 

Compatibility with Existing IT Infrastructure (C14) - VH VH H H VH VH H 

Ease of Model Version Control (C15) - VH VH H H VH VH H 

Im
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Percentage Reduction in Disruptions (C16) Percentage (%) 75% 85% 70% 80% 85% 80% 75% 

Cost Reduction in Risk Management (C17) Currency ($) $12000 $15000 $11000 $13000 $14000 $12500 $11500 

Improvement in Decision-making Speed (C18) - H VH M H VH VH H 

Efficiency Gains in Communication (C19) - H VH H VH VH VH H 



Criteria Sub-Criteria Unit BERT (A1) GPT (A2) 
Transformer-

XL (A3) 
XLNet (A4) 

RoBERTa 

(A5) 
T5 (A6) 

DistilBERT 

(A7) 

Energy-Efficient Model Design (C20) - H M H M VH L VH 

The decision matrix provides a linguistic assessment of each algorithm's effectiveness, efficiency, adaptability, and impact, enabling a 

clear comparison to identify the most suitable option for supply chain risk management. The quantified decision matrix related to this 

paper is presented in Table 4. This matrix provides a numerical evaluation of the performance of various NLP transformer algorithms 

against the identified criteria and sub-criteria. 

Table 4. The Quantified Decision Matrix Evaluating the Performance of NLP Transformer Algorithms 

Criteria Sub-Criteria Unit BERT (A1) GPT (A2) 
Transformer-

XL (A3) 
XLNet (A4) 

RoBERTa 

(A5) 
T5 (A6) 

DistilBERT 

(A7) 
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Accuracy of Demand Volatility Predictions (C1) - 4 5 3 4 5 4 3 

Timeliness of Supplier Disruption Alerts (C2) - 3 4 4 5 4 5 3 

Precision in Transportation Delay Forecasts (C3) - 4 5 4 4 4 5 3 

Detection Rate of Inventory Imbalances (C4) Percentage (%) 85% 90% 80% 90% 85% 85% 80% 

Identification Rate of Production Bottlenecks (C5) Percentage (%) 80% 85% 75% 85% 85% 80% 80% 
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Data Privacy Measures Implemented (C6) - 4 5 4 4 5 5 4 

Model Training Time and Complexity (C7) Time (Minutes) 120 180 150 160 130 200 90 

Initial Implementation Costs (C8) Currency ($) $10000 $15000 $12000 $13000 $11000 $14000 $9000 

Computational Resources Utilization (C9) - 3 2 3 3 4 2 4 

Adherence to Regulatory Standards (C10) - 4 5 4 4 5 5 4 
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 Frequency of Real-time Updates (C11) - 4 5 4 5 5 5 4 

Tailored Solutions for Industry Specifics (C12) - 3 4 3 4 4 5 3 



Scalability with Data Volume Increases (C13) - 4 5 4 4 5 5 4 

Compatibility with Existing IT Infrastructure (C14) - 5 5 4 4 5 5 4 

Ease of Model Version Control (C15) - 5 5 4 4 5 5 4 

Im
p

a
c
t 

Percentage Reduction in Disruptions (C16) Percentage (%) 75% 85% 70% 80% 85% 80% 75% 

Cost Reduction in Risk Management (C17) Currency ($) $12000 $15000 $11000 $13000 $14000 $12500 $11500 

Improvement in Decision-making Speed (C18) - 4 5 3 4 5 5 4 

Efficiency Gains in Communication (C19) - 4 5 4 5 5 5 4 

Energy-Efficient Model Design (C20) - 4 3 4 3 5 2 5 

To recognize the relationships between the criteria, we conducted a questionnaire among experts (Appendix B). This questionnaire 

aimed to assess the impacts and interdependencies between different criteria by requesting experts to provide percentage changes or 

numerical values based on specific scenarios. By doing so, we gained insights into how changes in one criterion might affect others, 

allowing us to map out the intricate relationships within our decision matrix. The results of this questionnaire are depicted in the next 

graph and matrix. These visual representations illustrate the strength and direction of the relationships between the various criteria, 

helping to identify which factors are most influential in the context of supply chain risk management. The detailed analysis provides a 

clearer understanding of how improving one aspect, such as the accuracy of demand volatility predictions, can lead to improvements 

in related areas like cost reduction and decision-making speed. This interconnected view is crucial for developing comprehensive 

strategies to enhance the overall efficiency and resilience of supply chains. 



 

Figure 5. Chain of factors and their impact in supply chain risk management 

Table 5. Matrix of Factors and Their Impact in Supply Chain Risk Management 

Variable C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.5 0 0 

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0.4 0 

C3 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 

C4 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C5 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 

C6 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 

C7 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0.4 0 0 0 0 0 0 

C8 0 0 0 0 0 0 0 0 0 0 0 0 -0.3 0 -0.5 0 0 0 0 0 

C9 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 

C11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 

C12 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.4 0 0 0 0 0 0 

C13 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0.4 0 0 0 0 0 0 



C14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0.4 

C15 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C16 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 

C17 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C18 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C19 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 

C20 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0.3 0 0 0 0 0 



5.1. Step-by-step analysis of the outputs obtained by the R.Graph enhanced-EDAS method 

In this section, we provide a detailed analysis of the results obtained using the R.Graph-

Enhanced EDAS method. The analysis includes the calculation of the decision matrix, mean 

values, relative utilities, and losses, aggregation of these values, and the final ranking of 

alternatives as follows: 

Step 1. Computing the Mean Values of Each Criterion 

In the first step of the proposed method, we calculate the mean value for each criterion across all 

alternatives. This mean serves as a baseline, enabling a comparison of how each alternative 

performs relative to the average. The mean values are then computed using Eq. (19), which 

provides the necessary foundation for further analysis. These calculated mean values help in 

identifying whether an alternative's performance is above or below the average for each criterion. 

The results of these calculations are presented in Table 6. 

Table 6. Mean Values for each Criteria 
Criteria Mean Value Criteria Mean Value Criteria Mean Value Criteria Mean Value 

C1 4.00 C6 4.42 C11 4.57 C16 78.57 

C2 4.00 C7 147.14 C12 3.71 C17 12714.29 

C3 4.14 C8 12000 C13 4.42 C18 4.28 

C4 85.00 C9 3.00 C14 4.57 C19 4.57 

C5 81.42 C10 4.42 C15 4.57 C20 3.71 

Step 2. Calculating the Relative Utilities and Losses 

In the second step, the relative utilities and losses for each alternative are calculated based on the 

mean values determined in Step 2. The relative utilities and losses are calculated using specific 

equations—Eq. (20) for beneficial criteria and Eq. (21) for non-beneficial criteria. The results 

from these calculations are essential for understanding the overall performance of each 

alternative and are presented in detail in Tables 7 and 8. 

Table 7. Related Utilities for each criterion and alternative 
 A1 A2 A3 A4 A5 A6 A7 

C1 0.000 0.250 0.000 0.000 0.25 0.000 0.000 

C2 0.000 0.000 0.000 0.25 0.000 0.25 0.000 

C3 0.000 0.206 0.000 0.000 0.000 0.206 0.000 

C4 0.000 0.058 0.000 0.058 0.000 0.000 0.000 

C5 0.000 0.043 0.000 0.043 0.043 0.000 0.000 

C6 0.000 0.129 0.000 0.000 0.129 0.129 0.000 

C7 0.184 0.000 0.000 0.000 0.116 0.000 0.388 

C8 0.166 0.000 0.000 0.000 0.083 0.000 0.250 

C9 0.000 0.333 0.000 0.000 0.000 0.333 0.000 

C10 0.000 0.129 0.000 0.000 0.129 0.129 0.000 



 A1 A2 A3 A4 A5 A6 A7 

C11 0.000 0.093 0.000 0.093 0.093 0.093 0.000 

C12 0.000 0.076 0.000 0.076 0.076 0.346 0.000 

C13 0.000 0.129 0.000 0.000 0.129 0.1290 0.000 

C14 0.093 0.093 0.000 0.000 0.093 0.093 0.000 

C15 0.093 0.093 0.000 0.000 0.093 0.093 0.000 

C16 0.000 0.081 0.000 0.018 0.081 0.018 0.000 

C17 0.000 0.179 0.000 0.022 0.101 0.000 0.000 

C18 0.000 0.166 0.000 0.000 0.166 0.166 0.000 

C19 0.000 0.093 0.000 0.093 0.093 0.093 0.000 

C20 0.076 0.000 0.076 0.000 0.346 0.000 0.3461 

 

Table 8. Relative Losses for each criterion and alternative 

 
A1 A2 A3 A4 A5 A6 A7 

C1 0.000 0.000 0.25 0.000 0.000 0.000 0.250 

C2 0.250 0.000 0.000 0.000 0.000 0.000 0.250 

C3 0.034 0.000 0.034 0.034 0.034 0.000 0.275 

C4 0.000 0.000 0.058 0.000 0.000 0.000 0.058 

C5 0.017 0.000 0.078 0.000 0.000 0.017 0.017 

C6 0.096 0.000 0.096 0.096 0.000 0.000 0.096 

C7 0.000 0.223 0.019 0.087 0.000 0.359 0.000 

C8 0.000 0.25 0.000 0.083 0.000 0.166 0.000 

C9 0.000 0.000 0.000 0.000 0.333 0.000 0.333 

C10 0.096 0.000 0.096 0.096 0.000 0.000 0.096 

C11 0.125 0.000 0.125 0.000 0.000 0.000 0.125 

C12 0.192 0.000 0.192 0.000 0.000 0.000 0.192 

C13 0.096 0.000 0.096 0.096 0.000 0.000 0.096 

C14 0.000 0.000 0.125 0.125 0.000 0.000 0.125 

C15 0.000 0.000 0.125 0.125 0.000 0.000 0.125 

C16 0.045 0.000 0.109 0.000 0.000 0.000 0.045 

C17 0.056 0.000 0.134 0.000 0.000 0.016 0.095 

C18 0.066 0.000 0.300 0.066 0.000 0.000 0.066 

C19 0.125 0.000 0.125 0.000 0.000 0.000 0.125 

C20 0.000 0.192 0.000 0.192 0.000 0.461 0.000 

Step 3. Mean Of Utilities and Losses Calculations 



In the third, the mean values for both utilities and losses are calculated across all criteria for each 

alternative. These mean values are computed using Eq. (22), which provides a standardized 

method for evaluating the cumulative utility and loss for each alternative. The results of these 

calculations, which are crucial for the final assessment and ranking of the alternatives, are 

detailed in Tables 9 and 10. 

Table 9. Mean Value for Utilities 
Criteria Mean Utilities Criteria Mean Utilities Criteria Mean Utilities Criteria Mean Utilities 

C1 0.250 C6 0.129 C11 0.093 C16 0.05 

C2 0.250 C7 0.229 C12 0.144 C17 0.075 

C3 0.206 C8 0.166 C13 0.129 C18 0.166 

C4 0.058 C9 0.333 C14 0.093 C19 0.093 

C5 0.043 C10 0.129 C15 0.093 C20 0.211 

Table 10. Mean Value for Losses 
Criteria Mean Losses Criteria Mean Losses Criteria Mean Losses Criteria Mean Losses 

C1 0.250 C6 0.096 C11 0.125 C16 0.066 

C2 0.250 C7 0.172 C12 0.192 C17 0.101 

C3 0.082 C8 0.166 C13 0.096 C18 0.125 

C4 0.058 C9 0.333 C14 0.125 C19 0.125 

C5 0.032 C10 0.096 C15 0.125 C20 0.282 

Step 4. Mean Above and Mean Below Calculations 

In the fourth step, the mean above and mean below values for both utilities and losses are 

calculated for each alternative. This step is vital for understanding how the performance of each 

alternative is distributed relative to the overall set of alternatives. By determining these values, 

insights are gained into whether an alternative tends to perform above or below the average, 

which helps in identifying outliers and understanding the relative strengths and weaknesses of 

each option. 

These calculations are performed using Eqs.(23) and (24), allowing for a detailed comparison of 

each alternative's performance against the overall distribution. The results of this analysis, which 

are crucial for making informed decisions in the ranking and selection process, are presented in 

Tables 11 to 14. 

Table 11. Mean Above utilities 

 
A1 A2 A3 A4 A5 A6 A7 

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 



C7 0.000 0.000 0.000 0.000 0.000 0.000 0.128 

C8 0.000 0.000 0.000 0.000 0.000 0.000 0.071 

C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C12 0.000 0.000 0.000 0.000 0.000 0.176 0.000 

C13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C16 0.000 0.030 0.000 0.000 0.030 0.000 0.000 

C17 0.000 0.000 0.054 0.000 0.000 0.000 0.018 

C18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C20 0.000 0.000 0.000 0.000 0.111 0.000 0.111 

Table 12. Mean Below Utilities 

 
A1 A2 A3 A4 A5 A6 A7 

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C7 0.036 0.000 0.000 0.000 0.092 0.000 0.000 

C8 0.000 0.000 0.000 0.000 0.071 0.000 0.000 

C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C12 0.000 0.058 0.000 0.052 0.058 0.000 0.000 

C13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C16 0.000 0.000 0.000 0.030 0.000 0.030 0.000 

C17 0.018 0.000 0.000 0.000 0.000 0.054 0.000 

C18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C20 0.111 0.000 0.111 0.000 0.000 0.000 0.000 

Table 13. Mean above losses 

 
A1 A2 A3 A4 A5 A6 A7 

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.000 0.000 0.000 0.000 0.000 0.000 0.210526 

C4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 



 
A1 A2 A3 A4 A5 A6 A7 

C5 0.000 0.000 0.047 0.000 0.000 0.000 0.000 

C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C7 0.000 0.06 0.000 0.000 0.000 0.225 0.000 

C8 0.000 0.100 0.000 0.000 0.000 0.000 0.000 

C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C16 0.000 0.000 0.045 0.000 0.000 0.000 0.000 

C17 0.000 0.087 0.000 0.000 0.000 0.000 0.000 

C18 0.000 0.000 0.200 0.000 0.000 0.000 0.000 

C19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C20 0.000 0.000 0.000 0.000 0.000 0.250 0.000 

Table 14. Mean below losses 

 
A1 A2 A3 A4 A5 A6 A7 

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.052 0.000 0.052 0.052 0.0526 0.000 0.000 

C4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C5 0.0158 0.000 0.000 0.000 0.000 0.015 0.015 

C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C7 0.000 0.000 0.184 0.102 0.000 0.000 0.000 

C8 0.000 0.000 0.000 0.1 0.000 0.000 0.000 

C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C12 3.4364E-17 0.000 3.4364E-17 0.000 0.000 0.000 3.4364E-17 

C13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C16 0.022 0.000 0.000 0.000 0.000 0.000 0.022 

C17 0.000 0.000 0.000 0.0875 0.000 0.000 0.000 

C18 0.066 0.000 0.000 0.066 0.000 0.000 0.066 

C19 0.000 0.000 0.000 0 0.000 0.000 0.000 

C20 0.000 0.125 0.000 0.125 0.000 0.000 0.000 

Step 5. Calculating the weights of the criteria considering the interactions using R.Graph 

Using the R.Graph method the relative weight of each attribute is determined by analyzing its 

impact on the other criteria within the system using Eqs. (25)-(27). The result is in Table 15. 



Table 115. Weights of Criteria Considering the Interactions  
Criteria Weight Criteria Weight Criteria Weight Criteria Weight 

C1 0.062 C6 0.056 C11 0.034 C16 0.087 

C2 0.072 C7 0.051 C12 0.030 C17 0.077 

C3 0.069 C8 0.047 C13 0.025 C18 0.069 

C4 0.065 C9 0.043 C14 0.021 C19 0.052 

C5 0.061 C10 0.039 C15 0.017 C20 0.014 

Step 6. Calculating the Total Utility and Total Loss of Each Alternative 

Now, the total utility and total loss for each alternative are calculated. First, by combining the 

summarized weighted values obtained using Eqs. (28) and (29), the total utility is calculated 

using Eq. (30), while the total loss is determined using Eq .(31). These calculations provide a 

final metric that reflects the balance between the positive and negative attributes of each 

alternative, facilitating a clear comparison among them. The results of these calculations, which 

are essential for the final decision-making process, are presented in Table 16. 

Table 16. Total Utilities and Total Losses 

Alternatives Total Utilities Total Losses 

A1 0.025 0.054 

A2 0.092 0.052 

A3 0.015 0.099 

A4 0.035 0.034 

A5 0.078 0.024 

A6 0.094 0.047 

A7 0.054 0.113 

Step 7. Calculating the Appraisal Score (AS) of Each Option 

In this step, the appraisal score is calculated for each alternative using the total utility and total 

loss values obtained from the previous step. The appraisal score is calculated using Eq.(32), 

which combines the total utility and total loss to derive a comprehensive evaluation metric. This 

calculation is performed in two sections: one without considering interaction effects and another 

that takes interactions into account. The results from both approaches are essential for 

understanding the impact of interactions on the final scores and are presented in Table 20. 

Table 20. Appraisal Score for each Alternative 

Appraisal Score 

Not considering interaction 

A1 A2 A3 A4 A5 A6 A7 

1.280 1.660 0.209 1.049 1.468 1.355 0.576 

Considering interaction 



1.476 1.669 0.246 1.038 1.495 1.530 0.533 

Now, the alternatives are ranked based on the appraisal scores calculated in the previous step. 

The final ranking of the alternatives, which reflects their performance across all evaluated 

criteria, is presented in Table 21. 

Table 21. Rank of Alternatives 
Alternative Rank (not considering interaction) Rank (considering interaction) 

BERT (A1) 4 4 

GPT (A2) 1 1 

Transformer-XL (A3) 7 7 

XLNet (A4) 5 5 

RoBERTa (A5) 2 3 

T5 (A6) 3 2 

DistilBERT (A7) 6 6 

5.2. Validation of the results 

Multi-attribute decision-making (MADM) techniques strive to deliver dependable and consistent 

results. However, the rankings they produce may vary due to changes like adjustments in 

criterion weights, the addition or removal of alternatives, subjective evaluations, and the precise 

selection of criteria. In this section, the results from the case study are verified using various 

methods. In Section 5.2.1, the ranking outcomes from the case study are evaluated against those 

of prevalent MADM methods found in scholarly articles, examining their correlations. Section 

5.2.2 explores the stability of these ranking results by assessing how they respond to changes in 

the input weights. 

5.2.1. Ranking results of other methods 

In this section, the outcomes of the EDAS method are juxtaposed with those from various 

ranking methods to determine the similarity or disparity in the final rankings. This decision 

matrix is solved using these ranking methods, i.e., EDAS [37], VIKOR, MABAC [38], TODIM 

[39], WASPAS [40], MACBETH [41],  EVAMIX [42], TOPSIS [43]. The results are presented in 

Table 22, where the differences in rankings are highlighted in blue. In addition, Spearman’s 

correlation coefficient results The Spearman correlation matrix illustrated above offers a detailed 

examination of the rank correlations between various MADM methods. The matrix assesses the 

monotonic relationships among the rankings generated by these methods, providing key insights 

into their consistency and agreement. between the ranking of the proposed method and the other 

methods are depicted in Fig. 7 and Table 22. 



 

Figure 6. Spearman Correlation 

To measure the differences between ranking results, we further employed three statistical 

methods: Kendall’s Tau Correlation Matrix [44], Distance Matrix [45], and Agreement Measure 

[46]. Kendall’s Tau Correlation Matrix (Fig. 8) assesses the ordinal relationships among various 

MCDM methods, illustrating the extent to which these methods rank the same items similarly. 

The Distance Matrix (Fig. 9) calculates the Euclidean distance between the rankings, offering 

insights into the differences among the methods. Finally, Cohen’s Kappa Agreement Measure 

(Fig. 10) evaluates the level of agreement between method pairs while accounting for the 

likelihood of chance agreement. 

 



 

Figure 7. Kendall's Tau Correlation Matrix

 

Figure 8. Distance Matrix 



 

Figure 9. Cohen's Kappa Agreement Measure 

Table 17. Ranking results of other MADM approaches. 
Raking Comparison 

 Proposed 

method 

VIKOR S TOPSIS MACBETH WASPAS TODIM Classic EDAS EVAMIX MABAC 

 Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility Rank Utility 

A1 4 1.476 4 0.639 5 0.445 5 36.0 5 0.805 5 0.451 5 0.340 6 4.10 5 0.360 

A2 1 1.669 1 0.150 1 0.633 1 84.9 1 0.921 2 0.903 1 0.892 1 10.0 1 0.849 

A3 7 0.246 7 0.850 7 0.333 7 14.9 7 0.753 7 0.000 7 0.086 5 4.32 7 0.149 

A4 5 1.038 5 0.440 4 0.533 4 55.9 4 0.843 4 0.551 4 0.525 3 6.88 4 0.559 

A5 3 1.495 3 0.216 2 0.622 2 78.3 2 0.904 1 1.000 2 0.824 4 6.64 2 0.783 

A6 2 1.530 2 0.278 3 0.597 3 72.1 3 0.899 3 0.776 3 0.785 2 7.01 3 0.721 

A7 6 0.533 6 0.782 6 0.392 6 21.7 6 0.774 6 0.012 6 0.162 7 3.00 6 0.217 

5.2.2. sensitivity analysis 

The purpose of performing a sensitivity analysis within a specific MADM algorithm is to explore 

how alterations in predefined conditions affect the derived rankings. This analysis is crucial for 

evaluating the robustness of the MADM method's results. Variations in criteria weights are 

particularly influential in modifying these conditions and impacting the outcomes of MADM 

methods. In this section, the resilience of the results to intentional adjustments in the input 

weight matrix is examined. Given that subjective weights are a primary focus for decision-



makers in this case study, an error percentage is applied to the obtained weight values to assess 

its impact on the overall performance of the options. For instance, if we aim to determine how 

sensitive the outcomes are to variations in the weights 𝑤 
  we can consider a certain percentage of 

change and error in   𝑤 
  as 𝑒𝑟. The adjusted weight, denoted as 𝑤 

𝑚, can then be calculated using 

the relation below: 

𝑤 
𝑚 = (  

  

1  
)𝑤 

   (33) 

And other modified attributes weight due to the change in 𝑤 
   is calculated as: 

𝑤 
 =

(1 (1 
𝑒𝑟

 00
)𝑤 
 )𝑤 

 

1 𝑤 
             =    …  𝑚  =   …    

(34) 

For analyzing the sensitivity, we consider 13 different values for 𝑒𝑟, i.e., 

Er ∈ *    %  77%  55%  33%    %   % 33% 55% 77%    %+ 

The overall performances of all alternatives are computed for each percentage error value and 

corresponding modified weights, and a scatter plot displaying these data points is presented in 

Fig. 11. 

The radar charts presented in the Fig. 11. provide a comprehensive visual analysis of the weight 

sensitivity across various attributes under different weight change scenarios. Each chart 

corresponds to a specific attribute, with the radar plots illustrating how the relative importance 

(weights) assigned to that attribute varies across ten distinct scenarios, ranging from a -100% to a 

+100% change. This analysis is critical for understanding the robustness of the decision-making 

process to variations in attribute weights. Notably, most attributes exhibit a stable pattern across 

the different scenarios, indicating that the overall decision is not overly sensitive to weight 

fluctuations. However, some attributes, such as Attributes 7, 8 and 9, show more pronounced 

variations across scenarios, suggesting that these attributes may have a more significant impact 

on the final decision outcome. This weight sensitivity analysis thus highlights which attributes 

are most influential and how variations in their assigned importance could potentially alter the 

ranking of alternatives in the decision-making process. Such insights are crucial for decision-

makers to ensure that their choices are resilient to changes in the weighting of criteria, thereby 

enhancing the reliability and validity of the decision model. 



 

Figure 10. Weight sensitivity analysis 

5.3. Discussion and managerial insights 

This study's findings underscore the critical role of advanced AI techniques, particularly GAI 

and NLP-based models, in enhancing supply chain risk management. By strategically selecting 

these technologies, organizations can significantly improve their capability to predict, mitigate, 

and respond to disruptions throughout the supply chain. The development of the R.Graph-

Enhanced EDAS method as a new MCDM tool offers a structured approach for evaluating 

various AI models, facilitating more informed decisions aligned with specific organizational 

goals. The case study results demonstrate the effectiveness of the R.Graph-Enhanced EDAS 

method in systematically assessing different AI models against multiple criteria. This method 

allows organizations to consider trade-offs and interactions between different criteria, ensuring 

that the selected models are not only efficient but also scalable and adaptable to diverse risk 

scenarios. Consequently, this approach enhances the robustness and resilience of supply chain 

operations by enabling proactive and adaptive risk management strategies. 

The results reveal that most correlations are exceptionally high, with many values exceeding 

0.90, indicating strong agreement in the ranking results produced by these methods. For instance, 

the Enhanced EDAS method shows a strong correlation with Classic EDAS (0.81), signifying 

identical or nearly identical rankings. Similarly, VIKOR, MABAC, and WASPAS exhibit high 



correlations with each other (0.93 - 1.00), reflecting a consistent ranking order among 

alternatives. Moderate correlation values (0.75 to 0.86) are also observed, such as TODIM's 

correlation with Enhanced EDAS (0.70) and VIKOR (0.9). These correlations suggest general 

alignment in rankings, with occasional differences likely due to distinct principles or weighting 

strategies. The matrix highlights lower correlations, particularly with EVAMIX, which shows 

moderate correlations with MABAC and WASPAS (0.62). This suggests EVAMIX may 

generate different ranking orders due to its unique evaluation approach. The variability in 

correlations underscores the potential diversity in decision-making outcomes when applying 

different MCDM methods. The generally high correlations indicate robust consensus in ranking 

outcomes, enhancing decision-making reliability. However, moderate correlations with methods 

like EVAMIX and TODIM highlight the importance of selecting a method based on the specific 

characteristics of the decision problem. 

Our proposed R.Graph-Enhanced EDAS method introduces a critical advancement by 

considering interactions between criteria and calculating utility and loss values relative to the 

mean of all alternatives, similar to the classic EDAS method. However, it adds a key distinction 

by evaluating the performance of each alternative not only against the best and worst alternatives 

but also relative to the other alternatives selected as utilities or losses. This additional layer of 

comparison sets it apart from simpler EDAS methods. 

In the R.Graph-Enhanced EDAS, alternatives are first assessed in comparison to one another, 

and only after this are they separately compared to the best and worst-performing alternatives. 

This nuanced approach explains why the ranking results differ from other methods. For example, 

the rank of Alternative A1 initially positioned at 5, and A4 at 4, is reversed in our method, with 

A1 now ranked 4 and A4 ranked 5. Similarly, the ranks of Alternative 5 and Alternative 6 switch 

places from 2 and 3, to 3 and 2, respectively. This illustrates how Alternative A4 outperforms A4 

in absolute value across certain attributes, but when comparing performance based on best 

values, Alternative A1 exhibits superior performance in specific criteria. 

Furthermore, the inclusion of interactions between criteria leads to noticeable shifts in the 

rankings of Alternatives 5 and 6, demonstrating the unique influence of the R.Graph method. It is 

also worth noting that while there are some differences when considering interactions versus not 

considering them, the final rankings remain relatively stable due to the high number of attributes. 

The large number of attributes reduces sensitivity to changes in weights, causing shifts in the 

appraisal scores without significantly altering the overall ranking. This robustness underscores 

the method's strength in handling complex, multi-criteria decision problems. 

In this study, GPT has been selected as the best generative AI model for managing supply chain 

risks in the food supply chain. While this might seem predictable at first glance due to the 



advancements and widespread applications of GPT compared to models such as BERT (A1), 

Transformer-XL (A3), XLNet (A4), RoBERTa (A5), T5 (A6), and DistilBERT (A7), it is 

essential to conduct a thorough analysis considering various economic and human-centric criteria 

to validate this choice. 

Among the key human-centric criteria such as Data Privacy Measures Implemented (C6), 

Model Training Time and Complexity (C7), and Scalability with Data Volume Increases 

(C13) are critical to ensuring that the model is not only efficient but also adaptable to the specific 

needs of the supply chain environment. GPT’s superior performance across these criteria makes 

it a standout choice. Its ability to handle vast amounts of data and produce accurate predictions 

regarding demand volatility and supplier disruptions is critical for maintaining resilience in the 

food supply chain. Moreover, GPT's capability to process complex data patterns enables it to 

identify production bottlenecks and detect inventory imbalances more effectively than other 

models. Its scalable architecture also ensures that organizations can seamlessly expand their 

operations without being hindered by data volume constraints. 

Organizations can apply GPT to enhance decision-making processes by leveraging its accuracy 

in predicting risks and disruptions, improving the speed of decision-making (C18), and 

increasing communication efficiency (C19) across the supply chain. Furthermore, GPT’s 

adaptability allows it to tailor solutions to industry-specific requirements (C12), ensuring that it 

meets the unique challenges faced by the food supply chain. By implementing GPT, 

organizations can proactively manage risks, reduce costs (C17), and optimize their supply chain 

operations, leading to more resilient and efficient systems. 

From a managerial perspective, the implementation of AI-driven risk management strategies 

offers several key advantages: 

 Enhanced Decision-Making: The proposed method equips managers with a clear and 

structured framework to assess and compare various AI models, facilitating more 

informed decision-making. This approach helps managers understand the strengths and 

weaknesses of each model in relation to specific supply chain risks, ensuring that the 

most effective solutions are chosen. 

 Improved Risk Mitigation: GPT models, with their ability to process vast amounts of 

data in real-time, allow for early detection of potential disruptions. This capability 

enables managers to implement preemptive measures, reducing the overall impact of 

risks on supply chain operations and ensuring smoother processes. 

 Scalability and Adaptability: The study demonstrates that AI models, when carefully 

selected and integrated, can be effectively scaled across various supply chain functions 



and adapted to evolving market conditions. This adaptability is critical in maintaining 

operational efficiency and continuity, particularly when facing unexpected challenges. 

 Strategic Investment in Technology: The findings highlight the importance of investing 

in advanced AI technologies, particularly GPT. Such strategic investments can enhance 

supply chain resilience, significantly reduce the costs associated with disruptions, and 

provide long-term benefits by improving the robustness of supply chain operations. 

By embracing these AI-driven strategies, organizations can not only mitigate risks more 

effectively but also optimize their overall supply chain performance in dynamic and 

unpredictable environments 

6. Conclusion 

This research has addressed the significant challenge of selecting the most effective GAI 

transformer model for supply chain risk management by proposing R,Graph-Enhanced EDAS 

method. By refining the logical structure of this method and incorporating interactions and 

interdependencies between criteria, we developed a more robust and comprehensive multi-

criteria decision-making framework. Applying this improved model to the food supply chain 

context demonstrated that the Generative Pre-trained Transformer is particularly well-suited for 

managing complex and dynamic supply chain risks, showcasing superior performance across 

multiple risk factors. The contributions of this study extend beyond the immediate context of 

food supply chains, offering a versatile decision-making tool applicable to various industries 

facing similar challenges. By integrating human-centric criteria, the framework ensures that AI 

models are selected based on ethical standards and practical needs, supporting more transparent, 

effective, and responsible supply chain management. 

Future studies could explore the application of proposed framework in a broader range of 

industries, testing its adaptability and effectiveness across diverse supply chain environments 

such as healthcare, manufacturing, and retail [11]. Additionally, incorporating real-time data 

analytics into the decision-making process could further enhance the framework’s agility and 

responsiveness, allowing it to adapt to rapidly changing conditions in global supply chains [47]. 

Integrating advanced AI techniques, such as machine learning or deep learning could also 

improve its predictive accuracy and decision support capabilities [48]. Moreover, investigating 

the ethical implications of AI in supply chain management, particularly in terms of fairness, 

transparency, and accountability, could lead to the development of comprehensive guidelines for 

the responsible use of AI across different sectors [49]. These future studies will be crucial in 

ensuring that AI technologies not only optimize supply chain operations but also align with 

broader societal values and contribute to sustainable and equitable global supply chains [50]. 
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Appendix A (Questionnaire) 

Instructions: For each question, please provide the percentage change or numerical value based 

on the scenario described. The questionnaire aims to assess the impacts and relationships 

between criteria. 

For all questions related to Criteria, assume a 100% percentage change in the value of the 

criteria. 

1. For Criteria 1 (Accuracy of Demand Volatility Predictions); what is the percentage change in 

the criteria ―Cost Reduction in Risk Management‖ (C17), and ―Improvement in Decision-

making Speed‖ (C18) if Criteria 1 changes? 

 Cost Reduction in Risk Management (C17): 



 Improvement in Decision-making Speed (C18):  

2. For Criteria 2 (Timeliness of Supplier Disruption Alerts); what is the percentage change in 

the criteria ―Percentage Reduction in Disruptions‖ (C16), and ―Efficiency Gains in 

Communication‖ (C19) if Criteria 2 changes? 

 Percentage Reduction in Disruptions (C16): 

 Efficiency Gains in Communication (C19):  

3. For Criteria 3 (Precision in Transportation Delay Forecasts); what is the percentage change in 

the criteria ―Scalability with Data Volume Increases‖ (C13) if Criteria 3 changes? 

 Scalability with Data Volume Increases (C13):  

4. For Criteria 4 (Detection Rate of Inventory Imbalances); what is the percentage change in the 

criteria ―Accuracy of Demand Volatility Predictions‖ (C1) if Criteria 4 changes? 

 Accuracy of Demand Volatility Predictions (C1):  

5. For Criteria 5 (Identification Rate of Production Bottlenecks); what is the percentage change 

in the criteria ―Timeliness of Supplier Disruption Alerts‖ (C2), and ―Improvement in 

Decision-making Speed‖ (C18) if Criteria 5 changes? 

 Timeliness of Supplier Disruption Alerts (C2):  

 Improvement in Decision-making Speed (C18):  

6. For Criteria 6 (Data Privacy Measures Implemented); what is the percentage change in the 

criteria ―Adherence to Regulatory Standards‖ (C10) if Criteria 6 changes? 

 Adherence to Regulatory Standards (C10): 

7. For Criteria 7 (Model Training Time and Complexity); what is the percentage change in the 

criteria ―Initial Implementation Costs‖ (C8), and ―Compatibility with Existing IT 

Infrastructure‖ (C14) if Criteria 7 changes? 

 Initial Implementation Costs (C8): 

 Compatibility with Existing IT Infrastructure (C14): 

8. For Criteria 8 (Initial Implementation Costs); what is the percentage change in the criteria 

―Scalability with Data Volume Increases‖ (C13), and ―Ease of Model Version Control‖ (C15) 

if Criteria 8 changes? 

 Scalability with Data Volume Increases (C13): 

 Ease of Model Version Control (C15): 

9. For Criteria 9 (Computational Resources Utilization); what is the percentage change in the 

criteria ―Precision in Transportation Delay Forecasts‖ (C3) if Criteria 9 changes? 

 Precision in Transportation Delay Forecasts (C3):  

10. For Criteria 10 (Adherence to Regulatory Standards); what is the percentage change in the 

criteria and ―Compatibility with Existing IT Infrastructure‖ (C14) if Criteria 10 changes? 

 Compatibility with Existing IT Infrastructure (C14):  



11. For Criteria 11 (Frequency of Real-time Updates); what is the percentage change in the 

criteria ―Improvement in Decision-making Speed‖ (C18) if Criteria 11 changes? 

 Improvement in Decision-making Speed (C18):  

12. For Criteria 12 (Tailored Solutions for Industry Specifics); what is the percentage change in 

the criteria ―Scalability with Data Volume Increases‖ (C13), and ―Compatibility with 

Existing IT Infrastructure‖ (C14) if Criteria 12 changes? 

 Scalability with Data Volume Increases (C13):  

 Compatibility with Existing IT Infrastructure (C14):  

13. For Criteria 13 (Scalability with Data Volume Increases); what is the percentage change in 

the criteria ―Computational Resources Utilization‖ (C9), and ―Compatibility with Existing IT 

Infrastructure‖ (C14) if Criteria 13 changes? 

 Computational Resources Utilization (C9): 

 Compatibility with Existing IT Infrastructure (C14):  

14. For Criteria 14 (Compatibility with Existing IT Infrastructure); what is the percentage change 

in the criteria ―Ease of Model Version Control‖ (C15), and ―Energy-Efficient Model Design‖ 

(C20) if Criteria 14 changes? 

 Ease of Model Version Control (C15):  

 Energy-Efficient Model Design (C20):  

15. For Criteria 15 (Ease of Model Version Control); what is the percentage change in the criteria 

―Data Privacy Measures Implemented‖ (C6) if Criteria 15 changes? 

 Data Privacy Measures Implemented (C6):  

16. For Criteria 16 (Percentage Reduction in Disruptions); what is the percentage change in the 

criteria ―Accuracy of Demand Volatility Predictions‖ (C1), and ―Cost Reduction in Risk 

Management‖ (C17) if Criteria 16 changes? 

 Accuracy of Demand Volatility Predictions (C1):  

 Cost Reduction in Risk Management (C17):  

17. For Criteria 17 (Cost Reduction in Risk Management); what is the percentage change in the 

criteria ―Detection Rate of Inventory Imbalances‖ (C4) if Criteria 17 changes? 

 Detection Rate of Inventory Imbalances (C4):  

18. For Criteria 18 (Improvement in Decision-making Speed); what is the percentage change in 

the criteria ―Timeliness of Supplier Disruption Alerts‖ (C2) if Criteria 18 changes? 

 Timeliness of Supplier Disruption Alerts (C2):  

19. For Criteria 19 (Efficiency Gains in Communication); what is the percentage change in the 

criteria ―Frequency of Real-time Updates‖ (C11) if Criteria 19 changes? 

 Frequency of Real-time Updates (C11):  



20. For Criteria 20 (Energy-Efficient Model Design); what is the percentage change in the 

criteria ―Computational Resources Utilization‖ (C9), and ―Ease of Model Version Control‖ 

(C15) if Criteria 20 changes? 

 Computational Resources Utilization (C9):  

 Ease of Model Version Control (C15):  



Appendix B 

1. Accuracy of Demand Volatility Predictions (C1): 

a. Cost Reduction in Risk Management (C17): Positive correlation (e.g., +60%): 

Improved accuracy in demand volatility predictions can contribute to cost reduction 

in risk management. 

b. Improvement in Decision-making Speed (C18): Positive correlation (e.g., +50%): 

Accurate demand volatility predictions can help improve decision-making speed. 

2. Timeliness of Supplier Disruption Alerts (C2): 

a. Percentage Reduction in Disruptions (C16): Positive correlation (e.g., +40%): Timely 

supplier disruption alerts may contribute to a higher percentage reduction in 

disruptions. 

b. Efficiency Gains in Communication (C19): Positive correlation (e.g., +40%): 

Timeliness of supplier disruption alerts can lead to efficiency gains in 

communication. 

3. Precision in Transportation Delay Forecasts (C3): 

a. Scalability with Data Volume Increases (C13): Positive correlation (e.g., +30%): 

Precise transportation delay forecasts can support scalability with increasing data 

volumes. 

4. Detection Rate of Inventory Imbalances (C4): 

a. Accuracy of Demand Volatility Predictions (C1): Positive correlation (e.g., +70%): A 

higher detection rate of inventory imbalances can contribute to improved accuracy in 

demand volatility predictions. 

5. Identification Rate of Production Bottlenecks (C5): 

a. Timeliness of Supplier Disruption Alerts (C2): Positive correlation (e.g., +60%): 

Higher identification rate of production bottlenecks can facilitate timely supplier 

disruption alerts. 

b. Improvement in Decision-making Speed (C18): Positive correlation (e.g., +40%): A 

higher identification rate of production bottlenecks can lead to improved decision-

making speed. 

6. Data Privacy Measures Implemented (C6): 

a. Adherence to Regulatory Standards (C10): Positive correlation (e.g., +50%): 

Implementation of data privacy measures is likely to be influenced by the need to 

adhere to regulatory standards. 

7. Model Training Time and Complexity (C7): 



a. Initial Implementation Costs (C8): Positive correlation (e.g., +60%): Longer training 

times or complex models may increase initial implementation costs. 

b. Compatibility with Existing IT Infrastructure (C14): Positive correlation (e.g., +40%): 

Model training time and complexity can impact the compatibility with existing IT 

infrastructure. 

8. Initial Implementation Costs (C8): 

a. Scalability with Data Volume Increases (C13): Negative correlation (e.g., -30%): 

Higher initial implementation costs might affect the scalability with increasing data 

volumes. 

b. Ease of Model Version Control (C15): Negative correlation (e.g., -50%): Higher 

initial implementation costs may make it more challenging to establish easy model 

version control. 

9. Computational Resources Utilization (C9): 

a. Precision in Transportation Delay Forecasts (C3): Positive correlation (e.g., +50%): 

Efficient utilization of computational resources can improve the precision in 

transportation delay forecasts. 

10. Adherence to Regulatory Standards (C10): 

a. Compatibility with Existing IT Infrastructure (C14): Positive correlation (e.g., +40%): 

Adherence to regulatory standards can affect the compatibility with existing IT 

infrastructure. 

11. Frequency of Real-time Updates (C11): 

a. Improvement in Decision-making Speed (C18): Positive correlation (e.g., +40%): 

More frequent real-time updates can contribute to improved decision-making speed. 

12. Tailored Solutions for Industry Specifics (C12): 

a. Scalability with Data Volume Increases (C13): Positive correlation (e.g., +50%): 

Tailored solutions can be designed to accommodate industry-specific needs and 

ensure scalability with increasing data volumes. 

b. Compatibility with Existing IT Infrastructure (C14): Positive correlation (e.g., +40%): 

Tailored solutions may impact the compatibility with existing IT infrastructure. 

13. Scalability with Data Volume Increases (C13): 

a. Computational Resources Utilization (C9): Positive correlation (e.g., +50%): 

Scalability with data volume increases requires efficient utilization of computational 

resources. 

b. Compatibility with Existing IT Infrastructure (C14): Positive correlation (e.g., +40%): 

Scalability with data volume increases can be influenced by the compatibility with 

existing IT infrastructure. 



14. Compatibility with Existing IT Infrastructure (C14): 

a. Ease of Model Version Control (C15): Positive correlation (e.g., +50%): 

Compatibility with existing IT infrastructure can impact the ease of model version 

control. 

b. Energy-Efficient Model Design (C20): Positive correlation (e.g., +40%): 

Compatibility with existing IT infrastructure may influence the development of 

energy-efficient model designs. 

15. Ease of Model Version Control (C15): 

a. Data Privacy Measures Implemented (C6): Positive correlation (e.g., +40%): Easy 

model version control can support the implementation of data privacy measures. 

16. Percentage Reduction in Disruptions (C16): 

a. Accuracy of Demand Volatility Predictions (C1): Positive correlation (e.g., +60%): A 

higher percentage reduction in disruptions can be associated with improved accuracy 

in demand volatility predictions. 

b. Cost Reduction in Risk Management (C17): Positive correlation (e.g., +50%): A 

greater reduction in disruptions can contribute to cost reduction in risk management. 

17. Cost Reduction in Risk Management (C17): 

a. Detection Rate of Inventory Imbalances (C4): Positive correlation (e.g., +50%): 

Higher cost reduction in risk management may lead to a higher detection rate of 

inventory imbalances. 

18. Improvement in Decision-making Speed (C18): 

a. Timeliness of Supplier Disruption Alerts (C2): Positive correlation (e.g., +40%): 

Faster decision-making can be facilitated by timely supplier disruption alerts. 

19. Efficiency Gains in Communication (C19): 

a. Frequency of Real-time Updates (C11): Positive correlation (e.g., +30%): More 

efficient communication can promote more frequent real-time updates. 

20. Energy-Efficient Model Design (C20): 

a. Computational Resources Utilization (C9): Positive correlation (e.g., +40%): Energy-

efficient model designs can optimize the utilization of computational resources. 

b. Ease of Model Version Control (C15): Positive correlation (e.g., +30%): Energy-

efficient model designs may facilitate the ease of model version control. 


