Two Types of Universal Arrows

SHAO-DAN LEE

Abstract A universal arrow is a pair which consists of an object and a morphism. And an isomorphism is defined by a universal arrow. The isomorphism may be a composition of two morphisms. We may define two types of universal arrows, which is determined by the properties of the morphisms. A universal arrow is of the [type I](#page-2-0) if the morphisms are not isomorphisms; And a universal arrow is of the [type II](#page-2-1) if the morphisms are isomorphisms.

CONTENTS

1. Introduction

Suppose that $F: C \to D$ is a functor. Given a $D \in \mathcal{D}$. A universal arrow from F to D is a pair $\langle R, u \rangle$ consisting of an object $R \in C$ and a morphism *u*: $F(R) \rightarrow D$ in D such that the equation (3.1) holds. See definition 3.1 for more details.

The [equation \(3.1\)](#page-2-4) factors as $\tilde{u} \circ \vec{F}$. Then we define two types of universal arrows in [definition 3.2.](#page-2-6) A universal arrow is of the [type I](#page-2-0) if \vec{F} and \tilde{u} are not isomorphic; And a universal arrow is of the [type II](#page-2-1) if \vec{F} and \tilde{u} are isomorphisms. See [section 3.1](#page-2-3) for more details.

A limit lim←−− *F* of a functor *F* is defined by a universal arrow from ∆ to *F*. This universal arrow is of the [type II,](#page-2-1) see [proposition 3.2.](#page-4-0) There are universal arrows determined by an adjunction $\langle F, G, \phi \rangle$. These universal arrows are of the [type I](#page-2-0) in general. But if some conditions are satisfied, then the universal arrow is of the [type II,](#page-2-1) see [proposition 3.3.](#page-5-0) Furthermore, other examples are given in [section 3.2.](#page-3-0)

2. Preliminaries

Definition 2.1 ([\[4–](#page-8-1)[6\]](#page-8-2))**.** A **category** C consists of:

• a collect of **objects**;

Date: June 13, 2024. 2020 *Mathematics Subject Classification.* 18A40. *Key words and phrases.* Category, Universal arrow.

2

- for each pair $A, B \in \mathbb{C}$, a collect $\text{Hom}_{\mathbb{C}}(A, B)$ of **morphisms** from A to B;
- for each triple $A, B, C \in \mathcal{C}$, a function

$$
Hom_C(B, C) \times Hom_C(A, B) \to Hom_C(A, C)
$$

given by

$$
(g, f) \mapsto g \circ f,
$$

call **composition**;

• for each $A \in \mathcal{C}$, a morphism $id_A \in Hom(A, A)$, called **identity** on A, satisfying the following axioms:

associativity: for each $f \in Hom_{\mathcal{C}}(A, B)$, $g \in Hom_{\mathcal{C}}(B, C)$, and $h \in Hom_{\mathcal{C}}(C, D)$

$$
h\circ (g\circ f)=(h\circ g)\circ f;
$$

identity law: for each $f \in Hom_C(A, B)$,

$$
id_B \circ f = f \circ id_A = f.
$$

Definition 2.2 ([\[4](#page-8-1)[–6\]](#page-8-2)). Let C, D be categories. A **functor** $F: C \rightarrow D$ is a morphism consisting of:

- assigning to each object $C \in C$ an object $F(C) \in \mathcal{D}$;
- assigning to each morphism $f \in Hom_{\mathcal{C}}(A, B)$ a morphism $F(f) \in Hom_{\mathcal{D}}(F(A), F(B))$,

satisfying the following axioms:

- $F(g \circ f) = F(g) \circ F(f)$ for each composition $g \circ f$;
- *F*(*idA*) = *idF*(*A*) for each object *A* ∈ C.

Definition 2.3 ([\[4](#page-8-1)[–6\]](#page-8-2)). Let C, D be categories, and let $C \stackrel{F}{\Rightarrow} D$ be functors. A morphism $τ$ from *F* to *G* is called a **natural transformation**, written $τ: F \rightarrow G$, provided that τ is a function which assigns to each $C \in C$ a morphism $\tau_C :=$ $\tau(C)$: $F(C) \rightarrow G(C)$ in D such that for each morphism $f: C \rightarrow C'$ in C the following diagram commutes in D .

$$
F(C) \xrightarrow{\tau_C} G(C)
$$

$$
F(f) \downarrow \qquad \qquad \downarrow G(f)
$$

$$
F(C') \xrightarrow{\tau_{C'}} G(C')
$$

Definition 2.4 ([\[4\]](#page-8-1)). Let C, D be categories, and S, $T: C^{op} \times C \rightarrow D$ functors. A **dinatural transformation** τ : $S \rightarrow I$ is a function which assigns to each object $C \in C$ a morphism $\tau_C := \tau(C)$: $S(C, C) \to T(C, C)$ of D in such a way that for every morphism $f: C \to C'$ in C the following diagram is commutative.

3. Two Types of Universal Arrows

Recall the definition of a universal arrow.

Definition 3.1 ([\[4](#page-8-1)[–6\]](#page-8-2)). Let *F* be a functor from *C* to *D*. Given an object $D \in \mathcal{D}$. a **universal arrow** from *F* to *D* is a pair $\langle R, u \rangle$ consisting of an object $R \in C$ and a morphism *u* from $F(R)$ to *D*, such that for all object $C \in C$ and every morphism *g*: $F(C)$ → *D*, there exists a unique morphism *f* : C → *R* with *g* = *u* ◦ $F(f)$.

Furthermore, there is the dual concept of [definition 3.1.](#page-2-5)

3.1. **The Definition of Two Types.** It is clear that if the pair $\langle R, u \rangle$ is a universal arrow, then we have the following isomorphism[\[2,](#page-8-3) [4\]](#page-8-1) for all $C \in \mathcal{C}$.

(3.1)
$$
\text{Hom}_{\mathcal{C}}(C,R) \cong \text{Hom}_{\mathcal{D}}(F(C),D)
$$

Let \vec{F} denote the restriction of the functor F to the hom-sets, and let

$$
\tilde{u} \colon \operatorname{Hom}_{\mathcal{D}}(F(C), F(R)) \to \operatorname{Hom}_{\mathcal{D}}(F(C), D)
$$

be a morphism given by

$$
h\mapsto u\circ h.
$$

Then the [equation \(3.1\)](#page-2-4) factors as $\tilde{u} \circ \vec{F}$.

(3.2)
$$
\text{Hom}_{\mathcal{C}}(C,R) \xrightarrow{\vec{F}} \text{Hom}_{\mathcal{D}}(F(C),F(R)) \xrightarrow{\tilde{u}} \text{Hom}_{\mathcal{D}}(F(C),D).
$$

Observation 3.1. Since $\tilde{u} \circ \vec{F}$ is an isomorphism, we have that \vec{F} is monic[\[4–](#page-8-1)[6\]](#page-8-2), and \tilde{u} is epic[\[4–](#page-8-1)[6\]](#page-8-2).

And the restriction of \tilde{u} to the image of Hom $_C$ (C, *R*) under \tilde{F} is monic. Hence if

(3.3)
$$
F(\text{Hom}_{C}(C,R)) = \text{Hom}_{D}(F(C), F(D)),
$$

then \vec{F} and \tilde{u} are isomorphisms.

Observation 3.2. We have that \vec{F} is an isomorphism if and only if \tilde{u} is an isomorphism.

Furthermore, if the condition (3.3) is not satisfied, then we have that for every *h* ∈ Hom_D(*F*(*C*), *F*(*R*)) with *h* ∉ im \vec{F} , there exists a unique f ∈ Hom_C(*C*, *R*) such that

$$
u\circ h=u\circ F(f).
$$

Therefore, we may define two types of universal arrows as follows.

Definition 3.2. Let the notations be as in [equations \(3.1\)](#page-2-4) and [\(3.2\)](#page-2-8) and [defini](#page-2-5)[tion 3.1](#page-2-5).

- I. The morphisms \vec{F} and \tilde{u} are not isomorphic;
- II. The morphisms \vec{F} and \tilde{u} are isomorphisms.

Some examples will be given.

3.2. **Examples.**

Notation 3.1. For an arbitrary functor *F*, let \vec{F} denote the restriction of *F* to the homsets, and let $\dot{\mathsf{F}}$ denote the restriction of $\mathsf F$ to the objects. For an arbitrary category C with an arbitrary morphism $u: B \to C \in C$, let \tilde{u} denote the morphism defined as follows:

> \tilde{U} $\left(\text{Hom}(A, B) \to \text{Hom}(A, C) \right)$ given by $f \mapsto u \circ f$, or, $Hom(C, A) \rightarrow Hom(B, A)$ given by $g \mapsto g \circ u$, but not both.

Suppose that $F\colon\mathcal C\to\mathcal D$ is a functor such that $\dot{\mathcal F}(\mathcal C)$ = D for every object $\mathcal C\in\mathcal C$ and a fixed object *D* \in *D*. Let *D* \neq *D'* \in *D*. We assume that the pair $\langle R, u \rangle$ is a universal arrow from F to D' . For all $C \in \mathcal{C}$, we have that

$$
Hom_C(C, R) \cong Hom_D(D, D'),
$$

and

 \lim_{C} (*C*, *R*) $\stackrel{\vec{F}}{\rightarrow}$ Hom $_{\mathcal{D}}$ (*D*, *D*) $\stackrel{\vec{U}}{\rightarrow}$ Hom $_{\mathcal{D}}$ (*D*, *D'*).

Hence for all $C \in \mathcal{C}$,

$$
Hom_C(C, R) \cong Hom_C(R, R) \cong Hom_D(D, D').
$$

And if the identity morphism $id_D \in \text{Hom}_{D}(D, D)$ is not in \vec{F} (Hom_C(*C*, *R*)), then there exists a unique $f \in Hom_{\mathcal{C}}(C, R)$ such that $u \circ F(f) = u \circ id_{D} = u$. This is possible. Furthermore, for all $C \in \mathcal{C}$, if the equation

$$
Hom_C(R, R) \cong Hom_D(D, D)
$$

holds, then the universal arrow is of the [type II,](#page-2-1) otherwise the universal arrow is of the [type I.](#page-2-0)

Let *G* be a directed graph, and $G' \subset G$ a subgraph of *G*. Suppose that *F* is an inclusion functor from *G'* to *G*. Given a vertex $g \in G$ with $g \notin G'$. We assume that a universal arrow $\langle r, u \rangle$ from *F* to *g* exists. Then we have that

$$
\text{Hom}_{G'}(v,r) \cong \text{Hom}_G(v,g),
$$

and

$$
\text{Hom}_{G'}(v,r) \xrightarrow{\vec{F}} \text{Hom}_G(v,r) \xrightarrow{\tilde{u}} \text{Hom}_G(v,g),
$$

for all $v \in G'$. Hence the morphism $u: r \to g$ is a unique edge from the subgraph G' to g if G' is finite $\stackrel{*}{\cdot}$ $\stackrel{*}{\cdot}$ $\stackrel{*}{\cdot}$

^{*}The finiteness hypothesis is necessary.

Proposition 3.1. *The maps* \vec{F} and \tilde{u} are isomorphisms. Thus the universal arrow is *of the [type II.](#page-2-1)*

Proof. It is evident.

Let *F*: $C \rightarrow \mathcal{D}$ be a functor, and $\Delta: \mathcal{D} \rightarrow \mathcal{D}^C$ a diagonal[\[4\]](#page-8-1) functor. Then a **limit** of the functor *F* is a universal arrow $\langle R, \tau \rangle$ from Δ to *F*. The object $R \in \mathcal{D}$ is called limit object[\[4\]](#page-8-1), written lim F := R, and for every natural transformation[4] σ : ∆(*D*) →• *F*, there exists a unique *f* : *D* → *R* in D such that σ factors through ∆(*f*) along τ : $\Delta(R) \rightarrow F$, cf. [\[4](#page-8-1)[–6\]](#page-8-2). Hence we have that

$$
Hom_{\mathcal{D}}(D,R)\cong Hom_{\mathcal{D}^C}(\Delta(D),F),
$$

for all $D \in \mathcal{D}$. Therefore, we have that

$$
\text{Hom}_{\mathcal{D}}(D,R) \xrightarrow{\vec{\Delta}} \text{Hom}_{\mathcal{D}^C}(\Delta(D),\Delta(R)) \xrightarrow{\tilde{\tau}} \text{Hom}_{\mathcal{D}^C}(\Delta(D),F).
$$

The maps $\vec{\Delta}$ and $\tilde{\tau}$ are isomorphisms.

Proposition 3.2. *The universal arrow of every (co)limit is of the [type II.](#page-2-1)*

Proof. This follows immediately from the definition of a diagonal functor.

Let **A** be an abelian[\[2,](#page-8-3) [3\]](#page-8-4) group, and $\mathbf{A} = M_0 \supset M_1 \supset M_2 \supset \cdots$ a sequence of subgroups. Suppose that N is a category consisting of

objects: nonnegative integers, **morphisms:** $i \rightarrow j$ if $i \geq j$.

Let $F: N \to Ab$ be a functor, which assigns to a nonnegative number *i* a factor group[\[2,](#page-8-3)[3\]](#page-8-4) *A*/*Mⁱ* , and assigns to a morphism *i* → *j* a canonical[\[2\]](#page-8-3) epimorphism[\[2,](#page-8-3)[3\]](#page-8-4) $\mathsf{A}/\mathsf{M}_i \rightarrow \mathsf{A}/\mathsf{M}_j$ given by α + $\mathsf{M}_i \mapsto \alpha$ + M_j , and let ∆: $\mathsf{A}\mathsf{b} \rightarrow \mathsf{A}\mathsf{b}^{\mathsf{N}}$ be a diagonal[\[4\]](#page-8-1) functor. Then the pair ^hlim←−− *^F*, ^τⁱ is a universal arrow from [∆] to *^F*. And We call lim←−− *F*

the completion(denoted $\hat{\bm{A}} \coloneqq \varprojlim{F}$) of \bm{A} with respect to M_i , cf. [\[1,](#page-8-5)[7\]](#page-8-6). Hence we have that

$$
\text{Hom}_{\textbf{Ab}}(\textbf{B},\hat{\textbf{A}})\cong \text{Hom}_{\textbf{Ab}^{\mathcal{N}}}(\varDelta(\textbf{B}),F),
$$

and

$$
\text{Hom}_{\textbf{Ab}}(\textbf{B},\hat{\textbf{A}})\xrightarrow{\vec{F}}\text{Hom}_{\textbf{Ab}^N}(\Delta(\textbf{B}),\Delta(\hat{\textbf{A}}))\xrightarrow{\tilde{\tau}}\text{Hom}_{\textbf{Ab}^N}(\Delta(\textbf{B}),F),
$$

for all *B* ∈ *Ab*. Furthermore, we have that

$$
\varprojlim F \coloneqq \{ (a_0, a_1, \ldots) \in \prod_i \mathbf{A}/m_i \mid a_i \equiv a_j \pmod{m_j} \text{ for all } i \geq j \}.
$$

It is clear that \vec{F} and $\tilde{\tau}$ are isomorphisms.

Let X and *Y* be categories. An **adjunction**[\[3,](#page-8-4) [4,](#page-8-1) [7\]](#page-8-6) from X to *Y* is a triple $\langle F, G, \phi \rangle$ consisting of two functors

$$
X \xleftarrow{\digamma} \mathcal{Y},
$$

and a map ϕ which assigns to every pair $\langle X \in X, Y \in Y \rangle$ an isomorphism of hom-sets

(3.4)
$$
\phi: (X, Y) \mapsto \phi_{X,Y}: \text{Hom}_X(X, G(Y) \cong \text{Hom}_Y(F(X), Y),
$$

which is natural^{[\[4\]](#page-8-1)} in X and *Y*. For all pair $\langle X \in X, Y \in Y \rangle$, we have that every morphism $f: X \to G(Y)$ makes the [diagram \(3.5\)](#page-5-1) commute, cf. [\[4](#page-8-1)[–6\]](#page-8-2).

(3.5)
\n
$$
\begin{array}{ccc}\n\text{Hom}_X(X, G(Y)) & \xrightarrow{\phi_{X,Y}} & \text{Hom}_Y(F(X), Y) \\
\uparrow & & \uparrow \\
\text{Hom}_X(G(Y), G(Y)) & \xrightarrow{\cong} & \text{Hom}_Y(F \circ G(Y), Y)\n\end{array}
$$

Observe that an identity morphism $id_{G(Y)} \in Hom_X(G(Y), G(Y))$. Hence for every *v* ∈ Hom_{*y*}(*F*(*X*), *Y*), there exists a unique morphism f ∈ Hom_{*X*}(*X*, *G*(*Y*)) such that $v = F(f) \circ u$, where

$$
u := (\phi_{G(Y), Y}(id_{G(Y)}): F \circ G(Y) \to Y),
$$

that is, the morphism u is the image of the identity morphism $id_{G(Y)}$ under the map ϕ *G*(*Y*),*Y*.

Given a *Y* \in *Y*. Then we have that the pair $\langle G(Y), u \rangle$ is a universal arrow from *F* to *Y* by [diagram \(3.5\).](#page-5-1) Hence we have that

$$
\text{Hom}_X(X,G(Y)) \xrightarrow{\vec{F}} \text{Hom}_\mathcal{Y}(F(X), F \circ G(Y)) \xrightarrow{\tilde{u}} \text{Hom}_\mathcal{Y}(F(X), Y),
$$

for all $X \in X$. In general \vec{F} and \tilde{u} need not be isomorphisms. Hence the universal arrow is of the [type II](#page-2-1) if further conditions are satisfied.

Proposition 3.3. The universal arrow $\langle G(Y), u \rangle$ is of the *[type II](#page-2-1)* if and only if u is a *monomorphism.*

Proof. By [observation 3.1,](#page-2-9) \tilde{u} is an epimorphism. Hence we have that \tilde{u} is an isomorphism if and only if *u* is a monomorphism. Therefore, *F*® is an isomorphism if and only if *u* is a monomorphism by [observation 3.2.](#page-2-10)

Remark. By [equation \(3.4\),](#page-5-2) we have that the [diagram \(3.6\)](#page-6-0) is commutative.

(3.6)
\n
$$
\begin{array}{ccc}\n\text{Hom}_X(X, G(Y)) & \xrightarrow{\phi_{X,Y}} & \text{Hom}_Y(F(X), Y) \\
\hline\nG(u) & & \uparrow \hat{G} \\
\text{Hom}_X(X, G \circ F \circ G(Y)) & \xrightarrow{\cong} & \text{Hom}_Y(F(X), F \circ G(Y))\n\end{array}
$$

Therefore, it is clear that if \tilde{u} is an isomrphism, then we have that

 $Hom_X(X, G(Y)) \cong Hom_Y(F(X), F \circ G(Y)).$

Of course, the dual statements hold by the dual arguments. We shall give some examples.

Let *H*: **Grp** \rightarrow **Set** be a forgetful[\[2,](#page-8-3) [4,](#page-8-1) [7\]](#page-8-6) functor which assigns to a group **G** the underlying[\[2,](#page-8-3)[7\]](#page-8-6) set of *G* and assigns to a homomorphism of groups a map of sets, and let *F*: **Set** \rightarrow **Grp** be a functor which assigns to a set *X* a free group[\[2,](#page-8-3)[3\]](#page-8-4) $F(X)$ generated by *X* and assigns to a map $f: X \rightarrow Y$ a homomorphism[\[2,](#page-8-3)[3\]](#page-8-4) $F(f): F(X) \rightarrow$ *F*(*Y*) induced by *f*.

Remark. For a group *G* ∈ *Grp* with an identity member *id* ∈ *G*, the member *id* ∈ *H*(*G*) is a normal element of the set $H(G)$. Hence the member *id* $\in F \circ H(G)$ is *not* the identity member of the group *F* ◦ *H*(*G*).

For every pair $\langle X \in \mathbf{Set}, G \in \mathbf{Grp} \rangle$, we have that

(3.7) Hom*Set*(*X*, *H*(*G*)) Hom*Grp*(*F*(*X*), *G*).

Hence the functor *F* is the adjoint of *H*, cf. [\[2,](#page-8-3)[4,](#page-8-1)[7\]](#page-8-6).

Given a nonempty set $X \in$ **Set**. Then we have that the pair $\langle F(X), \iota \rangle$ is a universal arrow from the set *X* to the functor *H*, where $\iota: X \to H \circ F(X)$ is an inclusion map. Therefore, we have that

 $\mapsto \textsf{Hom}_{\textbf{Grp}}(F(X), \textbf{G}) \stackrel{\vec{H}}{\longrightarrow} \textsf{Hom}_{\textbf{Set}}(H \circ F(X), H(\textbf{G})) \stackrel{\vec{\iota}}{\rightarrow} \textsf{Hom}_{\textbf{Set}}(X, H(\textbf{G})),$

for all *G* ∈ *Grp*.

Proposition 3.4. *The map* \vec{H} and $\hat{\iota}$ are isomorphisms if and only if $X \cong H \circ F(X)$.

Proof. Observe that ι is a monomorphism, and $\tilde{\iota}$ is an epimorphism. It follows that $\tilde{\iota}$ is an isomorphism if and only if ι is an epimorphism. Hence \vec{H} is an isomorphism if and only if ι is an epimorphism.

Remark. If the set *X* is finite, then H and *τ* are not isomorphisms. And the converse does not hold. If $X \cong H \circ F(X)$, then the set *X* should be a denumerable[\[8\]](#page-9-0) set.

On the other hand, given a group $G \in Grp$, we have that the pair $\langle H(G), \pi \rangle$ is a universal arrow from the functor *F* to the group **G**, where $\pi: F \circ H(G) \to G$ is a canonical epimorphism $[2,3]$ $[2,3]$. Therefore, we have that

$$
\text{Hom}_{\textbf{Set}}(X, H(\textbf{G})) \xrightarrow{\vec{F}} \text{Hom}_{\textbf{Grp}}(F(X), F \circ H(\textbf{G})) \xrightarrow{\tilde{\pi}} \text{Hom}_{\textbf{Grp}}(F(X), \textbf{G}),
$$

for all $X \in$ **Set**.

Proposition 3.5. *The maps* \vec{F} and $\tilde{\pi}$ are isomorphisms if and only if $F \circ H(G) \cong G$.

Proof. Observe that π and $\tilde{\pi}$ are epimorphisms. Thus the morphism $\tilde{\pi}$ is an isomorphism if and only if π is a monomorphism. This implies that \vec{F} is an isomorphism if and only if π is a monomorphism.

Remark. if the group **G** is finite, then \vec{F} and $\tilde{\pi}$ are not isomorphisms. But the converse is not true.

Let R, S be rings[\[2,](#page-8-3) [3\]](#page-8-4), and $_R M_S$ a bimodule[2, [7\]](#page-8-6). Suppose that S and R are categories of right *S*-modules and right *R*-modules, respectively. Then the functor $-\otimes_R M$ is the adjoint of the functor Hom_S(M , –), cf. [\[2,](#page-8-3) [4,](#page-8-1) [7\]](#page-8-6).

Let *F* denote Hom_S(M , –), and let *G* denote – ⊗_R M . Hence we have that

$$
\text{Hom}_{\mathcal{S}}(\textbf{A}\otimes_{\textbf{R}}\textbf{M},\textbf{B})\cong \text{Hom}_{\mathcal{R}}(\textbf{A},\text{Hom}_{\mathcal{S}}(\textbf{M},\textbf{B})),
$$

and

$$
\text{Hom}_{S}(\mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}, \mathbf{B}) \xrightarrow{\phi_{\mathbf{A}, \mathbf{B}}} \text{Hom}_{R}(\mathbf{A}, \text{Hom}_{S}(\mathbf{M}, \mathbf{B}))
$$
\n
$$
\text{Hom}_{S}(\mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}, \mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}) \xrightarrow{\cong} \text{Hom}_{R}(\mathbf{A}, \text{Hom}_{S}(\mathbf{M}, \mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}))
$$

for every triple $\langle \mathbf{A} \in \mathcal{R}, \mathbf{B} \in \mathcal{S}, f : \mathbf{A} \otimes_{\mathbf{B}} \mathbf{M} \to \mathbf{B} \rangle$.

Given an $A \in \mathcal{R}$. The pair $\langle A \otimes_R M, u \rangle$ is a universal arrow from A to Hom_S(M , ––) where

$$
U:=\phi_{G(\mathbf{A}),\mathbf{B}}(id_{\mathbf{A}\otimes_{\mathbf{R}}\mathbf{M}})\colon \mathbf{A}\to \text{Hom}_{\mathcal{S}}(\mathbf{M},\mathbf{A}\otimes_{\mathbf{R}}\mathbf{M}),
$$

that is, the image of the identity morphism $id_{A\otimes_{\mathbf{P}} M} \in Hom_S(A \otimes_R M, A \otimes_R M)$ under $\phi_{G(A),B}$. Hence we have that

$$
\text{Hom}_{\mathcal{S}}(\mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}, \mathbf{B}) \xrightarrow{\tilde{F}} \text{Hom}_{\mathcal{R}}(\text{Hom}_{\mathcal{S}}(\mathbf{M}, \mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}), \text{Hom}_{\mathcal{S}}(\mathbf{M}, \mathbf{B}))
$$

$$
\xrightarrow{\tilde{U}} \text{Hom}_{\mathcal{R}}(\mathbf{A}, \text{Hom}_{\mathcal{S}}(\mathbf{M}, \mathbf{B})),
$$

for all $\mathbf{B} \in \mathcal{S}$.

Proposition 3.6. *The maps* \vec{F} and \tilde{u} are isomorphisms if and only if u is an *epimorphism.*

Proof. We have that \tilde{u} is an epimorphism by [observation 3.1.](#page-2-9) Hence we have that \tilde{u} is an isomorphism if and only if *u* is an epimorphism. Hence \vec{F} and \tilde{u} are isomorphisms if and only if *u* is an epimorphism.

Dually, given a $\mathbf{B} \in \mathcal{S}$, the pair $\langle \text{Hom}_{\mathcal{S}}(\mathbf{M}, \mathbf{B}), v \rangle$ is a universal arrow from — $\otimes_R \mathbf{M}$ to *B*, where *v*: Hom_{*S*}(*M*, *B*) $\otimes_R M \to B$. Hence we have that

$$
Hom_{\mathcal{R}}(\mathbf{A}, Hom_{\mathcal{S}}(\mathbf{M}, \mathbf{B})) \xrightarrow{\vec{C}} Hom_{\mathcal{S}}(\mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}, Hom_{\mathcal{S}}(\mathbf{M}, \mathbf{B}) \otimes_{\mathbf{R}} \mathbf{M})
$$

$$
\xrightarrow{\vec{V}} Hom_{\mathcal{S}}(\mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}, \mathbf{B}),
$$

for all $A \in \mathcal{R}$.

Proposition 3.7. The maps \vec{G} and \vec{v} are isomorphisms if and only if v is a monomor*phism.*

Proof. Observe that \tilde{u} is an epimorphism. Hence we have that \tilde{v} is an isomorphism if and only if v is a monomorphism. Therefore, \vec{G} and \tilde{v} are isomorphisms if and only if *v* is a monomorphism.

Suppose that C and D are categories. Let $F: C^{op} \times C \to D$ be a functor, and

$$
\Delta: \mathcal{D} \to \mathcal{D}^{C^{op} \times C}
$$

a diagonal[\[4\]](#page-8-1) functor. An **end**[\[4\]](#page-8-1) of the functor *F* is a universal dinatural[\[4\]](#page-8-1) transformation $\langle E, \omega \rangle$ from Δ to *F*, where the object $E \in \mathcal{D}$, and ω : $\Delta(E) \rightarrow$ • *F* is a dinatural transformation such that to every dinatural transformation $β$: $Δ(D)$ \rightarrow *F* there exists a unique morphism $f: D \to E$ which makes the [diagram \(3.8\)](#page-8-7) commute, for all $C, C' \in C$, cf. [\[4\]](#page-8-1).

(3.8)
\n
$$
\begin{array}{c}\n\Delta(D) \xrightarrow{\beta_C} F(C, C) \\
\downarrow^{\beta_C} \searrow^{\gamma} \\
\Delta(E) \xrightarrow{\alpha_C} F(C', C')\n\end{array}
$$

Hence we have that

$$
\text{Hom}_{\mathcal{D}}(D,E) \cong \text{Hom}_{\mathcal{D}^{C^{op}\times C}}(\Delta(D),F),
$$

and

$$
\text{Hom}_{\mathcal{D}}(D,E) \xrightarrow{\vec{\Delta}} \text{Hom}_{\mathcal{D}^{C^{op}\times C}}(\Delta(D),\Delta(E)) \xrightarrow{\tilde{\omega}} \text{Hom}_{\mathcal{D}^{C^{op}\times C}}(\Delta(D),F),
$$

for all *D* ∈ D. An end of a functor is regarded as a limit of the functor. Therefore, we have that $\vec{\Delta}$ and $\vec{\omega}$ are isomorphisms, and the universal arrow of every end is of the [type II.](#page-2-1)

REFERENCES

[1] David Eisenbud, *Commutative algebra with a view toward algebraic geometry*, Springer, 2004.

[2] Thomas W. Hungerford, *Algebra*, Springer, 1974.

[3] Nathan Jacobson, *Basic algebra*, 2nd ed., Dover Publications, 2009.

[4] Saunders Mac Lane, *Categories for the working mathematician*, 2nd ed., Springer, 1971.

[5] Tom Leinster, *Basic category theory*, Cambridge University Press, 2014.

[6] Emily Riehl, *Category theory in context*, 2014.

[7] Joseph J. Rotman, *An introduction to homological algebra*, 2nd ed., Springer, 2009.

10 SHAO-DAN LEE

[8] Robert L. Vaught, *Set theory an introduction*, 2nd ed., Birkhäuser Boston, 2001. *Email address*: leeshuheng@icloud.com