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Abstract 

  In quantum mechanics, particles have a new type of probabilistic property, which is 

quantum wave probability. Corresponding to this new probability, the particle has the 

property of quantum wave entropy, and it has the property of quantum wave temperature. 

Based on the quantum wave entropy, the Unruh formula, the black hole entropy formula, and 

the Verlinde entropy gravitational formula can be easily derived. It proves that these three 

formulas are not independent of each other, but are related to each other. These three 

formulas have the same physical origin, which is quantum wave entropy. The quantum wave 

temperature has similar properties to the Unruh temperature. The quantum wave 

temperature is not only directly proportional to acceleration, but also inversely proportional 

to velocity. The Unruh temperature is just a light speed case of quantum wave temperatures. 

Compared to the Unruh temperature, the quantum wave temperature is significantly larger 

and easier to test experimentally. All experiments to test the Unruh effect can be used to test 

the theory of quantum wave entropy. We can use experiments to test whether the theory is 

true. 
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1. Introduction 

  We all know that in quantum mechanics, there is a correlation between particle waves and 

the probability of distribution of particles. In quantum mechanics, particles do not exist fixedly 

at a certain point in space, particles exist in space in the form of probability waves. The 

amplitude of a probability wave represents the probability of a particle appearing in space. 

For a monochromatic plane wave, the probability of particles appearing at every point in 

space is same. This is the current understanding of particle waves [1]. But, does this 

understanding already represent the whole probabilistic property of particle waves? Is there 

an unknown probabilistic property of particle waves? 

On the other hand, the relationship between gravity and entropy has been ambiguous since 

Beckenstein and Hawking proposed the concept of black hole entropy [2][3]. Next, Unruh 

proposed the Unruh effect [4]. Later, Verlinde proposed the entropy gravity theory [5]. What 

is the relationship between black hole entropy, the Unruh effect, and the Verlinde hypothesis 

formula, we have not yet been able to give a clear answer. How can the problem of quantum 

gravity be solved? None of these questions have a definitive answer. In the field of quantum 



gravity, any new idea is worth thinking about and discussing. 

In the author's previous paper on quantum gravity, the author proposed a new concept 

that the wavelength of particle waves represents a new kind of distribution probability [6]. 

Although the object of this concept is the wavelength of particles in the fourth spatial 

dimension, the author boldly proposes that the concept is a general concept. This new 

probabilistic property exists in particle waves in 3-dimensional space also. This paper is an in-

depth explanation of this concept in 3-dimensional space. In this paper, the authors will 

elaborate entirely new concepts and perspectives that lead to completely unexpected results. 

2. Quantum wave entropy and Unruh effect 

The wavelength of the particle wave represents a new kind of distribution probability. In a 

fixed-length spatial range, for a free particle (monochromatic plane wave), the smaller the 

wavelength, the greater the probability of particle excitation; Conversely, the larger the 

wavelength, the smaller the probability of particle excitation. That is, for this new probability, 

the probability density is inversely proportional to the wavelength. This is a new type of 

probability. For this new type of probability, its probability density is expressed by the 

following formula (1.1). 

𝑑𝑝 = 𝛼
𝑑𝑟

𝜆
                                                      (1.1) 

The 𝛼  is a proportionality constant. The 𝜆  is the wavelength of the particle. The 𝑑𝑝 

actually represents the probability density within the length of dr. The value of the probability 

constant 𝛼 needs to be measured experimentally. 

Since the distance r in full space can be seen as infinity, the probability of a particle in full 

space is infinite for this new type of probability. That is, the sum of the probabilities of the 

excitation of particles in full space is infinite. This is an obvious conclusion. 

This is a new type of probabilistic property of particles, which is completely different from 

the probabilistic amplitude properties of existing particle waves. Unless otherwise specified, 

the probabilities described later are all those of this new type. Readers need to pay attention 

to the distinction. 

Because the probability density of this new type is determined by wavelength, the authors 

named this new type of probability by quantum wave probability. 

With this new probabilistic object, we can discover very interesting and surprising results. 

Using this new probabilistic object, we can simply derive the Unruh formula, we can simply 

derive the Verlinde formula, and we can simply derive the black hole entropy formula. 

In quantum mechanics, a particle has intrinsic properties, such as the spin of a particle. For 

example, the spin of a particle has two possibilities, +1/2 and -1/2, that is, it has two degrees 

of freedom. This degree of freedom is the intrinsic degree of freedom of the particle. This is 

a special type of freedom in quantum mechanics. There must be other unknown intrinsic 

degrees of freedom in particles. We uniformly use n to identify the sum of all intrinsic degrees 

of freedom of a particle. The degrees of freedom and the number of microstates are 

correlated. The intrinsic degrees of freedom of a particle also represent a new number of 

microscopic states of the particle. Each particle excited in space has intrinsic degrees of 

freedom n, and the probability of excitation of the particle in the range of the dr length is 

equation (1.1). So, the sum of the number of microstates of the particles in the length of L is 



equation (1.2). 

𝑁 = 𝑛∫ 𝑑𝑝
𝐿

0                                                     (1.2) 

Since having the number of microstates, entropy can be defined. 

 𝑆 = 𝜅𝐵𝑙𝑛𝑁 = 𝜅𝐵 ln (𝑛
∫ 𝑑𝑝
𝐿

0 ) = ∫ 𝑑𝑝
𝐿

0
× 𝜅𝐵 × ln(𝑛) = 𝐷𝜅𝐵 ∫ 𝑑𝑝

𝐿

0
        (1.3) 

where 𝐷 = ln(𝑛), which is related to the intrinsic degrees of freedom of the particle. 𝜅𝐵 is 

the Boltzmann constant. For the same type particles, D is a constant value. Different types  

particles may have different D values. For example, if we consider only the spin of the particle, 

n=2, D=ln2. 

This is a new type of entropy that corresponds to the new type probability. The new type 

probability is the quantum wave probability of the particle, so the author named it by 

quantum wave entropy. 

The basis of quantum wave entropy is the intrinsic degree of freedom D of the particle. In 

classical physics, a particle does not have intrinsic degrees of freedom, n=1, D=0. So in 

classical physics, particles does not have this entropy. Only in quantum mechanics, the particle 

have intrinsic degrees of freedom, and D is not equal to zero, so the particle has quantum 

wave entropy. So, this entropy only exists in quantum mechanics, which is a special property 

of quantum mechanics. 

For monochromatic plane waves, the integral range is infinity, so the quantum wave 

entropy is infinity. Monochromatic plane waves correspond to free particles. Therefore, the 

quantum wave entropy of a free particle is infinity. 

Physically, the entropy of infinity has no physical significance. However, the differentiation 

of entropy has a physical significance. By equation (1.3), we can get the differential form of 

entropy as equation (1.4). 

𝑑𝑆 = 𝐷𝜅𝐵𝑑𝑝 = 𝐷𝜅𝐵𝛼
𝑑𝑟

𝜆
                                          (1.4) 

To particles, where D、𝜅𝐵、𝛼 are constants. In the previous paper [6], the authors derived 

𝜋𝛼 = 1. This is just a rough estimate. The specific value needs to be determined through 

experiments. To simplify the explanation, the constants D and 𝛼 are hidden, and equation 

(1.4) is simplified to equation (1.5). Readers need to pay attention to the distinction. 

𝑑𝑆 = 𝜅𝐵
𝑑𝑟

𝜆
                                                     (1.5) 

Note that the dr here is derived from equation (1.1) and is only derived from the quantum 

wave probability within the length of dr, which is only a differential form of the distance length 

r, and has no correlation with the increase or decrease of the length r. Regardless of whether 

the length r increases or decreases, dr is a positive value, and there is no negative dr value. 

So, the dS here is always positive. Please pay attention to the distinction. 

The dS here is actually an entropy density, which represents the magnitude of the quantum 

wave entropy that the particle has over the length of the dr. dS here does not actually mean 

a value of S increasing or decreasing. However, if the length range changes, bringing dr and 

dS, the actual dS can also be regarded as the value of the change in S. Since quantum wave 

entropy is represented by equation (1.5) and is related to dr, dS actually has a double meaning, 

which is both the value of S change and the entropy density. This is the peculiarity of quantum 



wave entropy that differs from existing thermodynamic entropy. Readers need to pay special 

attention to this peculiarity. 

In addition, dS only involves the value of wavelength 𝜆, and does not involve the value of 

wavelength change 𝑑𝜆. This is because equation (1.5) is derived from equation (1.1). Equation 

(1.1) only deals with the wavelength 𝜆 and has no correlation with 𝑑𝜆. Therefore, dS is only 

related to the wavelength 𝜆 and not to 𝑑𝜆. It can be understood in this way. In quantum 

mechanics, if the wavelength of a particle changes, the particle is no longer the original 

particle, but a new particle, so the entropy of a particle must not be correlated with 𝑑𝜆. 

We apply quantum wave entropy to the below equation of thermodynamics [7]. 

 𝑇 =
𝑑𝐸

𝑑𝑆
 

So we get formula (1.6). 

 𝑇 =
𝑑𝐸

𝑑𝑆
=

𝜆

𝜅𝐵

𝑑𝐸

𝑑𝑟
                                                  (1.6) 

This is the temperature corresponding to the quantum wave entropy. This is a new type of 

temperature. We named this new type of temperature by quantum wave temperature. 

The following formula exists. 

𝑑𝐸

𝑑𝑟
= 𝐹  

In the case of an approximation at low speeds. 

𝐹 = 𝑚𝑎  

𝜆 =
ℎ

𝑚𝑉
  

Take above three formulas into (1.6), we can get formula (1.7). 

𝑇 =
ℎ

𝜅𝐵𝑉
𝑎                                                     (1.7) 

If we do the same for photons, assume that the above equation is also valid for photons. 

Considering where m is the equivalent mass of the photon, and the photon energy 𝐸 = 𝑚𝐶2, 

so we get the equation (1.8). 

𝑇 =
ℎ

𝜅𝐵𝐶
𝑎                                                      (1.8) 

Equation (1.8) is the Unruh formula, with only constant differences. We found that based 

on the equation of quantum wave entropy (1.5), the Unruh formula can be easily derived. This 

is a very surprising result. 

It can be found that the quantum wave entropy defined in equation (1.5) has important 

physical significance, and it is not a concept made up randomly. 

The Unruh formula only works in the case of photons. However, we found that there is 

another, more generally-applicable formula (1.7). Equation (1.7) is valid for all particles. The 

Unruh formula is just a special case of Equation (1.7). 

Similar to the Unruh effect, for an accelerated observer, the observer will see the same 

background acceleration for all other particles. Therefore, all other particles have a 

temperature as defined by equation (1.7). So, this temperature can be seen as a background 

radiation temperature. But the background radiation temperature here is the quantum wave 

temperature of all other particles, not the vacuum radiation temperature. Compared with 



Unruh temperature, the two have different physical origins. The background radiation 

temperature caused by quantum wave entropy is not directly related to vacuum, and is not a 

property of vacuum. This is very different from the Unruh temperature. In addition, other 

particles do not move at the same speed, so the quantum wave temperature exhibited by 

different particles is not the same. However, looking at the statistical average of all particles, 

equation (1.7) can be thought of as an average background radiation temperature. 

Because the velocity in the Unruh formula is the speed of light C, the temperature is very 

small, so it is very difficult to measure experimentally. Conversely, the velocity in equation (1.7) 

may be small, the temperature will be large, and it will be easier to measure experimentally. 

For example, if the velocity of the experimental instrument is in the range of 1-10 m/s and 

the acceleration is about 10 m/ss, the quantum wave temperature measured by the 

instrument will be about 10−10  degrees according to equation (1.7). Under the same 

conditions, according to equation (1.8), the Unruh temperature is about 10−18 degrees. The 

quantum fluctuation temperature is about 108 times to the Unruh temperature. Obviously, 

quantum wave temperatures are easier to test experimentally. Therefore, the experiment used 

to test the Unruh temperature can also be used to test the quantum wave temperature, and 

the effect of the quantum wave temperature is more significant. 

Therefore, we need to take a closer look at the experiments that detect the Unruh effect. 

Experimental data may be more consistent with equation (1.7). If the accelerating instrument 

only detects the phenomenon of background radiation temperature, it does not prove the 

Unruh effect. The measured temperature values must also conform to the Unruh formula in 

order to prove the Unruh effect. If the accelerating instrument only detects the temperature 

phenomenon of background radiation, but the measured temperature value is significantly 

larger than the value calculated by the Unruh effect, and the temperature value is more 

consistent with the result of equation (1.7), then the experiment is not proving the Unruh 

effect. Instead, the experiment is proving Equation (1.7). Therefore, the concept of quantum 

wave entropy brings new thinking and new physical meaning to the experiment of the Unruh 

effect. 

If the instrument is accelerating from rest with the same acceleration, in this case, V=at, 

take it into formula (1.7), get the following result. 

𝑇 =
ℎ

𝜅𝐵𝑡
                                                    (1.9) 

The quantum fluctuation temperature decreases with time. There is no correlation between 

this formula and acceleration, and all cases of acceleration follow this formula. Experiments 

can also be designed according to equation (1.9) to test whether the formula is consistent 

with the actual situation and whether the quantum wave entropy is valid. However, it is 

important to note here that the temperature is not infinity when t=0. The formula V=at holds 

only in the case of macroscopic classical physics. If the time interval t is very small, it is already 

a microscopic state, and according to quantum mechanics, the formula V=at is no longer true. 

It's just that in the case of approximation of macroscopic classical physics, the above formula 

is valid. 

According to equation (1.7), we can get a result. If the acceleration remains constant, the 

speed of the experimental instrument will continue to increase as the acceleration continues, 

and the value of the background radiation temperature measured by the instrument will 



continue to decrease. Conversely, if the acceleration remains constant, the temperature 

predicted by the Unruh effect is a constant value. Based on this difference, we can also use 

experiments to check whether the results are consistent with equation (1.7) or the Unruh effect. 

Based on equation (1.5), we can also find that the Verlinde entropy gravitational formula 

can be easily derived. From formula (1.5), we can get formula (1.10). 

𝑑𝑆

𝑑𝑟
=

𝜅𝐵

𝜆
=

𝜅𝐵
ℎ

𝑚𝑉

= 𝜅𝐵
𝑚𝑉

ℎ
                                        (1.10) 

Similarly, if we generalize the V in equation (1.10) to the speed of light C, we get equation 

(1.11). 

 
𝑑𝑆

𝑑𝑟
=

𝜅𝐵𝑚𝐶

ℎ
                                                  (1.11) 

Equation (1.11) differs only from Verlinde's entropy gravitational equation by constants. So, 

we can see that the Verlinde entropy gravitational formula is also only a special case of 

equation (1.10). More generally, it is the formula (1.10). The Verlinde entropy gravitational 

formula is also only a derivation of quantum wave entropy. The entropy in Verlinde's entropy 

gravitational formula is not a conventional thermodynamic entropy, but a quantum wave 

entropy. 

From the above derivation process, we can also see that there is a correlation between the 

Verlinde entropy gravitational formula and the Unruh formula. The two formulas do not stand 

on their own. Both formulas are actually the results of quantum wave entropy. This is a 

completely new realization. We need to be cautious about using both of these formulas. If we 

use both formulas, we may be using the same concept repeatedly, thus forming a logical loop 

that makes the derivation deceptive. 

The above derivation process does not involve any specific type of force, and is a general 

derivation result that is valid for all forces. 

3. Derive black hole entropy 

Based on the quantum fluctuation entropy, we can also very easily derive the black hole 

entropy formula. We apply equation (1.7) to the case of gravitational force in a 3-dimensional 

space (4-dimensional space-time). Gravitational acceleration is 

𝑎 =
𝑑𝐸

𝑑𝑟
=

𝐺𝑀

𝑟2
  

 Take the result into formula (1.7), get formula (2.1). 

𝑇 =
ℎ

𝜅𝐵𝑉
𝑎 =

ℎ

𝜅𝐵𝑉

𝐺𝑀

𝑟2
                                           (2.1) 

This is the quantum wave temperature of the particle in the gravitational field generated 

by the gravitational source M. Equation (2.1) is a common situation. 

We generalize the equation (2.1) to the speed of light C, V=C, and we get the following 

formula. 

𝑇 =
ℎ

𝜅𝐵𝐶

𝐺𝑀

𝑟2
  

Then set r to the radius of the black hole R of the gravitational source M. In Planck gravity 

theory, the radius of a black hole is expressed by the following formula [8]. In general relativity, 

the radius of a black hole is twice that of this formula [9], with only a constant difference. We 



use the radius of a black hole in Planck gravity theory to calculate. 

𝑟 = 𝑅 =
𝐺𝑀

𝐶2
  

So can get. 

𝑇 =
ℎ

𝜅𝐵𝐶

𝐺𝑀

𝑟2
=

ℎ𝐶

𝜅𝐵𝑅
                                             (2.2) 

Equation (2.2) differs only from the black hole temperature formula by constants. This is yet 

another surprising result. By applying the quantum wave entropy to a particle located at the 

radius of a black hole, we can deduce the quantum wave temperature of the particle, and we 

get the result of the temperature of the black hole. 

Directly from equation (1.8), assuming that the gravitational acceleration at the radius of 

the black hole still satisfies 𝑎 =
𝐺𝑀

𝑟2
, the same temperature formula can be obtained. 

𝑇 =
ℎ

𝜅𝐵𝐶
𝑎 =

ℎ

𝜅𝐵𝐶

𝐺𝑀

𝑟2
=

ℎ𝐶

𝜅𝐵𝑅
  

If we assume that the temperature of the particles at the radius of the black hole is the 

same as the temperature of the black hole, it is a temperature equality condition. Then the 

temperature of the black hole should also be equal to the result of equation (2.2). If we then 

assume that the energy of the black hole satisfies. 

𝐸 = 𝑀𝐶2  

We can get the black hole entropy formula (2.3). This formula differs from the Hawking-

Beckenstein black hole entropy formula only by a constant. 

𝑆 =
𝐸

𝑇
=

𝑀𝐶2

ℎ𝐶

𝜅𝐵𝑅

=
𝜅𝐵𝑅

2

𝐿𝑝
2                                           (2.3) 

This is a very obvious result. Now that we have the black hole temperature formula, we 

must be able to get the black hole entropy formula. 

Let's look at equation (2.1) again. If we assume that the velocity of a particle is obtained 

entirely by gravity, it is the particle that is initially at rest that begins to accelerate under the 

gravitational force. In the case of a low-speed approximation, the velocity V satisfies the 

following equation. 

𝑉 = √
2𝐺𝑀

𝑟
  

Take the formula into formula (2.1), then can get formula (2.4). 

𝑇 =
ℎ𝑉

2𝜅𝐵𝑟
                                                    (2.4) 

Equation (2.4) is the quantum wave temperature formula for the motion of a particle in a 

gravitational field at a low velocity approximation. It has a similar form to the black hole 

temperature formula. Comparing equations (2.4) and (2.2), it can be seen that the black hole 

temperature is the highest temperature. 

Why is it possible to derive the same form of black hole temperature formula and black 

hole entropy formula based on quantum wave entropy? What is the real physical meaning of 

black hole entropy? We need to re-examine the physical meaning of black hole entropy and 

black hole temperature. What is the physical meaning of black hole radiation? Quantum wave 

entropy is the result of a new type of quantum probability. This new type of probability is the 



probability represented by the wavelength of the quantum wave. Any particle with quantum 

wave properties has this quantum wave entropy, which is not directly related to a black hole. 

Black hole entropy, on the other hand, is just a special case of this quantum wave entropy. 

Can we understand the entropy of black holes in this way? Is the new understanding correct? 

We need to think new about the physical meaning of black hole radiation. This is a subject 

that needs to be studied in depth. 

Another method can be used to derive the entropy of a black hole. According to equation 

(1.5), we assume that the wavelength of a particle is equal to its Compton wavelength, and 

then assume that the value of dr is the diameter of the particle's black hole. 

𝜆 =
ℎ

𝑀𝐶
  

𝑑𝑟 = 2𝑅 =
2𝐺𝑀

𝐶2
  

Take the two formulas into (1.5), then can get. 

𝑑𝑆 = 𝜅𝐵
𝑑𝑟

𝜆
= 𝜅𝐵

2𝐺𝑀

𝐶2

ℎ

𝑀𝐶

= 2𝜅𝐵
𝑅2

𝐿𝑝
2                                      (2.5) 

There is only a constant difference between this equation and (2.3). In this derivation, the 

particle wavelength is easily understood. If a black hole is treated as a single particle, then the 

particle wavelength of the black hole is equal to the Compton wavelength of the black hole. 

For a black hole, the quantum wave entropy within the length of its diameter is just the black 

hole entropy. How to understand this result needs to be further studied. 

As can be seen from equation (2.5), the black hole entropy formula is just a differential form 

of the quantum wave entropy of a black hole. The black hole entropy formula (2.5) does not 

represent the full entropy of a black hole. At the full-space scale, the total quantum wave 

entropy of the black hole is the integral of dS in the full-space, so it is infinity. Therefore, the 

derivation process of equation (2.5) has prompted us to rethink the physical meaning of black 

hole entropy. This is a topic that needs to be studied in depth. 

From the above derivation process, we can find a result. Using the concept of quantum 

wave entropy to derive does not require the assumption that a black hole has an internal 

structure, nor does it need to assume that the black hole event horizon emits radiation. 

Treating a black hole as a particle, we can derive the black hole entropy and the black hole 

temperature. So, we need to revisit the concepts of black hole entropy and black hole 

temperature. Does black hole entropy really mean that black holes have an internal structure? 

From the above derivation process, we can see that the black hole entropy formula, the 

Unruh formula, and the Verlinde entropy gravitational formula are actually related to each 

other, and they are not independent of each other, and all three can be derived based on 

quantum wave entropy. Therefore, the Verlinde entropy gravitational hypothesis is not correct. 

In fact, in the process of deriving the black hole entropy formula, the radius or diameter of 

the black hole must be introduced in order to derive the result of the black hole entropy 

formula. And the radius of the black hole is actually already the result of gravity. Without 

gravity, there is no black hole radius. Therefore, the derivation of gravity from the entropy of 

a black hole is a logical cycle, and such a derivation process cannot be established. 

Let's look at the problem of black hole information loss. A particle falls into a black hole B, 

forming a larger black hole C, and there seems to be a loss of information. However, from the 



perspective of quantum wave entropy, there is no problem of information loss. 

Based on equation (1.5), for particle A falling into a black hole, its velocity is approximately 

equal to the speed of light. We identify its equivalent mass by 𝑀1. 

𝐸 = 𝑀1𝐶
2  

𝜆 =
ℎ

𝑀1𝐶
  

Take into formula (1.5), so get. 

𝑑𝑆1 = 𝜅𝐵
𝑑𝑟

𝜆
=

𝜅𝐵𝐶𝑑𝑟𝑀1

ℎ
  

To the black hole, there exist formula. 

𝜆 =
ℎ

𝑀2𝐶
  

So get. 

𝑑𝑆2 = 𝜅𝐵
𝑑𝑟

𝜆
=

𝜅𝐵𝐶𝑑𝑟𝑀2

ℎ
  

So get. 

𝑑𝑆1 + 𝑑𝑆2 =
𝜅𝐵𝐶𝑑𝑟(𝑀1+𝑀2)

ℎ
=

𝜅𝐵𝐶𝑑𝑟𝑀

ℎ
= 𝑑𝑆  

Therefore, if the particle falls into the black hole, the total quantum wave entropy does not 

decrease. So there is no problem of information loss. 

Of course, the above is only a rough derivation process, and this is only a rough proof. For 

rigorous proof, further in-depth research is needed. 

We can also rethink the argument about whether entropy increases or decreases under 

gravitational attraction. The particles automatically move closer to the center of gravity in the 

gravitational field, and there seems to be a decrease in entropy. However, if the quantum 

wave entropy of the particle is considered, the speed of the particle's motion increases, its 

quantum wavelength decreases, and according to equation (1.5), the quantum wave entropy 

ds of the particle will increase. So, the entropy of the particle does not decrease. There is no 

problem of entropy reduction under gravitational attraction. Therefore, we find that by 

introducing the concept of quantum wave entropy, many of the original fuzzy and confused 

problems become clear, and the law of entropy increase in thermodynamics can be clearly 

proved. 

5. Conclusion 

In quantum mechanics, there is a new type of probability. It is the quantum wave probability 

of the particle, which is expressed by equation (1.1). This new probability corresponds to a 

new type of entropy, the quantum wave entropy of the particle, which is represented by 

equation (1.5). Based on the concept of quantum wave entropy, it is possible to deduce the 

result that particles that are moving at an accelerated rate have a new temperature property. 

It is the quantum wave temperature, which is represented by the equation (1.7). The quantum 

wave temperature is inversely proportional to the velocity of the particle and directly 

proportional to the acceleration of the particle. The quantum wave temperature at the speed 

of light is just the Unruh temperature. The Unruh effect can be derived from the concept of 

quantum wave entropy. At very small particle velocities, the quantum wave temperature is 



much larger than the Unruh temperature. Therefore, the quantum wave temperature can be 

more easily tested experimentally. Therefore, it is easier to judge the correctness of the 

concept of quantum wave entropy through experiments. Based on the quantum wave entropy, 

the Verlinde entropy gravitational formula and the black hole entropy formula can be simply 

derived. There is actually a correlation between the black hole entropy formula, the Unruh 

formula, and the Verlinde entropy gravitational formula. The three are not independent of 

each other, but all three actually originate from quantum wave entropy. Therefore, the theory 

of entropy gravitational force does not hold. Quantum wave entropy is a new concept that 

needs to be studied in depth. 
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