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Abstract 

In this study, we implemented a two-stage deep learning-based approach to segment 

lesions in PET/CT images for the AutoPET III challenge. The first stage utilized a 

DynUNet model for coarse segmentation, identifying broad regions of interest. The 

second stage refined this segmentation using an ensemble of SwinUNETR, SegResNet, 

and UNet models. Preprocessing involved resampling images to a common resolution and 

normalization, while data augmentation techniques such as affine transformations and 

intensity adjustments were applied to enhance model generalization. The dataset was split 

into 80% training and 20% validation, excluding healthy cases. This method leverages 

multi-stage segmentation and model ensembling to achieve precise lesion segmentation, 

aiming to improve robustness and overall performance. 
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Introduction 

Cancer is globally recognized as one of the leading causes of premature mortality, 

alongside cardiovascular diseases, and poses a significant global health challenge. Early 

detection of cancer lesions is crucial for improving survival rates, as the prognosis and 

treatment options depend on the location and stage of the lesions.  

Computed tomography (CT) and positron emission tomography (PET) are essential for 

tumor analysis, providing vital information about the tumor's location, anatomy, and stage. 

However, manual analysis of medical images is time-consuming and error-prone, leading 

to inconsistencies among specialists. Therefore, there is a pressing need to develop and 

integrate deep learning methods into healthcare to enhance diagnostic processes and better 

understand cancer mechanisms. 

With this in mind, we participated in the AutoPET-III challenge held in MICCAI 2024, 

which aims to refine automated segmentation of tumor lesions in Positron Emission 

Tomography/Computed Tomography (PET/CT) scans in a multitracer multicenter setting. 
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The goal of the competition is to develop models that can accurately segment FDG- and 

PSMA-avid tumor lesions in whole-body PET/CT images, while avoiding false-positive 

segmentation of anatomical structures with physiologically high uptake. Additionally, the 

challenge focuses on building models that generalize well across different tracers, 

acquisition protocols, and clinical sites, addressing the critical need for robust and efficient 

automated analysis in oncological diagnostics. 

In this study, a two-stage deep learning-based approach was implemented to segment 

lesions in PET/CT images in the AutoPET-III challenge [1-3]. Two distinct stages were 

employed, utilizing different neural network architectures for each stage, with an 

ensemble of models used in the second stage for final segmentation. 

 

Methodology 

In this study, a two-stage deep learning approach was developed for lesion segmentation 

in PET/CT images as part of the AutoPET-III challenge. The method involved using 

different neural network architectures for each stage, with an ensemble of models applied 

in the second stage to produce the final segmentation, benefiting from both coarse-to-fine 

segmentation refinement and the diverse strengths of multiple deep learning architectures. 

Stage 1: Preliminary Segmentation 

For the first stage, a DynUNet [4] model was used to perform a coarse segmentation of 

the lesion areas. The input images were preprocessed into patches of size (128, 160, 112). 

This stage aims to identify broad regions of interest (ROIs) where lesions may be present, 

providing a rough segmentation that is refined in the second stage. 

Stage 2: Fine Segmentation with Ensemble 

In the second stage, the results from the first stage were used as additional input to refine 

the lesion segmentation further. Before feeding the first-stage segmentation masks into the 

second-stage models, random coarse dropout was applied to these masks to increase 

robustness and prevent over-reliance on the initial predictions. The second stage employed 

an ensemble of three models: 

 

• SwinUNETR [5]: A transformer-based model with a patch size of (96, 96, 96), 

designed to capture global and long-range dependencies. 

• SegResNet [6]: A residual network-based architecture, trained on patches of 

size (192, 192, 192), to capture fine details in the lesion segmentation. 

• UNet [7]: A classic U-Net architecture, trained with a patch size of (128, 160, 112), 

to further refine the segmentation results from the first stage. 



The final segmentation results were obtained by ensembling the outputs of these three 

models, aggregating their predictions to improve overall segmentation performance. 

 

Results 

Dataset 

The dataset for the AutoPET-III challenge comprises two cohorts: FDG and PSMA. The 

FDG cohort includes 501 patients with malignant melanoma, lymphoma, or lung cancer, 

and 513 negative controls, while the PSMA cohort contains PET/CT images from 537 

patients with prostate carcinoma, with and without PSMA-avid lesions. The training 

datasets show different age distributions, with FDG patients being younger (mean age: 58-

60) compared to PSMA patients (mean age: 71). Imaging conditions also varied, with the 

FDG data acquired using a single scanner, while the PSMA data was collected across three 

different PET/CT scanners. 

The PET/CT acquisition protocols differ between the FDG and PSMA datasets. FDG 

images were obtained after a six-hour fasting period and one hour post-injection of 350 

MBq 18F-FDG. PSMA images were acquired approximately 74 minutes after injecting 

18F-PSMA or 68Ga-PSMA. Annotation for both datasets involved radiologists with 5-10 

years of experience, following a two-step protocol: the identification of tracer-avid lesions 

and manual segmentation of the lesions in axial slices. A new version, Dataset v1.1, was 

released after discovering three cases that did not meet the quality criteria were mistakenly 

included. 

The dataset was randomly split into 80% training and 20% validation without k-fold 

cross-validation. Images without lesions (healthy cases) were excluded from both training 

and validation to focus the model on cancerous cases. Additionally, only samples from 

version 1.1 of the competition dataset were used, with retracted samples being excluded 

from the analysis. 

 

Experimental Settings 

All volumes were resampled to a uniform resolution by adjusting each image's spacing to 

match the dataset's average spacing. Following resampling, images were normalized to 

maintain a consistent intensity distribution throughout the dataset. To enhance model 

generalization, various augmentations were applied during training for both stages, 

including random affine transformations (translation, rotation, scaling), random Gaussian 

noise and smoothing, random intensity and contrast adjustments, and random flipping. All 

models. All methods were implemented using the MONAI framework. We trained the 

models for 774 epochs with a learning rate of 1e-3 and a weight decay of 3e-5, utilizing 



SGD as the optimizer. A polynomial scheduler was employed to adjust the learning rate 

throughout the training process. 

Quantitative Results 

Table 1 presents the Dice scores for our trained segmentation model on the baseline 

dataset. As shown, incorporating second-stage models enhances accuracy by focusing on 

the regions with inaccurate segmentation from the previous stage. 

 

Stages Models Dice Score on Validation Set 

Stage 1 DynUnet 66.57 

Stage 2 

SegResNet 67.10 

SwinUNETR 67.25 

UNet 66.88 

Table 1: Quantitative results of trained models. 

Qualitative Results 

Figure 1 illustrates representative examples of the segmentation results on both FDG and 

PSMA PET/CT images. These examples highlight the model’s ability to accurately 

delineate tumor lesions while minimizing false positives in regions with physiologically 

high tracer uptake, such as the brain, heart, and kidneys. 
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Figure 1: Visualization of some cases. The green regions are ground-truth. The red 

regions are the model predictions. Olive regions are the true positive area. 

 



Conclusion 

In conclusion, this study successfully implemented a two-stage deep learning approach 

for automated lesion segmentation in PET/CT images as part of the AutoPET III 

challenge. By utilizing a DynUNet model for initial coarse segmentation and refining the 

results with an ensemble of SwinUNETR, SegResNet, and UNet models, the method 

demonstrated improved segmentation accuracy. The use of extensive data preprocessing, 

normalization, and data augmentation techniques further contributed to the robustness of 

the model. The results highlight the effectiveness of multi-stage segmentation and model 

ensembling in enhancing performance, particularly in addressing the complexities of 

multitracer multicenter datasets.  
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