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Abstract

The Hamiltonian operator of a one-dimensional nonrelativistic quantum system, consisting
of a particle of mass m subjected to a periodic potential energy V (x) in the coordinate x, admits
exclusively eigenfunctions in the improper sense. In this work, we show that a sufficient condition
for the Hamiltonian to be endowed with eigenfunctions in the proper sense is constituted by a
suitable local violation of the periodicity of the function V (x).

1 Periodic Potential. Bloch Theorem

Let Sq be a non-relativistic quantum system consisting of a particle of mass m constrained to move
on the x-axis, the seat of a conservative force field and periodic potential energy V (x) with period
a > 0: V (x+ na) ≡ V (x) , ∀n ∈ Z. Abstracting from the spin degrees of freedom, the Hilbert
space associated with Sq is H = L2 (R) and therefore, the Hamiltonian of the particle is

Ĥ0 =
p̂2

2me

+ V (x̂) (1)

In the x-representation:

Ĥ0
.
= −

ℏ
2

2me

d2

dx2
+ V (x) (2)

By Bloch’s theorem [1], the eigenfunctions of Ĥ0 (i.e. of the energy) are:

uk (x) = ϕk (x) e
ikx (3)

where k ∈ R is the quasi-momentum of the particl [1] and ϕk (x) is a periodic function with period
a > 0. In other words, the energy eigenfunctions are amplitude-modulated plane waves with a
periodic modulation envelope with the same period as the potential (Bloch waves). It follows that

the operator (1) admits only eigenfunctions in the improper sense, so its spectrum σ
(

Ĥ0

)

is purely

continuous. The corresponding eigenvalues depend on k which therefore represents a good quantum
number:

Ĥ0uk (x) = ε (k) uk (x) (4)

More precisely, σ
(

Ĥ0

)

has a band structure [2]:

σ
(

Ĥ0

)

=
⋃

α

σα

(

Ĥ0

)

which in general are disjoint σα

(

Ĥ0

)

∩ σα′

(

Ĥ0

)

= ∅ and separated by forbidden intervals (gaps).

Without loss of generality, consider a potential V (x) such that σ
(

Ĥ0

)

consists of a single band. A

notable one-dimensional case [3] is one in which the only conduction band is:

ε (k) = E0 − 2∆ cos (ka) (5)

with 0 < ∆ < E0/2 and these parameters have the dimensions of an energy. The function (5) is
periodic with period 2π/a, so it is sufficient to consider its restriction to the interval

[
−π

a
, π
a

]
which

in solid state physics is called the first Brillouin zone. In Fig. 1 we report the graph of ε (k), from
which we see that the width of the band is 4∆.
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Figure 1: Trend of the function (5).

2 The Born-Von Karman conditions

In applications to solid state physics, we consider an “effective” segment of length L = Na, where
N ∈ N\ {0}, and then apply the Born-Von Karman (BVK) conditions which consist in replicating
the segment of length L infinitely many times by imposing the connection condition:

uk (x+Na) = uk (x) (6)

Taking into account the (3)and the periodicity of ϕk (x):

eikNa = 1 ⇐⇒ cos (kNa) = 1 ⇐⇒ k =
2π

Na
l
def
= kl, ∀l ∈ Z

k ∈
[
−π

a
, π
a

]
so assuming N is even:

kl =
2π

Na
l, l = −

N

2
,−

N

2
+ 1, ..., 0, ...,

N

2
− 1,

N

2
(7)

that is, the quasi-momentum of the particle can only assume N discontinuous values. The uniform
decomposition of the first Brillouin zone follows:

[

−
π

a
,
π

a

]

=

l=N/2
⋃

l=−N/2

[kl, kl+1]

From (5):

εl = ε (kl) = E0 − 2∆ cos (kla) = E0 − 2∆ cos

(
2π

N
l

)

(8)

l = −
N

2
,−

N

2
+ 1, ..., 0, ...,

N

2
− 1,

N

2

By (5) we have ε (k) ≡ ε (−k) and since k−l = −kl =⇒ ε−l = εl, i.e. the discretization preserves the
double degeneracy of the continuous spectrum of Ĥ0. In Fig. 2 we report the case N = 10.
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Notation 1 The discretization of σ
(

Ĥ0

)

is not a quantization in the physical sense of the term,

since it is generated by the BVKs or by a mathematical artifice to be able to reconstruct the periodicity
of V (x) in a way that does not invalidate Bloch theorem. It follows that the discrete values (eq. 8)
are not energy levels of a bound system. In fact, each of them corresponds to a Bloch wave, therefore
an eigenfunction in an improper sense. Therefore, the degeneracy of the discrete levels should not
be surprising, while in the case of a one-dimensional bound system, the discrete spectrum of the
Hamiltonian is never degenerate by virtue of the Wronskian theorem [4].
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Figure 2: Discretization of energy levels for N = 10.

3 Local periodicity violation

A local violation of the periodic behavior of the potential V (x) is represented by a potential energy
term w (x− ξ) appreciably different from zero only in a neighborhood of the point ξ ∈ (n0a, (n0 + 1) a)
for a given n0 ∈ Z think of a Gaussian centered at ξ). It follows that in the time-independent per-
turbation theory, the Hamiltonian (1) plays the role of unperturbed Hamiltonian (for |w (x− ξ)| ≪
V (x)), then setting:

Ĥ = Ĥ0 + ŵ (9)

In Dirac notation, the eigenvalue equation for Ĥ0, is written:

Ĥ0 |k〉 = ε (k) |k〉 (10)

Applying the BVK i.e. discretizing:

Ĥ0 |kl〉 = εkl |kl〉 , l = −
N

2
,−

N

2
+ 1, ..., 0, ...,

N

2
− 1,

N

2
(11)

resulting in |kl〉 ∈ H(N), the latter being the subspace of H subtended by N , so limN→+∞ H(N) = H.
In the x-representation:

ukl (x) = 〈x|kl〉 = ϕkl (x) e
iklx (12)
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The system of N vectorsi {|kl〉} is a complete orthonormal system in H(N):

π/a
∑

kl=−π/a

|kl〉 〈kl| = 1̂(N), 〈kl|k
′
l〉 = δkl,k′l (13)

where 1̂(N) is the identity operator in H(N). If 1̂ is the identity operator in H

lim
N→+∞

1̂(N) = 1̂ =

∫ +∞

−∞

dk |k〉 〈k|

Given this, the eigenvalue equation for the Hamiltonian (9) has the form:

Ĥ |ũ〉 = W |ũ〉 (14)

where |ũ〉 are the eigenkets of the energy in the presence of the perturbative term w (x− ξ), and
W ∈ Rthe corresponding eigenvalues. Since {|kl〉} is a basis of H(N) we can expand |ũ〉 as a linear
combination of the eigenvalues |kl〉:

|ũ〉 =

π/a
∑

kl=−π/a

ckl |kl〉 , ckl = 〈kl|ũ〉 (15)

Let’s rewrite (14)

(

Ĥ0 + ŵ
)∑

kl

ckl |kl〉 = W
∑

kl

ckl |kl〉 =⇒
∑

kl

cklεkl |kl〉+
∑

kl

cklŵ |kl〉 = W
∑

kl

ckl |kl〉

Multiplying by 〈k′
l| ∑

kl

cklεklδk′lkl

︸ ︷︷ ︸

=c
k′
l

ε
k′
l

+
∑

kl

ckl〈k
′
l|ŵ|kl〉

︸ ︷︷ ︸

w
k′
l
kl

= W
∑

kl

cklδk′lkl

︸ ︷︷ ︸

c
k′
l

So
(
W − εk′

l

)
ck′

l
=

π/a
∑

kl=−π/a

cklwk′
l
kl (16)

which is a system of N algebraic equations in W . Let us make explicit the matrix elements of the
perturbative term. To this end, we observe that in the x-representation the unitary operator 1̂(N) of

H(N) is
∫ (n0+1)a

n0a
dx |x〉 〈x| = 1̂(N) so denoting with · the Hermitian product in H(N):

wk′
l
kl = 〈k′

l|ŵ|kl〉 = (〈k′
l| ŵ) ·

(
∫ (n0+1)a

n0a

dx |x〉 〈x|

)

· |kl〉 = 〈k′
l|

∫ (n0+1)a

n0a

dx |x〉 〈x|ŵ|kl〉
︸ ︷︷ ︸

=w(x−ξ)〈x|kl〉

i.e.

wk′
l
kl =

∫ (n0+1)a

n0a

u∗
k′
l

(x)w (x− ξ) ukl (x) (17)

By the mean theorem:

∃ξ′ ∈ [n0a, (n0 + 1) a] |

∫ (n0+1)a

n0a

w (x− ξ) dx = 〈w〉 a
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where 〈w〉 = w (ξ′ − ξ) is the integral mean (i.e. the average value) of w (x− ξ) at [n0a, (n0 + 1) a].
Since w (x− ξ) is an extremely sharp momentum around ξ, we expect ξ′ ∼ ξ. Assuming ukl (x) to
be appreciably constant in (n0a, (n0 + 1) a), we have by (17)

wk′
l
kl ≃ u∗

k′
l

(ξ′) ukl (ξ
′) 〈w〉 a (18)

Performing the change of variable x′ = x− ξ′:

wk′
l
kl = u∗

k′
l

(0) ukl (0) 〈w〉 a (19)

which replaced in (16):

(
W − εk′

l

)
ck′

l
= u∗

k′
l

(0) 〈w〉 a
∑

kl

cklukl (0)

︸ ︷︷ ︸

(15)=⇒ũ(0)

= u∗
k′
l

(0) ũ (0) 〈w〉 a (20)

so

ck′
l
=

u∗
k′
l

(0) ũ (0) 〈w〉 a

W − εk′
l

(21)

Replacing (21) in (16) and taking into account (19):

π/a
∑

kl=−π/a

|ukl (0)|
2

W − εkl
=

1

a 〈w〉
(22)

It is clearly evident |ukl (0)|
2 = |ϕkl (0)|

2 = bkl ≃ b > 0,so the previous one becomes:

bΦ (W ) =
1

a 〈w〉
(23)

having defined the real function of the real variable W :

Φ (W ) = b

π/a
∑

kl=−π/a

1

W − εkl
(24)

(23) is therefore an algebraic equation in W of degree N , and therefore admits N roots which are the
new eigenvalues of the energy. This equation must be solved graphically/numerically, distinguishing
the two cases 〈w〉 > 0 (potential barrier since w (x− ξ) > 0) and 〈w〉 < 0 (potential well). Let us
study the function (24) which is defined in R\

⋃

kl
{εkl} on the whole real axis excluding the N points

εkl . The graph intersects the ordinate axis in Φ (0) = −b
∑

kl
ε−1
kl

< 0. It turns out then:

lim
W→ε−

kl

Φ (W ) = −∞, lim
W→ε+

kl

Φ (W ) = +∞

so the graph has N vertical asymptotes. Furthermore

lim
W→+∞

Φ (W ) = 0+, lim
W→−∞

Φ (W ) = 0−

By substituting (24) with (8) we obtain the graph of fig. (3) in the case N = 10. For 〈w〉 < 0 the
roots of (23) are arranged as in the graph of fig. 4, from which we see

W0 ≪ ε0, Wj ≃ εj, j = 1, 2, 3, 4
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In solid state physics is N ∼ 108 so the set of levels approximates a continuous band. The result is
that for 〈w〉 < 0 the lowest level W0 ≪detaches≫ from the continuous band. Fig. 5 illustrates the
search for roots in the case where w (x− ξ) is a potential barrier i.e. 〈w〉 > 0. Here we see that

W4 ≫ ε4, Wj ≃ εj, j = 0, 1, 2, 3

For each N < +∞

〈w〉 < 0 =⇒ W0 ≪ ε0, Wj ≃ εj, j = 1, 2, ..., N − 1

〈w〉 > 0 =⇒ WN−1 ≫ εN−1, Wj ≃ εj, j = 0, 1, ..., N − 2

For N → +∞, if 〈w〉 < 0 the levels centered in W0 (obtained for N < +∞) ≪detach≫ from
the continuous band, resulting more depressed in energy. If 〈w〉 > 0 the levels centered in WN−1

(obtained for N < +∞) ≪detach≫ from the continuous band, resulting in more energized excitement.

W

F

Figure 3: Trend of the function Φ (W ).
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W

1
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F

Figure 4: Roots of the equation (23) for 〈w〉 > 0.

Let us move on to the determination of the perturbed eigenfunctions. In the coordinate x′:

ũkl (x
′) =

π/a
∑

k′
l
=−π

a

ck′
l
uk′

l
(x′)
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Figure 5: Roots of the equation (23) for 〈w〉 < 0.

It must be Ĥũkl = Wklũkl . By (21)-(3):

ũkl (x
′) = a 〈w〉 ũkl (0)

π/a
∑

k′
l
=−π

a

ϕ∗
k′
l

(0)ϕk′
l
(x′)

Wkl − εk′
l

eik
′

l
x′

We observe that
ϕ∗
k′
l

(0)ϕk′
l
(x′) ≃ ϕ∗

k′
l

(0)ϕk′
l
(0) =

∣
∣ϕk′

l
(0)
∣
∣
2
≡ αkl > 0

Considering the real constants αkl to be independent of kl i.e. αkl ≡ α, ∀kl ∈
[
−π

a
, π
a

]
: ϕ∗

k′
l

(0)ϕk′
l
(x′) ≃

α. It follows

ũkl (x
′) = a 〈w〉 βkl

π/a
∑

k′
l
=−π

a

eik
′

l
x′

Wkl − εk′
l

where βkl ≡ ũkl (0)α and also considering this constant independent of kl i.e. ũkl (0)α ≃ β, we finally
get it

ũkl (x
′) = a 〈w〉 β

π/a
∑

k′
l
=−π

a

eik
′

l
x′

Wkl − εk′
l

(25)

Let’s start with the case 〈w〉 < 0 (potential well). In fig. 6 we report the behavior of the probability
amplitude|ũ0 (x)|

2 not normalized and in dimensionless units, from which we see that ũ0 (x
′) is a

bound state. More precisely, recalling that x′ = x− ξ′, the particle is localized in the n0-th interval
[n0a, (n0 + 1) a]. In fig. 7 we plot the graph of the eigenfunction ũ1 (x), from which we see that it
has the appearance of a Bloch wave, so the particle is not a bound state (delocalized particle). In
fig. 8 we plot the graph of the eigenfunction ũ2 (x); here too we see that it is a Bloch wave. Similar
behavior for the remaining eigenfunctions.

Let’s now move on to the case 〈w〉 > 0 (potential barrier). In figs. 9-10-11-11 the graphs of
ũ0 (x

′) , ũ1 (x
′) , ũ2 (x

′) , ũ3 (x
′) which are now Bloch waves.

4 Physical interpretation of results

The physical interpretation is immediate: for 〈w〉 < 0 we have a potential well, and ũ0 (x) is the
corresponding bound state. Mathematically, it is an eigenfunction of Ĥ in the proper sense. For
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Figure 6: Andamento di |ũ0 (x)|
2 per 〈w〉 < 0.
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Figure 7: Trand of ũ1 (x) , 〈w〉 < 0.
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Figure 8: Trand of ũ2 (x) , 〈w〉 < 0.
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Figure 9: Trand of ũ0 (x) , 〈w〉 > 0.
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Figure 10: Trand of ũ1 (x) , 〈w〉 > 0.
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Figure 11: Trand of ũ2 (x) , 〈w〉 > 0.
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Figure 12: Trand of ũ3 (x) , 〈w〉 > 0.
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Figure 13: Trand of ũ4 (x) , 〈w〉 > 0.
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〈w〉 < 0 there are no bound states, since we now have a potential barrier and since we have assumed
|w (x− ξ)| ≪ |V (x)|, this barrier is penetrable through a tunneling process.
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