
Variational Autoencoder without

Kullback–Leibler divergence (BSvarautonet)

Sing Kuang Tan
Email: singkuangtan@gmail.com

September 9, 2024

Abstract

In this paper, I am going to propose a new Boolean Structured Varia-
tional Autoencoder Deep Learning Network (BSvarautonet) built on top
of BSautonet, based on the concept of monotone multi-layer Boolean al-
gebra. Kullback–Leibler (KL) divergence used in traditional Variation
Autoencoder has convergence problem and numerical instabilities. Due to
the Boolean Structured design of BSautonet, the bottleneck latent space
embeddings is naturally distributed in multi-variables Gaussian distribu-
tion. By applying a whitening normalization on the latent space, it will
transform the latent space to unit Gaussian distribution. Through anal-
ysis of the datapoints in latent space and generated MNIST digit images,
it has shown that it has all the properties of variational autoencoder. The
BS autoencoder is a masked noise denoising model, therefore it can acts
like a diffusion model to incrementally generate a digit image from a noisy
one through repeated applications of the autoencoder model.

1 Introduction

My BSvarautonet network is the same as BSautonet except that the latent space
embeddings are normalized into unit Gaussian distribution.

Variation autoencoer has a lot of advantages over conventional autoencoder.
As the generated latent space datapoints are compact with no free space between
datapoints, it will ensure the generated image conforms to the actual class of
the digits. It can also be used to determine the probability of an occurence of
an input image in the dataset. It can be used to generate a series of images
transforming a digit image to another digit image.

Please note that class labels are not used when training BSautonet, the latent
codes are trained specifically due to the similarities of the appearances of the
digit images. No regularization, no weight decay to demostrate the simplicity
and prowess of my model. Since no KL divergence is used, it can be trained
very fast in 150 epochs.

1

mailto:singkuangtan@gmail.com


KL divergence has convergence problem (sometimes unable to learn the
dataset) and numerical instabilities. KL divergence can give you sleepless nights,
spending hours after hours tuning hyperparameters and retraining the varia-
tional autocoder model again and again. Furthermore KL divergence loss func-
tion in variational autoencoder has high computational cost. Using my model,
default hyperparameters work well and can be train as fast as a normal autoen-
coder.

2 Hypothesis

Because of the non-negative weights design of our BSvarau-
tonet, the distribution of the latent space embedding is very
close to Gaussian distribution

Even if our BSvarautonet is not more accurate than an ordinary network,
it is still worth studying as it has well defined and interesting properties an
ordinary network does not have. Ordinary network is too complex to analyze
as it tries to emulate a high dimensions floating point function, whereas our
network tries to emulate a Boolean algebra network. So from our network we
can easily derive interesting properties from it.

Our network neuron is a high dimension input and single output monotonic
function, which means that the value of the function increase or decrease in
one direction. Therefore the datapoints distribution (generated from test set
or training set) in the latent space is very ”continuous”, where there no clear
gaps between datapoints. This property is important as it creates a span of
”continuous” datapoints like an ordinary variational autoencoder, without the
need for KL divergence regularization or any other regularization. Ordinary
non-variational autoencoder will have clear gaps inbetween datapoints.

As our network is a Boolean Structured network, the latent space span
is a high dimension cubic continuous 0-1 logic space. This space however is
skewed (skewed Gaussian distribution with non-identity coveriance matrix). So
a whitening operation has to perform on the latent embeddings to make it a
unit Gaussian distribution. The output range of a neuron may be in a range
bigger than 1, e.g. from 0 to 7, where 0 is logic 0 and 7 is logic 1.

Since the weights are non-negative, during training the output is propagated
to the input like a particle filter, each weights will move to the mean propagated
values from the input-output pairs. So the output of each neuron will be normal
distributed but has different variances at different direction (non-unit covariance
matrix). To get a unit normal Gaussian distribution, we simply whiten the
distribution of the datapoints (generated from test set or training set) to unit
convariance (identity matrix). Look into more closely, since each neuron in the
BSvarautonet acts like a Boolean operation, there are 2 operational modes in
the output distribution of a neuron. But overall it will looks like a normal
distribution.

2



The weights of by BS series network (BSnet, BSautonet, BSconvnet, BSauto-
convnet, BSvarautonet) are always positive. This has an advantage in learning
and human interpretation of the weights values. The weights represent how
much information is passed from the lower layer outputs (inputs of a neuron)
to the next latyer outputs (output of a neuron). If we allow negative weights,
then it seems weird as we are passing negative information to the next layer.
And for training, weights only move in one direction in the positive region and
we do not have to worry whether the weights should be positive or negative.

My BS series networks training process is like solving a Travel-
ling salesman problem using Linear Programming. In TSP, the
linear program will cast vote on each edge and the edge with
the highest vote will be removed. Then the LP is updated to
cast another set of votes. The next highest vote edge will be
removed. LP is repeated until a set of edges representing the
shortest ring route across the cities. It is the same for my BS
networks. The gradient descent will cast votes and one of the
weights will be set to zero. It will continue cast votes and set
to zero another weight until full learning of the input-output
pairs of the dataset.

3 My Model

Our BSvarautoent will be the same as BSautonet[1] except that it has whitening
operation on the bottleneck latent space embedding so that the embedding
is unit Gaussian distributed (see figure 1). Whitening operation is using an
Singular Value Decomposition algorithm to set all the eigenvalues to 1.

The Singular Value Decomposition (SVD) of a matrix A is given by:

A = UΣV T

where:

• A is an m× n matrix.

• U is an m × m orthogonal matrix (whose columns are the left singular
vectors of A).

• Σ is an m × n diagonal matrix (with non-negative real numbers on the
diagonal called singular values of A).

• V is an n × n orthogonal matrix (whose columns are the right singular
vectors of A).

• V T is the transpose of V .

3



Figure 1: Principle component analysis plot of the latent space embeddings of
my BSvarautonet after whitening operation

In comparsion, the latent space plot of a regular autoencoder is shown in
figure 2. There are a lot of free space between embeddings. This will lead to
garbage image to be generated if you sample any embeddings between in the
free space. The probability distribution of the latent space embeddings does
not follow any standard mathematical probability distribution, which makes it
difficult to generate a sample of the distribution algorithmically. However, for
my BSvarautonet, the distribution of the embeddings is Gaussian. So you can
sample embeddings distribution simply using the mean and covariance matrix
of the Gaussian distribution with some Gaussian random variable generation
algorithm.

4



Figure 2: Principle component analysis plot of the latent space embedding of
a regular autoencoder. Source: https://mohitjain.me/2018/10/26/variational-
autoencoder/

This will lead to garbage image to be generated if you sample any embed-
dings between in the free space. The probability distribution of the latent space
embeddings does not follow any standard mathematical probability distribution,
which makes it difficult to generate a sample of the distribution algorithmically.
However, for my BSvarautonet, the distribution of the embeddings is Gaussian.
So you can sample embeddings distribution simply using the mean and covari-
ance matrix of the Gaussian distribution with some Gaussian random variable
generation algorithm.

The T-SNE plot of my BSvarautonet latent space embeddings (Figure 3)
shows that it mathematically groups up images of the same digits in the same
clusters. This means that my BSvarautonet has achieved the removal of mutual
information between digit classes and generate independent cluster component
for each digit class.

5



Figure 3: T-SNE plot of the latent space embedding of my BSvarautonet

So transformation in the latent space is equivalent to transformation in the
output image. In specific, if you linear transform a digit 6 image embedding
to digit 0 embedding, the output image will linear interpolate between the two
digits (see figure 4)

Figure 4: Linearly interpolate between digit 6 and 0 using linear interpolation
in the bottleneck latent space embedding

4 Experiment Results

The figure 5 and 6 shows how the output digit images are distributed. If the
embedding is close to the origin, the digit images will resemble to digit images
found in the dataset. If the embedding is far from the origin, the digit images
will be different from what is found in the dataset, which in some cases, may
create a weird digit image that does not look like a number.

6



Figure 5: Output digit image distributions generated by sampling within the
unit Gaussian distribution of bottleneck latent space embedding

7



Figure 6: Output digit image distributions generated by sampling out of the
unit Gaussian distribution of bottleneck latent space embedding

My BSvarautonet can act like a diffusion network, to generate random digit
images or denoise an existing digit image. Figure 7 shows how a random digit
image is generated. Start from random noise image, denoise it a few times using
BSvarautonet, then add noise to the image. Repeat the denoise and add noise
step multiple times. The final output image will be a new digit image generated
using the digit image probability distribution of the dataset.

The diffusion behavior of my BSvarautonet is like the mode seeking behavior
of mean shift algorithm. If a random generated latent embedding lies between
and out of the distributions of all digits, then the generated output digit from
my BSvarautonet will be abnormal, looks like something between 2 digits, the
handwriting may generate broken line segments. However after diffusion pro-
cess, the output digit image will be transformed to a digit in one of the digit
class distribution.

8



Figure 7: Use BSvarautonet like a diffusion network to generate random digit
images

Access my GitHub codes thru this link:
https://github.com/singkuangtan/BSvarautonet

5 Conclusion

I have developed a Boolean Structured Variational Autoencoder Deep Learning
Network for general noisy digit image reconstruction problem (MNIST dataset)
in machine learning, but it is able behave like a variational autoencoder. Because
the variational autoencoder is able to generate continuous, smooth and single
blob unit Gaussian distribution, it made random generation and interpolation
of digit images close to what is found in the dataset, without generating gabarge
images.

It has application to transform one digit image to another, to use like a

9



diffusion network to generate random digit images or denoise part of an existing
digit image.

My ultimate goal is to develop an ultimate deep learning network in its
simplest form and canoical form, by making step by step improvements, with
one of the step to make each layer output distribution to become unit Gaussian
distribution.

References

[1] Sing Kuang Tan. Design autoencoder using bsnet (bsautonet). 2022. Ac-
cessed: 2024-03-03.

10


	Introduction
	Hypothesis
	My Model
	Experiment Results
	Conclusion

