
New continued fraction approximations for the gamma function

based on the Tri-gamma function
Hong SonUng, Ri Kwang*, Kim CholRyong

Faculty of Mathematics, Kim Il Sung University, Pyongyang, DPR Korea

ABSTRACT: In this paper, we provide some useful lemmas to construct continued fraction based
on a given power series. Then we establish new continued fraction approximations for the gamma
function via the Tri-gamma function. Especially, we analytically determine all parameters of the
continued fraction by Bernoulli numbers.
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1. Introduction
The classical Euler gamma function � defined by
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was first introduced by the Swiss mathematician Leonhard Euler (1707-1783) with the goal to
generalize the factorial to non-integer values.

The logarithmic derivative )( x of the gamma function )( x given by
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is well-known as the psi (or digamma) function.

The derivative )(x is called the Tri-gamma function, while the derivatives )()( xn are called

the poly-gamma functions,
where

 )()()( x
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dx n

n
n   (n ∈ ℕ).

Today the Stirling’s formula
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is one of the most well-known formulas for approximation of the factorial function by being widely
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applied in number theory, combinatorics, statistical physics, probability theory and other branches of
science.

The Stirling’s formula for !n has a generalization to the gamma function,

 
x

e
xxx 





  21  , x . (1.3)

Also, the Stirling’s series for the gamma function is presented (see [1, p.257, Eq. (7.1.40)]) by
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where nB (n ∈ ℕ0 ≔ ℕ∪ {0}) denotes the Bernoulli numbers defined by the generating formula
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then the first few terms of nB are as follows.
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Up to now, many researchers made great efforts in the area of establishing more accurate
approximations for the gamma function, and had lots of inspiring results. [2-4], [6-12]

Especially, You [13] proved the asymptotic expansion of Γ(x + 1) via the Tri-gamma function as
follows.
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Then, he provided new asymptotic expansion using continued fraction for the factorial n! and the
gamma function via the Tri-gamma function.
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Motivated by these works, we provide some useful lemmas to construct continued fraction based
on a given power series. Then we establish new continued fraction approximations for the gamma
function via the Tri-gamma function. Especially, we analytically determine all parameters of the
continued fraction by Bernoulli numbers.

The rest of this paper is arranged as follows.
In Sect. 2 some useful lemmas are given. In Sect. 3 new continued fraction approximations for the

gamma function are provided. In the last section, the conclusions are given.

2. Lemmas
In this section, some useful lemmas are given. Especially, we provide two lemmas to construct the

continued fraction based on a given power series.

Lemma 2.1.(The Euler connection [5, p.19, Eq. (1.7.1, 1.7.2)]) Let }{ kc be a sequence in ℂ \ {0} and
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Since 10     ,  nn fff , n ∈ ℕ, there exists a continued fraction )/(0 mm baKb  with nth approximant nf 

for all n. This continued fraction is given by
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Lemma 2.2. Let }{ kc be a sequence in ℝ \ {0}.
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Proof. Assume that
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The left-side of (2.3) is equal to )(nfm .

Since

)()(    ,)( 10 nfnfnf mm  , m ∈ ℕ,

using Lemma 2.1,
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The middle expression of (2.3) is equal to
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Then, it is obviously true that
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The proof of Lemma 2.2 is complete.

Lemma 2.3. Let }{ kc be a sequence in ℝ \ {0}.
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Proof. From (2.4) and Lemma 2.1,

1

2

2

1

1

2

2

1

2

32

2

2

3

1

22

2

1

2

2

2
1

3

2
1

2
1

2
1

2
1

2
2

3

2

3

1

22

2

1

2

2

2
1

3

2
1

2
1

2
1

2
1

2
2

3

2
2

3

2
1

2

1

2

2

2
1

3

2
1

2
1

2
1

2
1

2
2

3

2
2

3

2
1

2

2
1

2

1
3

2
1

2
1

2
1

2
1

2
2

3

2
2

3

2
1

2

2
1

21

2
1

122

1                      

                            

111

1                      

1111

1                      

11111
1                      

11111
11)(


























































































































































 

m

m

m

m

i

i

i

i

m

m

m

m

i

i

i

i

m

m

m

m

i

i

i

i

m

m

m

m

i

i

i

i

m

m

m

m

i

i

i

i
m

i
i
i

m

c
c

n

n
c
c

c
c

n

n
c
c

c
c

n

n
c
c

c
c

n

n
c
c

n
nc

n

nc
c

nc
c

nc
c
nc

c

nc
c

c
c

c
c

n

n
c
c

n
nc

n

nc
c

nc
c

nc
c
nc

c

nc
c
nc

c

nc
c
c
c

n
nc

n

nc
c

nc
c

nc
c
nc

c

nc
c
nc

c

nc
c
nc

c
c

n

nc
c

nc
c

nc
c
nc

c

nc
c
nc

c

nc
c
nc

c

n
c

nn
c

n
nf















1

2

2

1

2

2

2
1

3

1

2

2

1

2

2

2
1

3

0

11











 













i

i

i

i
m

i

i

i

i

i
m

i

c
c

n

n
c
c

n

nc
n

c
c

n

n
c
c

n

nc
n

KK

. (2.9)

The middle expression of (2.8) is equal to
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The proof of Lemma 2.3 is complete.
3. Main results

In this section, we provide new continued fraction approximations for the gamma function via the
Tri-gamma function.
Theorem 3.1. For every integer n ≥ 1, we have
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From (3.2) and Lemma 2.2,
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According to (1.5) and (3.3),
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Thus, our new continued fraction approximation can be obtained.
Remark 3.1. From (2.3), we have another expression of (3.4) as follows:

 















































 















































 






 




n
an

a
n
an

an

a
n

n
e
nn

n
an

an

a
n

n
e
nnn

n

i

i

i

n

K

3

32

2

1
2

2

1
2

1exp
2
1

12
1exp 2                      

1exp
2
1

12
1exp 21





, (3.5)

where
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For the convenience of readers, we rewrite.
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Theorem 3.2. For every integer n ≥ 1, we have
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Proof. Using Lemma 2.3 and the same method from (3.2) and (3.3), we have
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Thus, our new continued fraction approximation can be obtained.
Remark 3.2. From (2.8), we have another expression of (3.8) as follows:
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4. Conclusion

As mentioned above, in our investigation, we provide some useful lemmas to construct continued
fraction based on a given power series. Then we establish new continued fraction approximations for
the gamma function, via the Tri-gamma function. Especially, we analytically determine all parameters
of the continued fraction by Bernoulli numbers.
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