Two Types of Universal Arrows

SHAO-DAN LEE

Abstract A universal arrow is a pair which consists of an object and a morphism. And an isomorphism is defined by a universal arrow. The isomorphism may be a composition of two morphisms. We may define two types of universal arrows, which is determined by the properties of the morphisms. A universal arrow is of the type I if the morphisms are not isomorphisms; And a universal arrow is of the type II if the morphisms are isomorphisms.

CONTENTS

1. Introduction	1
2. Preliminaries	1
3. Two Types of Universal Arrows	3
3.1. The Definition of Two Types	3
3.2. Examples	4
References	9

1. INTRODUCTION

Suppose that $F: \mathcal{C} \to \mathcal{D}$ is a functor. Given a $D \in \mathcal{D}$. A universal arrow from F to D is a pair $\langle R, u \rangle$ consisting of an object $R \in \mathcal{C}$ and a morphism $u: F(R) \to D$ in \mathcal{D} such that the equation (3.1) holds. See definition 3.1 for more details.

The equation (3.1) factors as $\tilde{u} \circ \vec{F}$. Then we define two types of universal arrows in definition 3.2. A universal arrow is of the type I if \vec{F} and \tilde{u} are not isomorphic; And a universal arrow is of the type II if \vec{F} and \tilde{u} are isomorphisms. See section 3.1 for more details.

A limit $\varprojlim F$ of a functor F is defined by a universal arrow from Δ to F. This universal arrow is of the type II, see proposition 3.2. There are universal arrows determined by an adjunction $\langle F, G, \phi \rangle$. These universal arrows are of the type I in general. But if some conditions are satisfied, then the universal arrow is of the type II, see proposition 3.3. Furthermore, other examples are given in section 3.2.

2. Preliminaries

Definition 2.1 ([4–6]). A category C consists of:

• a collect of **objects**;

Date: June 13, 2024. 2020 Mathematics Subject Classification. 18A40. Key words and phrases. Category, Universal arrow.

SHAO-DAN LEE

- for each pair $A, B \in C$, a collect Hom_C(A, B) of **morphisms** from A to B;
- for each triple $A, B, C \in C$, a function

$$\operatorname{Hom}_{\mathcal{C}}(B, \mathbb{C}) \times \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(A, \mathbb{C})$$

given by

$$(g, f) \mapsto g \circ f$$
,

call composition;

• for each $A \in C$, a morphism $id_A \in \text{Hom}(A, A)$, called **identity** on A, satisfying the following axioms:

associativity: for each $f \in \text{Hom}_{\mathcal{C}}(A, B)$, $g \in \text{Hom}_{\mathcal{C}}(B, C)$, and $h \in \text{Hom}_{\mathcal{C}}(C, D)$

$$h \circ (g \circ f) = (h \circ g) \circ f;$$

identity law: for each $f \in \text{Hom}_{C}(A, B)$,

$$id_B \circ f = f \circ id_A = f.$$

Definition 2.2 ([4–6]). Let C, \mathcal{D} be categories. A **functor** $F: C \to \mathcal{D}$ is a morphism consisting of:

- assigning to each object $C \in C$ an object $F(C) \in \mathcal{D}$;
- assigning to each morphism $f \in \text{Hom}_{\mathcal{C}}(A, B)$ a morphism $F(f) \in \text{Hom}_{\mathcal{D}}(F(A), F(B))$,

satisfying the following axioms:

- $F(g \circ f) = F(g) \circ F(f)$ for each composition $g \circ f$;
- $F(id_A) = id_{F(A)}$ for each object $A \in C$.

Definition 2.3 ([4–6]). Let C, \mathcal{D} be categories, and let $C \xrightarrow{F}_{G} \mathcal{D}$ be functors. A morphism τ from F to G is called a **natural transformation**, written $\tau: F \rightarrow G$, provided that τ is a function which assigns to each $C \in C$ a morphism $\tau_C := \tau(C): F(C) \rightarrow G(C)$ in \mathcal{D} such that for each morphism $f: C \rightarrow C'$ in C the following diagram commutes in \mathcal{D} .

$$\begin{array}{ccc} F(C) & \xrightarrow{\tau_C} & G(C) \\ F(f) & & \downarrow^{G(f)} \\ F(C') & \xrightarrow{\tau_{C'}} & G(C') \end{array}$$

Definition 2.4 ([4]). Let C, \mathcal{D} be categories, and $S, T: C^{op} \times C \to \mathcal{D}$ functors. A **dinatural transformation** $\tau: S \longrightarrow T$ is a function which assigns to each object $C \in C$ a morphism $\tau_C := \tau(C): S(C, C) \to T(C, C)$ of \mathcal{D} in such a way that for every morphism $f: C \to C'$ in C the following diagram is commutative.

3. Two Types of Universal Arrows

Recall the definition of a universal arrow.

Definition 3.1 ([4–6]). Let *F* be a functor from *C* to *D*. Given an object $D \in D$. a **universal arrow** from *F* to *D* is a pair $\langle R, u \rangle$ consisting of an object $R \in C$ and a morphism *u* from *F*(*R*) to *D*, such that for all object $C \in C$ and every morphism $g: F(C) \rightarrow D$, there exists a unique morphism $f: C \rightarrow R$ with $g = u \circ F(f)$.

Furthermore, there is the dual concept of definition 3.1.

3.1. The Definition of Two Types. It is clear that if the pair (R, u) is a universal arrow, then we have the following isomorphism[2, 4] for all $C \in C$.

$$(3.1) \qquad \qquad \operatorname{Hom}_{\mathcal{C}}(C,R) \cong \operatorname{Hom}_{\mathcal{D}}(F(C),D)$$

Let \tilde{F} denote the restriction of the functor F to the hom-sets, and let

$$\tilde{\mu}$$
: Hom_D(F(C), F(R)) \rightarrow Hom_D(F(C), D)

be a morphism given by

$$h \mapsto u \circ h$$
.

Then the equation (3.1) factors as $\tilde{u} \circ \vec{F}$:

$$(3.2) \qquad \qquad \operatorname{Hom}_{\mathcal{C}}(C,R) \xrightarrow{F} \operatorname{Hom}_{\mathcal{D}}(F(C),F(R)) \xrightarrow{\tilde{u}} \operatorname{Hom}_{\mathcal{D}}(F(C),D).$$

Observation 3.1. Since $\tilde{u} \circ \vec{F}$ is an isomorphism, we have that \vec{F} is monic[4–6], and \tilde{u} is epic[4–6].

And the restriction of \tilde{u} to the image of Hom_C(C, R) under \tilde{F} is monic. Hence if

$$(3.3) F(Hom_{\mathcal{C}}(C, R)) = Hom_{\mathcal{D}}(F(C), F(D)),$$

then \vec{F} and \tilde{u} are isomorphisms.

Observation 3.2. We have that \vec{F} is an isomorphism if and only if \tilde{u} is an isomorphism.

Furthermore, if the condition (3.3) is not satisfied, then we have that for every $h \in \text{Hom}_{\mathcal{D}}(F(C), F(R))$ with $h \notin \text{im } \vec{F}$, there exists a unique $f \in \text{Hom}_{\mathcal{C}}(C, R)$ such that

$$u \circ h = u \circ F(f).$$

Therefore, we may define two types of universal arrows as follows.

Definition 3.2. Let the notations be as in equations (3.1) and (3.2) and definition 3.1.

- I. The morphisms \vec{F} and \tilde{u} are not isomorphic;
- II. The morphisms \vec{F} and \tilde{u} are isomorphisms.

Some examples will be given.

3.2. Examples.

Notation 3.1. For an arbitrary functor F, let \vec{F} denote the restriction of F to the homsets, and let \dot{F} denote the restriction of F to the objects. For an arbitrary category C with an arbitrary morphism $u: B \to C \in C$, let \tilde{u} denote the morphism defined as follows:

 $\tilde{u}: \begin{cases} \operatorname{Hom}(A,B) \to \operatorname{Hom}(A,C) & \text{given by } f \mapsto u \circ f, \text{ or,} \\ \operatorname{Hom}(C,A) \to \operatorname{Hom}(B,A) & \text{given by } g \mapsto g \circ u, \text{ but not both.} \end{cases}$

Suppose that $F: C \to \mathcal{D}$ is a functor such that $\dot{F}(C) = D$ for every object $C \in C$ and a fixed object $D \in \mathcal{D}$. Let $D \neq D' \in \mathcal{D}$. We assume that the pair $\langle R, u \rangle$ is a universal arrow from F to D'. For all $C \in C$, we have that

$$\operatorname{Hom}_{\mathcal{C}}(\mathcal{C}, \mathcal{R}) \cong \operatorname{Hom}_{\mathcal{D}}(\mathcal{D}, \mathcal{D}'),$$

and

 $\operatorname{Hom}_{\mathcal{C}}(C,R) \xrightarrow{\vec{F}} \operatorname{Hom}_{\mathcal{D}}(D,D) \xrightarrow{\tilde{U}} \operatorname{Hom}_{\mathcal{D}}(D,D').$

Hence for all $C \in C$,

$$\operatorname{Hom}_{\mathcal{C}}(\mathcal{C}, \mathcal{R}) \cong \operatorname{Hom}_{\mathcal{C}}(\mathcal{R}, \mathcal{R}) \cong \operatorname{Hom}_{\mathcal{D}}(\mathcal{D}, \mathcal{D}').$$

And if the identity morphism $id_D \in \text{Hom}_{\mathcal{D}}(D, D)$ is not in $\tilde{F}(\text{Hom}_{\mathcal{C}}(C, R))$, then there exists a unique $f \in \text{Hom}_{\mathcal{C}}(C, R)$ such that $u \circ F(f) = u \circ id_D = u$. This is possible. Furthermore, for all $C \in C$, if the equation

$$\operatorname{Hom}_{\mathcal{C}}(R,R) \cong \operatorname{Hom}_{\mathcal{D}}(D,D)$$

holds, then the universal arrow is of the type II, otherwise the universal arrow is of the type I.

Let G be a directed graph, and $G' \subset G$ a subgraph of G. Suppose that F is an inclusion functor from G' to G. Given a vertex $g \in G$ with $g \notin G'$. We assume that a universal arrow $\langle r, u \rangle$ from F to g exists. Then we have that

$$\operatorname{Hom}_{G'}(v, r) \cong \operatorname{Hom}_{G}(v, g),$$

and

$$\operatorname{Hom}_{G'}(v,r) \xrightarrow{\vec{F}} \operatorname{Hom}_{G}(v,r) \xrightarrow{\tilde{u}} \operatorname{Hom}_{G}(v,g),$$

for all $v \in G'$. Hence the morphism $u: r \to g$ is a unique edge from the subgraph G' to g if G' is finite^{*}.

^{*}The finiteness hypothesis is necessary.

Two Types of Universal Arrows

Proof. It is evident.

Let $F: \mathcal{C} \to \mathcal{D}$ be a functor, and $\Delta: \mathcal{D} \to \mathcal{D}^{\mathcal{C}}$ a diagonal[4] functor. Then a **limit** of the functor F is a universal arrow $\langle R, \tau \rangle$ from Δ to F. The object $R \in \mathcal{D}$ is called **limit object**[4], written $\varprojlim F \coloneqq R$, and for every natural transformation[4] $\sigma: \Delta(D) \to F$, there exists a unique $f: D \to R$ in \mathcal{D} such that σ factors through $\Delta(f)$ along $\tau: \Delta(R) \to F$, cf. [4–6]. Hence we have that

$$\operatorname{Hom}_{\mathcal{D}}(D,R) \cong \operatorname{Hom}_{\mathcal{D}^{C}}(\Delta(D),F),$$

for all $D \in \mathcal{D}$. Therefore, we have that

$$\operatorname{Hom}_{\mathcal{D}}(D,R) \xrightarrow{\Delta} \operatorname{Hom}_{\mathcal{D}^{C}}(\Delta(D), \Delta(R)) \xrightarrow{\tilde{\tau}} \operatorname{Hom}_{\mathcal{D}^{C}}(\Delta(D), F).$$

The maps $\vec{\Delta}$ and $\tilde{\tau}$ are isomorphisms.

Proposition 3.2. The universal arrow of every (co)limit is of the type II.

Proof. This follows immediately from the definition of a diagonal functor.

Let **A** be an abelian [2, 3] group, and $\mathbf{A} = M_0 \supset M_1 \supset M_2 \supset \cdots$ a sequence of subgroups. Suppose that N is a category consisting of

objects: nonnegative integers, **morphisms:** $i \rightarrow j$ if $i \ge j$.

Let $F: N \to Ab$ be a functor, which assigns to a nonnegative number *i* a factor group[2,3] A/M_i , and assigns to a morphism $i \to j$ a canonical[2] epimorphism[2,3] $A/M_i \to A/M_j$ given by $a + M_i \mapsto a + M_j$, and let $\Delta: Ab \to Ab^N$ be a diagonal[4] functor. Then the pair ($\lim F, \tau$) is a universal arrow from Δ to *F*. And We call $\lim F$

the **completion**(denoted $\hat{A} := \varprojlim F$) of A with respect to M_i , cf. [1,7]. Hence we have that

$$\operatorname{Hom}_{\boldsymbol{A}\boldsymbol{b}}(\boldsymbol{B},\hat{\boldsymbol{A}})\cong\operatorname{Hom}_{\boldsymbol{A}\boldsymbol{b}^{N}}(\Delta(\boldsymbol{B}),F),$$

and

$$\operatorname{Hom}_{\boldsymbol{A}\boldsymbol{b}}(\boldsymbol{B},\hat{\boldsymbol{A}}) \xrightarrow{\vec{F}} \operatorname{Hom}_{\boldsymbol{A}\boldsymbol{b}^{N}}(\Delta(\boldsymbol{B}),\Delta(\hat{\boldsymbol{A}})) \xrightarrow{\tilde{\tau}} \operatorname{Hom}_{\boldsymbol{A}\boldsymbol{b}^{N}}(\Delta(\boldsymbol{B}),F),$$

for all $\boldsymbol{B} \in \boldsymbol{Ab}$. Furthermore, we have that

$$\varprojlim F := \{(a_0, a_1, \ldots) \in \prod_i \mathbf{A}/m_i \mid a_i \equiv a_j \pmod{m_j} \text{ for all } i \ge j\}.$$

It is clear that \vec{F} and $\tilde{\tau}$ are isomorphisms.

Let X and \mathcal{Y} be categories. An **adjunction**[3, 4, 7] from X to \mathcal{Y} is a triple $\langle F, G, \phi \rangle$ consisting of two functors

$$X \xleftarrow{F}{\longleftrightarrow} \mathcal{Y},$$

and a map ϕ which assigns to every pair $\langle X \in \mathcal{X}, Y \in \mathcal{Y} \rangle$ an isomorphism of hom-sets

(3.4)
$$\phi: (X, Y) \mapsto \phi_{X,Y}: \operatorname{Hom}_{X}(X, G(Y) \cong \operatorname{Hom}_{\mathcal{Y}}(F(X), Y))$$

which is natural[4] in X and \mathcal{Y} . For all pair $\langle X \in X, Y \in \mathcal{Y} \rangle$, we have that every morphism $f: X \to G(Y)$ makes the diagram (3.5) commute, cf. [4–6].

(3.5)
$$\begin{array}{c} \operatorname{Hom}_{X}(X,G(Y)) \xrightarrow{\phi_{X,Y}} \operatorname{Hom}_{\mathcal{Y}}(F(X),Y) \\ \xrightarrow{\tilde{f}} & & \uparrow^{\widetilde{F}(\tilde{f})} \\ \operatorname{Hom}_{X}(G(Y),G(Y)) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{Y}}(F \circ G(Y),Y) \end{array}$$

Observe that an identity morphism $id_{G(Y)} \in \text{Hom}_{\mathcal{X}}(G(Y), G(Y))$. Hence for every $v \in \text{Hom}_{\mathcal{Y}}(F(X), Y)$, there exists a unique morphism $f \in \text{Hom}_{\mathcal{X}}(X, G(Y))$ such that $v = F(f) \circ u$, where

$$u \coloneqq (\phi_{G(Y),Y}(id_{G(Y)}) \colon F \circ G(Y) \to Y),$$

that is, the morphism u is the image of the identity morphism $id_{G(Y)}$ under the map $\phi_{G(Y),Y}$.

Given a $Y \in \mathcal{Y}$. Then we have that the pair $\langle G(Y), u \rangle$ is a universal arrow from F to Y by diagram (3.5). Hence we have that

$$\operatorname{Hom}_{\mathcal{X}}(X,G(Y)) \xrightarrow{\tilde{F}} \operatorname{Hom}_{\mathcal{Y}}(F(X), F \circ G(Y)) \xrightarrow{\tilde{u}} \operatorname{Hom}_{\mathcal{Y}}(F(X), Y),$$

for all $X \in X$. In general \vec{F} and \tilde{u} need not be isomorphisms. Hence the universal arrow is of the type II if further conditions are satisfied.

Proposition 3.3. The universal arrow $\langle G(Y), u \rangle$ is of the type II if and only if u is a monomorphism.

Proof. By observation 3.1, \tilde{u} is an epimorphism. Hence we have that \tilde{u} is an isomorphism if and only if u is a monomorphism. Therefore, \vec{F} is an isomorphism if and only if u is a monomorphism by observation 3.2.

Remark. By equation (3.4), we have that the diagram (3.6) is commutative.

Therefore, it is clear that if \tilde{u} is an isomrphism, then we have that

 $\operatorname{Hom}_{\mathcal{X}}(X, G(Y)) \cong \operatorname{Hom}_{\mathcal{Y}}(F(X), F \circ G(Y)).$

Of course, the dual statements hold by the dual arguments. We shall give some examples.

Let $H: \mathbf{Grp} \to \mathbf{Set}$ be a forgetful[2, 4, 7] functor which assigns to a group \mathbf{G} the underlying[2, 7] set of \mathbf{G} and assigns to a homomorphism of groups a map of sets, and let $F: \mathbf{Set} \to \mathbf{Grp}$ be a functor which assigns to a set X a free group[2, 3] F(X) generated by X and assigns to a map $f: X \to Y$ a homomorphism[2, 3] $F(f): F(X) \to F(Y)$ induced by f.

Remark. For a group $G \in Grp$ with an identity member $id \in G$, the member $id \in H(G)$ is a normal element of the set H(G). Hence the member $id \in F \circ H(G)$ is not the identity member of the group $F \circ H(G)$.

For every pair $\langle X \in Set, G \in Grp \rangle$, we have that

$$(3.7) \qquad \qquad \operatorname{Hom}_{\mathbf{Set}}(X, H(\mathbf{G})) \cong \operatorname{Hom}_{\mathbf{Grp}}(F(X), \mathbf{G}).$$

Hence the functor F is the adjoint of H, cf. [2, 4, 7].

Given a nonempty set $X \in Set$. Then we have that the pair $(F(X), \iota)$ is a universal arrow from the set X to the functor H, where $\iota: X \to H \circ F(X)$ is an inclusion map. Therefore, we have that

 $\operatorname{Hom}_{\operatorname{Grp}}(F(X), \operatorname{G}) \xrightarrow{\tilde{H}} \operatorname{Hom}_{\operatorname{Set}}(H \circ F(X), H(\operatorname{G})) \xrightarrow{\tilde{\iota}} \operatorname{Hom}_{\operatorname{Set}}(X, H(\operatorname{G})),$

for all $\boldsymbol{G} \in \boldsymbol{Grp}$.

Proposition 3.4. The map \vec{H} and $\tilde{\iota}$ are isomorphisms if and only if $X \cong H \circ F(X)$.

Proof. Observe that ι is a monomorphism, and $\tilde{\iota}$ is an epimorphism. It follows that $\tilde{\iota}$ is an isomorphism if and only if ι is an epimorphism. Hence \vec{H} is an isomorphism if and only if ι is an epimorphism.

Remark. If the set X is finite, then \tilde{H} and $\tilde{\iota}$ are not isomorphisms. And the converse does not hold. If $X \cong H \circ F(X)$, then the set X should be a denumerable[8] set.

SHAO-DAN LEE

On the other hand, given a group $G \in Grp$, we have that the pair $\langle H(G), \pi \rangle$ is a universal arrow from the functor F to the group G, where $\pi: F \circ H(G) \to G$ is a canonical epimorphism[2,3]. Therefore, we have that

$$\operatorname{Hom}_{\boldsymbol{Set}}(X,H(\boldsymbol{G})) \xrightarrow{F} \operatorname{Hom}_{\boldsymbol{Grp}}(F(X),F \circ H(\boldsymbol{G})) \xrightarrow{\tilde{\pi}} \operatorname{Hom}_{\boldsymbol{Grp}}(F(X),\boldsymbol{G})$$

for all $X \in$ **Set**.

Proposition 3.5. The maps \vec{F} and π are isomorphisms if and only if $F \circ H(G) \cong G$.

Proof. Observe that π and $\tilde{\pi}$ are epimorphisms. Thus the morphism $\tilde{\pi}$ is an isomorphism if and only if π is a monomorphism. This implies that \vec{F} is an isomorphism if and only if π is a monomorphism.

Remark. if the group **G** is finite, then \vec{F} and $\hat{\pi}$ are not isomorphisms. But the converse is not true.

Let \mathbf{R}, \mathbf{S} be rings[2, 3], and $_{\mathbf{R}}\mathbf{M}_{\mathbf{S}}$ a bimodule[2, 7]. Suppose that \mathcal{S} and \mathcal{R} are categories of right \mathbf{S} -modules and right \mathbf{R} -modules, respectively. Then the functor $-\otimes_{\mathbf{R}}\mathbf{M}$ is the adjoint of the functor $\operatorname{Hom}_{\mathcal{S}}(\mathbf{M}, -)$, cf. [2, 4, 7].

Let F denote Hom_S(M,—), and let G denote — $\otimes_{R} M$. Hence we have that

$$\operatorname{Hom}_{\mathcal{S}}(\boldsymbol{A} \otimes_{\boldsymbol{R}} \boldsymbol{M}, \boldsymbol{B}) \cong \operatorname{Hom}_{\mathcal{R}}(\boldsymbol{A}, \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{M}, \boldsymbol{B})),$$

and

for every triple $\langle \mathbf{A} \in \mathcal{R}, \mathbf{B} \in \mathcal{S}, f : \mathbf{A} \otimes_{\mathbf{R}} \mathbf{M} \to \mathbf{B} \rangle$.

Given an $\mathbf{A} \in \mathcal{R}$. The pair $\langle \mathbf{A} \otimes_{\mathbf{R}} \mathbf{M}, u \rangle$ is a universal arrow from \mathbf{A} to Hom_S($\mathbf{M}, -$) where

$$u \coloneqq \phi_{G(\mathbf{A}),\mathbf{B}}(id_{\mathbf{A}\otimes_{\mathbf{R}}\mathbf{M}}): \mathbf{A} \to \operatorname{Hom}_{\mathcal{S}}(\mathbf{M},\mathbf{A}\otimes_{\mathbf{R}}\mathbf{M}),$$

that is, the image of the identity morphism $id_{A \otimes_R M} \in \text{Hom}_{\mathcal{S}}(A \otimes_R M, A \otimes_R M)$ under $\phi_{\mathcal{C}(A), B}$. Hence we have that

$$\operatorname{Hom}_{\mathcal{S}}(\boldsymbol{A} \otimes_{\boldsymbol{R}} \boldsymbol{M}, \boldsymbol{B}) \xrightarrow{F} \operatorname{Hom}_{\mathcal{R}}(\operatorname{Hom}_{\mathcal{S}}(\boldsymbol{M}, \boldsymbol{A} \otimes_{\boldsymbol{R}} \boldsymbol{M}), \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{M}, \boldsymbol{B}))$$
$$\xrightarrow{\tilde{\boldsymbol{U}}} \operatorname{Hom}_{\mathcal{R}}(\boldsymbol{A}, \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{M}, \boldsymbol{B})),$$

for all $\boldsymbol{B} \in \mathcal{S}$.

Proposition 3.6. The maps \vec{F} and \tilde{u} are isomorphisms if and only if u is an epimorphism.

Proof. We have that \tilde{u} is an epimorphism by observation 3.1. Hence we have that \tilde{u} is an isomorphism if and only if u is an epimorphism. Hence \vec{F} and \tilde{u} are isomorphisms if and only if u is an epimorphism.

Dually, given a $B \in S$, the pair $(\text{Hom}_S(M, B), v)$ is a universal arrow from $- \otimes_R M$ to B, where v: Hom_S $(M, B) \otimes_R M \to B$. Hence we have that

$$\operatorname{Hom}_{\mathcal{R}}(\boldsymbol{A}, \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{M}, \boldsymbol{B})) \xrightarrow{G} \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{A} \otimes_{\boldsymbol{R}} \boldsymbol{M}, \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{M}, \boldsymbol{B}) \otimes_{\boldsymbol{R}} \boldsymbol{M})$$
$$\xrightarrow{\tilde{V}} \operatorname{Hom}_{\mathcal{S}}(\boldsymbol{A} \otimes_{\boldsymbol{R}} \boldsymbol{M}, \boldsymbol{B}),$$

for all $\mathbf{A} \in \mathcal{R}$.

Proposition 3.7. The maps \vec{G} and \tilde{v} are isomorphisms if and only if v is a monomorphism.

Proof. Observe that \tilde{u} is an epimorphism. Hence we have that \tilde{v} is an isomorphism if and only if v is a monomorphism. Therefore, \vec{G} and \tilde{v} are isomorphisms if and only if v is a monomorphism.

Suppose that C and D are categories. Let $F: C^{op} \times C \to D$ be a functor, and

$$\Delta \colon \mathcal{D} \to \mathcal{D}^{C^{op} \times C}$$

a diagonal[4] functor. An **end**[4] of the functor *F* is a universal dinatural[4] transformation $\langle E, \omega \rangle$ from Δ to *F*, where the object $E \in \mathcal{D}$, and $\omega \colon \Delta(E) \xrightarrow{\bullet} F$ is a dinatural transformation such that to every dinatural transformation $\beta \colon \Delta(D) \xrightarrow{\bullet} F$ there exists a unique morphism $f \colon D \to E$ which makes the diagram (3.8) commute, for all $C, C' \in C$, cf. [4].

$$(3.8) \qquad \begin{array}{c} \Delta(D) & \xrightarrow{\beta_{C}} F(C,C) \\ & \xrightarrow{\beta_{C'}} & F(C,C) \\ & \xrightarrow{\Delta(f)} & \xrightarrow{\beta_{C'}} & \\ & \xrightarrow{\beta_{C'}} & \xrightarrow{\beta_{C'}} & \\ & \xrightarrow{\beta_{C'}} & \xrightarrow{\beta_{C'}} & F(C',C') \end{array}$$

Hence we have that

$$\operatorname{Hom}_{\mathcal{D}}(D, E) \cong \operatorname{Hom}_{\mathcal{D}^{C^{op} \times C}}(\Delta(D), F),$$

and

$$\operatorname{Hom}_{\mathcal{D}}(D,E) \xrightarrow{\tilde{d}} \operatorname{Hom}_{\mathcal{D}^{C^{op} \times C}}(\Delta(D), \Delta(E)) \xrightarrow{\tilde{\omega}} \operatorname{Hom}_{\mathcal{D}^{C^{op} \times C}}(\Delta(D), F),$$

for all $D \in \mathcal{D}$. An end of a functor is regarded as a limit of the functor. Therefore, we have that $\vec{\Delta}$ and $\tilde{\omega}$ are isomorphisms, and the universal arrow of every end is of the type II.

References

[1] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, 2004.

[2] Thomas W. Hungerford, *Algebra*, Springer, 1974.

[3] Nathan Jacobson, *Basic algebra*, 2nd ed., Dover Publications, 2009.

[4] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Springer, 1971.

[5] Tom Leinster, Basic category theory, Cambridge University Press, 2014.

[6] Emily Riehl, Category theory in context, 2014.

[7] Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Springer, 2009.

SHAO-DAN LEE

 [8] Robert L. Vaught, Set theory an introduction, 2nd ed., Birkhäuser Boston, 2001. Email address: leeshuheng@icloud.com